Hydroxychloroquine retinopathy — implications of research advances for rheumatology care

Abstract

Despite advances in therapy for rheumatic diseases, hydroxychloroquine remains almost universally recommended for the treatment of systemic lupus erythematosus (SLE), and is often used in the management of other rheumatic diseases such as rheumatoid arthritis (RA). However, the major dose-limiting toxicity of hydroxychloroquine is retinopathy that can lead to loss of vision. New highly sensitive screening methods can identify early stages of retinopathy, and studies that include these modalities have indicated a substantially higher prevalence of hydroxychloroquine retinopathy than was previously recognized, resulting in revisions to ophthalmology guidelines and the recommendation of a low dose of hydroxychloroquine for many patients. However, the efficacy of low-dose hydroxychloroquine for treating SLE and other rheumatic diseases is unknown. Further studies are required to establish the effectiveness and retinal safety of the latest hydroxychloroquine treatment recommendations.

Key points

  • Hydroxychloroquine is almost universally recommended for patients with systemic lupus erythematosus (SLE) and has wide-ranging benefits, but risks include toxic retinopathy.

  • A proposed mechanism of hydroxychloroquine retinopathy is impaired lysosomal degradation of photoreceptor outer segments by the retinal pigment epithelium.

  • Early changes associated with hydroxychloroquine retinopathy can be detected by modern highly sensitive screening modalities.

  • Hydroxychloroquine retinopathy prevalence is lower in studies of older screening modalities than in studies of highly sensitive screening methods that include early stages of disease (<2% versus ≤8%).

  • The most important predictors of hydroxychloroquine retinopathy are thought to be high-dose (>5 mg/kg) and long-term (>5 years) use, but existing evidence is limited to retrospective studies of prevalence data.

  • Despite the wide-ranging benefits of hydroxychloroquine therapy for patients with SLE, rheumatoid arthritis (RA) or other conditions, data on the dose–response relationship with outcomes are scarce.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Techniques for assessing hydroxychloroquine retinopathy.
Fig. 2: Mechanisms of hydroxychloroquine retinopathy.

References

  1. 1.

    Alarcon, G. S. et al. Effect of hydroxychloroquine on the survival of patients with systemic lupus erythematosus: data from LUMINA, a multiethnic US cohort (LUMINA L). Ann. Rheum. Dis. 66, 1168–1172 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Ruiz-Irastorza, G., Ramos-Casals, M., Brito-Zeron, P. & Khamashta, M. A. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann. Rheum. Dis. 69, 20–28 (2010).

    CAS  PubMed  Google Scholar 

  3. 3.

    Ruiz-Irastorza, G. et al. Effect of antimalarials on thrombosis and survival in patients with systemic lupus erythematosus. Lupus 15, 577–583 (2006).

    CAS  PubMed  Google Scholar 

  4. 4.

    The Canadian Hydroxychloroquine Study Group. A Randomized study of the effect of withdrawing hydroxychloroquine sulfate in systemic lupus erythematosus. N. Engl. J. Med. 324, 150–154 (1991).

    Google Scholar 

  5. 5.

    Pons-Estel, G. J. et al. Protective effect of hydroxychloroquine on renal damage in patients with lupus nephritis: LXV, data from a multiethnic US cohort. Arthritis Rheum. 61, 830–839 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Petri, M. Use of hydroxychloroquine to prevent thrombosis in systemic lupus erythematosus and in antiphospholipid antibody-positive patients. Curr. Rheumatol. Rep. 13, 77–80 (2011).

    CAS  PubMed  Google Scholar 

  7. 7.

    Clowse, M. E., Magder, L., Witter, F. & Petri, M. Hydroxychloroquine in lupus pregnancy. Arthritis Rheum. 54, 3640–3647 (2006).

    PubMed  Google Scholar 

  8. 8.

    Jorge, A. & Ramsey-Goldman, R. in Systemic Lupus Erythematosus 117–135 (Oxford Univ. Press, 2016).

  9. 9.

    Cairoli, E., Rebella, M., Danese, N., Garra, V. & Borba, E. F. Hydroxychloroquine reduces low-density lipoprotein cholesterol levels in systemic lupus erythematosus: a longitudinal evaluation of the lipid-lowering effect. Lupus 21, 1178–1182 (2012).

    CAS  PubMed  Google Scholar 

  10. 10.

    Pons-Estel, G. J. et al. Anti-malarials exert a protective effect while Mestizo patients are at increased risk of developing SLE renal disease: data from a Latin-American cohort. Rheumatology (Oxford) 51, 1293–1298 (2012).

    Google Scholar 

  11. 11.

    Wallace, D. J., Gudsoorkar, V. S., Weisman, M. H. & Venuturupalli, S. R. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat. Rev. Rheumatol. 8, 522–533 (2012).

    CAS  PubMed  Google Scholar 

  12. 12.

    O’Dell, J. R. et al. Therapies for active rheumatoid arthritis after methotrexate failure. N. Engl. J. Med. 369, 307–318 (2013).

    PubMed  Google Scholar 

  13. 13.

    Moreland, L. W. et al. A randomized comparative effectiveness study of oral triple therapy versus etanercept plus methotrexate in early aggressive rheumatoid arthritis: the Treatment of Early Aggressive Rheumatoid Arthritis trial. Arthritis Rheum. 64, 2824–2835 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Bansback, N. et al. Triple therapy versus biologic therapy for active rheumatoid arthritis: a cost-effectiveness analysis. Ann. Int. Med. 167, 8–16 (2017).

    PubMed  Google Scholar 

  15. 15.

    Rempenault, C. et al. Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. 77, 98–103 (2018).

    CAS  PubMed  Google Scholar 

  16. 16.

    Wasko, M. C. et al. Hydroxychloroquine and risk of diabetes in patients with rheumatoid arthritis. JAMA 298, 187–193 (2007).

    CAS  PubMed  Google Scholar 

  17. 17.

    Chen, Y. M. et al. Hydroxychloroquine reduces risk of incident diabetes mellitus in lupus patients in a dose-dependent manner: a population-based cohort study. Rheumatology (Oxford) 54, 1244–1249 (2015).

    CAS  Google Scholar 

  18. 18.

    Braslow, R. A., Shiloach, M. & Macsai, M. S. Adherence to hydroxychloroquine dosing guidelines by rheumatologists: an electronic medical record-based study in an integrated health care system. Ophthalmology 124, 604–608 (2017).

    PubMed  Google Scholar 

  19. 19.

    Melles, R. B. & Marmor, M. F. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol. 132, 1453–1460 (2014).

    PubMed  Google Scholar 

  20. 20.

    Melles, R. B. & Marmor, M. F. The prevalence of hydroxychloroquine retinopathy and toxic dosing, and the role of the ophthalmologist in reducing both. Am. J. Ophthalmol. 170, 240 (2016).

    PubMed  Google Scholar 

  21. 21.

    Johnston, J. L., Darvill, P. & Thomson, G. T. Spectral-domain optical coherence tomography in hydroxychloroquine retinopathy. Ophthalmology 122, 651–652 (2015).

    PubMed  Google Scholar 

  22. 22.

    Eo, D. R. et al. Frequency and clinical characteristics of hydroxychloroquine retinopathy in Korean patients with rheumatologic diseases. J. Kor. Med. Sci. 32, 522–527 (2017).

    CAS  Google Scholar 

  23. 23.

    Lee, D. H. et al. Pericentral hydroxychloroquine retinopathy in Korean patients. Ophthalmology 122, 1252–1256 (2015).

    PubMed  Google Scholar 

  24. 24.

    Browning, D. J. & Lee, C. Somatotype, the risk of hydroxychloroquine retinopathy, and safe daily dosing guidelines. Clin. Ophthalmol. (Auckland, N. Z.) 12, 811–818 (2018).

    Google Scholar 

  25. 25.

    Mavrikakis, I. et al. The incidence of irreversible retinal toxicity in patients treated with hydroxychloroquine. Ophthalmology 110, 1321–1326 (2003).

    PubMed  Google Scholar 

  26. 26.

    Wang, C. et al. Discontinuation of antimalarial drugs in systemic lupus erythematosus. J. Rheumatol. 26, 808–815 (1999).

    CAS  PubMed  Google Scholar 

  27. 27.

    Levy, G. D. et al. Incidence of hydroxychloroquine retinopathy in 1,207 patients in a large multicenter outpatient practice. Arthritis Rheum. 40, 1482–1486 (1997).

    CAS  PubMed  Google Scholar 

  28. 28.

    Elder, M., Rahman, A. M. & McLay, J. Early paracentral visual field loss in patients taking hydroxychloroquine. Arch. Ophthalmol. 124, 1729–1733 (2006).

    PubMed  Google Scholar 

  29. 29.

    Easterbrook, M. Ocular effects and safety of antimalarial agents. Am. J. Med. 85, 23–29 (1988).

    CAS  PubMed  Google Scholar 

  30. 30.

    Mills, P. V., Beck, M. & Power, B. J. Assessment of the retinal toxicity of hydroxychloroquine. Trans. Ophthalmol. Soc. UK 101, 109–113 (1981).

    CAS  PubMed  Google Scholar 

  31. 31.

    Bell, C. L. Hydroxychloroquine sulfate in rheumatoid arthritis: long-term response rate and predictive parameters. Am. J. Med. 75, 46–51 (1983).

    CAS  PubMed  Google Scholar 

  32. 32.

    Wolfe, F. & Marmor, M. F. Rates and predictors of hydroxychloroquine retinal toxicity in patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Care Res. (Hoboken) 62, 775–784 (2010).

    CAS  Google Scholar 

  33. 33.

    Jover, J. A. et al. Long-term use of antimalarial drugs in rheumatic diseases. Clin. Exp. Rheumatol. 30, 380–387 (2012).

    CAS  PubMed  Google Scholar 

  34. 34.

    Tsang, A. S. M. W., Bultink, I. E. & Voskuyl, A. E. Long-term evaluation of antimalarials in a Dutch SLE cohort: intolerance and other reasons for non-use. Clin. Exp. Rheumatol. 32, 95–100 (2014).

    Google Scholar 

  35. 35.

    Marmor, M. F. Comparison of screening procedures in hydroxychloroquine toxicity. Arch. Ophthalmol. 130, 461–469 (2012).

    CAS  PubMed  Google Scholar 

  36. 36.

    Browning, D. J. & Lee, C. Relative sensitivity and specificity of 10–12 visual fields, multifocal electroretinography, and spectral domain optical coherence tomography in detecting hydroxychloroquine and chloroquine retinopathy. Clin. Ophthalmol. 8, 1389–1399 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Marmor, M. F. Fundus autofluorescence is not the best early screen for hydroxychloroquine toxicity. JAMA Ophthalmol. 131, 1487–1488 (2013).

    PubMed  Google Scholar 

  38. 38.

    U.S. Centers for Medicare & Medicaid Services. Physician fee schedule search. CMS.gov https://www.cms.gov/apps/physician-fee-schedule/search/search-criteria.aspx (2018).

  39. 39.

    Marmor, M. F. et al. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology 123, 1386–1394 (2016).

    PubMed  Google Scholar 

  40. 40.

    Marmor, M. F. The demise of the bull’s eye (screening for hydroxychloroquine retinopathy). Retina 36, 1803–1805 (2016).

    PubMed  Google Scholar 

  41. 41.

    Cukras, C. et al. Subjective and objective screening tests for hydroxychloroquine toxicity. Ophthalmology 122, 356–366 (2015).

    PubMed  Google Scholar 

  42. 42.

    Marmor, M. F. & Hu, J. Effect of disease stage on progression of hydroxychloroquine retinopathy. JAMA Ophthalmol. 132, 1105–1112 (2014).

    PubMed  Google Scholar 

  43. 43.

    Melles, R. B. & Marmor, M. F. Pericentral retinopathy and racial differences in hydroxychloroquine toxicity. Ophthalmology 122, 110–116 (2015).

    PubMed  Google Scholar 

  44. 44.

    Browning, D. J. The prevalence of hydroxychloroquine retinopathy and toxic dosing, and the role of the ophthalmologist in reducing both. Am J. Ophthalmol. 166, ix–xi (2016).

    PubMed  Google Scholar 

  45. 45.

    Marmor, M. F. Hydroxychloroquine screening alert: change is in the wind. Ophthalm. Surg. Lasers Imag. Retina 48, 96–98 (2017).

    Google Scholar 

  46. 46.

    McChesney, E. W., Shekosky, J. M. & Hernandez, P. H. Metabolism of chloroquine 3-14C in the rhesus monkey. Biochem. Pharmacol. 16, 2444–2447 (1967).

    CAS  Google Scholar 

  47. 47.

    McChesney, E. W. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am. J. Med. 75, 11–18 (1983).

    CAS  PubMed  Google Scholar 

  48. 48.

    Bernstein, H. N. Ophthalmologic considerations and testing in patients receiving long-term antimalarial therapy. Am. J. Med. 75, 25–34 (1983).

    CAS  PubMed  Google Scholar 

  49. 49.

    MacKenzie, A. H. Pharmacologic action of 4-aminoquinolone compounds. Am. J. Med. 75, 5–10 (1983).

    CAS  PubMed  Google Scholar 

  50. 50.

    Titus, E. O. Recent developments in the understanding of the pharmacokinetics and mechanism of action of chloroquine. Ther. Drug Monitor. 11, 369–379 (1989).

    CAS  Google Scholar 

  51. 51.

    Costedoat-Chalumeau, N. et al. Adherence to treatment in systemic lupus erythematosus patients. Best Pract. Res. Clin. Rheumatol. 27, 329–340 (2013).

    PubMed  Google Scholar 

  52. 52.

    Feldman, C. H. et al. Dynamic patterns and predictors of hydroxychloroquine nonadherence among Medicaid beneficiaries with systemic lupus erythematosus. Semin. Arthritis Rheum. https://doi.org/10.1016/j.semarthrit.2018.01.002 (2018).

    Article  PubMed  Google Scholar 

  53. 53.

    Lau, B., Cole, S. R. & Gange, S. J. Competing risk regression models for epidemiologic data. Am. J. Epidemiol. 170, 244–256 (2009).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Jorge, A. M., Lu, N., Zhang, Y., Rai, S. K. & Choi, H. K. Unchanging premature mortality trends in systemic lupus erythematosus: a general population-based study (1999–2014). Rheumatology (Oxford) 57, 337–344 (2018).

    Google Scholar 

  55. 55.

    Lu, N., Choi, H. K., Jorge, A. & Zhang, Y. Is risk of retinopathy among hydroxychloroquine users of SLE patients accurate? A simulation study accounting for competing risk of death [abstract]. Arthritis Rheumatol. 69 (Suppl. 10), 2990 (2017).

    Google Scholar 

  56. 56.

    Ding, H. J., Denniston, A. K., Rao, V. K. & Gordon, C. Hydroxychloroquine-related retinal toxicity. Rheumatology (Oxford) 55, 957–967 (2016).

    CAS  Google Scholar 

  57. 57.

    Young, R. W. The renewal of photoreceptor cell outer segments. J. Cell Biol. 33, 61–72 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Young, R. W. & Bok, D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J. Cell Biol. 42, 392–403 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Nandrot, E. F. et al. Essential role for MFG-E8 as ligand for αvβ5 integrin in diurnal retinal phagocytosis. Proc. Natl Acad. Sci. USA 104, 12005–12010 (2007).

    CAS  PubMed  Google Scholar 

  60. 60.

    Sparrrow, J., Hicks, D. & Hamel, C. The retinal pigment epithelium in health and disease. Curr. Mol. Med. 10, 802–823 (2010).

    CAS  PubMed Central  Google Scholar 

  61. 61.

    McBee, J. K. et al. Isomerization of all-trans-retinol to cis-retinols in bovine retinal pigment epithelial cells: dependence on the specificity of retinoid-binding proteins. Biochemistry 39, 11370–11380 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Korthagen, N. M. et al. Chloroquine and hydroxychloroquine increase retinal pigment epithelial layer permeability. J. Biochem. Mol. Toxicol. 29, 299–304 (2015).

    CAS  PubMed  Google Scholar 

  63. 63.

    Yoon, Y. H. et al. Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Invest. Ophthalmol. Vis. Sci. 51, 6030–6037 (2010).

    PubMed  Google Scholar 

  64. 64.

    Fox, R. Anti-malarial drugs: possible mechanisms of action in autoimmune disease and prospects for drug development. Lupus 5(Suppl. 1), S4–S10 (1996).

    CAS  PubMed  Google Scholar 

  65. 65.

    Sundelin, S. P. & Terman, A. Different effects of chloroquine and hydroxychloroquine on lysosomal function in cultured retinal pigment epithelial cells. APMIS 110, 481–489 (2002).

    CAS  PubMed  Google Scholar 

  66. 66.

    Michaelides, M., Stover, N. B., Francis, P. J. & Weleber, R. G. Retinal toxicity associated with hydroxychloroquine and chloroquine: risk factors, screening, and progression despite cessation of therapy. Arch. Ophthalmol. 129, 30–39 (2011).

    CAS  PubMed  Google Scholar 

  67. 67.

    Xu, C. et al. Chloroquine and hydroxychloroquine are novel inhibitors of human organic anion transporting polypeptide 1A2. J. Pharm. Sci. 105, 884–890 (2016).

    CAS  PubMed  Google Scholar 

  68. 68.

    Maeda, A., Maeda, T., Golczak, M. & Palczewski, K. Retinopathy in mice induced by disrupted all-trans-retinal clearance. J. Biol. Chem. 283, 26684–26693 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Rosenthal, A. R., Kolb, H., Bergsma, D., Huxsoll, D. & Hopkins, J. L. Chloroquine retinopathy in the rhesus monkey. Invest. Ophthalmol. Vis. Sci. 17, 1158–1175 (1978).

    CAS  PubMed  Google Scholar 

  70. 70.

    Ramsey, M. S. & Fine, B. S. Chloroquine toxicity in the human eye. Histopathologic observations by electron microscopy. Am. J. Ophthalmol. 73, 229–235 (1972).

    CAS  PubMed  Google Scholar 

  71. 71.

    Pasadhika, S. & Fishman, G. A. Effects of chronic exposure to hydroxychloroquine or chloroquine on inner retinal structures. Eye (Lond.) 24, 340–346 (2010).

    CAS  Google Scholar 

  72. 72.

    Pasadhika, S., Fishman, G. A., Choi, D. & Shahidi, M. Selective thinning of the perifoveal inner retina as an early sign of hydroxychloroquine retinal toxicity. Eye (Lond.) 24, 756–762 (2010).

    CAS  Google Scholar 

  73. 73.

    Canadian Rheumatology Association. Canadian Consensus Conference on hydroxychloroquine. J. Rheumatol. 27, 2919–2921 (2000).

    Google Scholar 

  74. 74.

    Marmor, M. F., Carr, R. E., Easterbrook, M., Farjo, A. A. & Mieler, W. F. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy: a report by the American Academy of Ophthalmology. Opthamology 109, 1377–1382 (2002).

    Google Scholar 

  75. 75.

    Bertsias, G. et al. EULAR recommendations for the management of systemic lupus erythematosus. Report of a Task Force of the EULAR Standing Committee for international clinical studies including therapeutics. Ann. Rheum. Dis. 67, 195–205 (2008).

    CAS  PubMed  Google Scholar 

  76. 76.

    Durcan, L., Clarke, W. A., Magder, L. S. & Petri, M. Hydroxychloroquine blood levels in systemic lupus erythematosus: clarifying dosing controversies and improving adherence. J. Rheumatol. 42, 2092–2097 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Fryar, C. D., Gu, Q., Ogden, C. L. & Flegal, K. M. Anthropometric reference data for children and adults: United States, 2011–2014. Vital Health Stat. 3 39, 1–46 (2016).

    Google Scholar 

  78. 78.

    Health and Social Care Information Centre. National statistics: statistics on obesity, physical activity and diet. NHS Digital https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-obesity-physical-activity-and-diet/statistics-on-obesity-physical-activity-and-diet-england-2018 (2016).

  79. 79.

    Browning, D. J., Lee, C. & Rotberg, D. The impact of different algorithms for ideal body weight on screening for hydroxychloroquine retinopathy in women. Clin. Ophthalmol. 8, 1401–1407 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Devine, B. Clinical pharmacy case studies: case number 25: gentamicin therapy. Drug Intell. Clin. Pharm. 8, 650–655 (1974).

    Google Scholar 

  81. 81.

    Gianfrancesco, M. A. et al. Hydroxychloroquine dosing in immune-mediated diseases: implications for patient safety. Rheumatol. Int. 7, 1611–1618 (2017).

    Google Scholar 

  82. 82.

    Melles, R. B., Jorge, A. M., Marmor, M. F., Zhang, Y. & Choi, H. K. Sharp decline in hydroxychloroquine dosing-analysis of 17,797 initiators from 2007 to 2016. Clin. Rheumatol. 37, 1853–1859 (2018).

    PubMed  Google Scholar 

  83. 83.

    Jorge, A. M. et al. Hydroxychloroquine prescription trends and predictors for excess dosing per recent ophthalmology guidelines. Arthritis Res. Ther. 20, 133 (2018).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Leung, L. S., Neal, J. W., Wakelee, H. A., Sequist, L. V. & Marmor, M. F. Rapid onset of retinal toxicity from high-dose hydroxychloroquine given for cancer therapy. Am J. Ophthalmol. 160, 799–805 (2015).

    CAS  PubMed  Google Scholar 

  85. 85.

    The Royal College of Ophthalmologists. Clinical guidelines: hydroxychloroquine and chloroquine retinopathy: recommendations on screening. RCOphth https://www.rcophth.ac.uk/wp-content/uploads/2018/07/Hydroxychloroquine-and-Chloroquine-Retinopathy-Screening-Guideline-Recommendations.pdf (2018).

  86. 86.

    Duarte-Garcia, A., Barr, E., Magder, L. S. & Petri, M. Predictors of incident proteinuria among patients with SLE. Lupus Sci. Med. 4, e000200 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Mok, C. C. et al. Hydroxychloroquine serum concentrations and flares of systemic lupus erythematosus: a longitudinal cohort analysis. Arthritis Care Res. (Hoboken) 68, 1295–1302 (2016).

    CAS  Google Scholar 

  88. 88.

    Costedoat-Chalumeau, N. et al. Low blood concentration of hydroxychloroquine is a marker for and predictor of disease exacerbations in patients with systemic lupus erythematosus. Arthritis Rheum. 54, 3284–3290 (2006).

    CAS  PubMed  Google Scholar 

  89. 89.

    Feldman, C. H., Yazdany, J., Guan, H., Solomon, D. H. & Costenbader, K. H. Medication nonadherence is associated with increased subsequent acute care utilization among medicaid beneficiaries with systemic lupus erythematosus. Arthritis Care Res. (Hoboken) 67, 1712–1721 (2015).

    CAS  Google Scholar 

  90. 90.

    The Royal College of Ophthalmologists. Hydroxychloroquine and ocular toxicity recommendations on screening. BAD http://www.bad.org.uk/shared/get-file.ashx?id=774&itemtype=document (2009).

  91. 91.

    Marmor, M. F., Kellner, U., Lai, T. Y., Lyons, J. S. & Mieler, W. F. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology 118, 415–422 (2011).

    PubMed  Google Scholar 

  92. 92.

    Bertsias, G. K. et al. Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann. Rheum. Dis. 71, 1771–1782 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Thanos of Legacy Devers Eye Institute in Portland, OR, USA, for assistance with the formulation of figure 2.

Reviewer information

Nature Reviews Rheumatology thanks N. Costedoat-Chalumeau, J. Rosenbaum and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the article and contributed to reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Hyon K. Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Parafoveal

Region of the retina that surrounds the central fovea, within the macula. The macula is the region responsible for high-acuity central vision.

Visual field

The entire area that can be seen with the eyes fixed in one region.

Actual body weight

(ABW).True (measured) body weight.

Ideal body weight

(IBW). An estimate of body weight based on lean mass, calculated from factors including height and sex.

Electro-oculography

A specialized test measuring differences in electrical potential in the eyes.

Retinal pigment epithelium

(RPE). A monolayer of pigmented cells that coats the outer retina.

Bull’s eye damage

The classic late-stage finding of hydroxychloroquine retinopathy, seen as a ring of retinal damage in the parafoveal region.

Visual cycle

The biological conversion of a photon into an electrical signal in the retina.

Loading dose

The short-term (typically ~3 months) use of a higher dose of a medication than will be used as the maintenance dose.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jorge, A., Ung, C., Young, L.H. et al. Hydroxychloroquine retinopathy — implications of research advances for rheumatology care. Nat Rev Rheumatol 14, 693–703 (2018). https://doi.org/10.1038/s41584-018-0111-8

Download citation

Further reading