Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nocebos in rheumatology: emerging concepts and their implications for clinical practice

Abstract

Nocebo effects are noxious reactions to therapeutic interventions that occur because of negative expectations of the patient. In the past decade, neurobiological data have revealed specific neural pathways induced by nocebos (that is, interventions that cause nocebo effects), as well as the associated mechanisms and predisposing factors of nocebo effects. Epidemiological data suggest that nocebos can have a notable effect on medication adherence, clinical outcomes and health-care policy. Meta-analyses of randomized controlled trials (RCTs) of patients with rheumatic and musculoskeletal diseases (RMDs) indicate that withdrawal of treatment by placebo-arm participants owing to adverse events is common; a proportion of these events could be nocebo effects. Moreover, in large-scale, open-label studies of patients with RMDs who transition from bio-originator to biosimilar therapeutics, biosimilar retention rates were much lower than in previous double-blind switch RCTs. This discrepancy suggests that in addition to the lack of response in some patients because of intrinsic differences between the drugs, nocebos might have an important role in low biosimilar retention, thus increasing the need for awareness and early identification of nocebo effects by rheumatologists and allied health-care professionals.

Key points

  • Nocebo effects are noxious changes in a patient’s symptoms or physiological condition that occur because of the patient’s negative anticipation of treatment, and might result in suboptimal outcomes and non-adherence.

  • Nocebo effects are observed in patients with rheumatic and musculoskeletal diseases, and might hinder the transition of patients to biosimilars.

  • Physicians should be aware of the risk factors for nocebo effects, which can be categorized as features relating to the patient, physician, disease, health-care setting or drug.

  • Physicians should make efforts to measure, prevent and address nocebo effects in clinical practice and interventional trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neural pathways involved in nocebo-related pain modulation.
Fig. 2: Factors promoting nocebo effects in clinical practice.

Similar content being viewed by others

References

  1. Benedetti, F., Lanotte, M., Lopiano, L. & Colloca, L. When words are painful: unraveling the mechanisms of the nocebo effect. Neuroscience 147, 260–271 (2007).

    CAS  PubMed  Google Scholar 

  2. Grimes, D. A. & Schulz, K. F. Nonspecific side effects of oral contraceptives: nocebo or noise? Contraception 83, 5–9 (2011).

    CAS  PubMed  Google Scholar 

  3. Gupta, A. et al. Adverse events associated with unblinded, but not with blinded, statin therapy in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid-Lowering Arm (ASCOT-LLA): a randomised double-blind placebo-controlled trial and its non-randomised non-blind extension phase. Lancet 389, 2473–2481 (2017).

    CAS  PubMed  Google Scholar 

  4. Mitsikostas, D. D. Nocebo in headaches: implications for clinical practice and trial design. Curr. Neurol. Neurosci. Rep. 12, 132–137 (2012).

    PubMed  Google Scholar 

  5. Schedlowski, M., Enck, P., Rief, W. & Bingel, U. Neuro-bio-behavioral mechanisms of placebo and nocebo responses: implications for clinical trials and clinical practice. Pharmacol. Rev. 67, 697–730 (2015).

    PubMed  Google Scholar 

  6. Feys, F., Bekkering, G. E., Singh, K. & Devroey, D. Do randomized clinical trials with inadequate blinding report enhanced placebo effects for intervention groups and nocebo effects for placebo groups? Syst. Rev. 3, 14 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Colloca, L. & Miller, F. G. The nocebo effect and its relevance for clinical practice. Psychosomat. Med. 73, 598–603 (2011).

    Google Scholar 

  8. Hadler, N. M. If you have to prove you are ill, you can’t get well. The object lesson of fibromyalgia. Spine 21, 2397–2400 (1996).

    CAS  PubMed  Google Scholar 

  9. Arnold, M. H., Finniss, D. G. & Kerridge, I. Medicine’s inconvenient truth: the placebo and nocebo effect. Internal Med. J. 44, 398–405 (2014).

    CAS  Google Scholar 

  10. Ashraf, B., Saaiq, M. & Zaman, K. U. Qualitative study of nocebo phenomenon (NP) involved in doctor-patient communication. Int. J. Health Policy Management 3, 23–27 (2014).

    Google Scholar 

  11. Chavarria, V. et al. The placebo and nocebo phenomena: their clinical management and impact on treatment outcomes. Clin. Ther. 39, 477–486 (2017).

    PubMed  Google Scholar 

  12. Colloca, L. & Finniss, D. Nocebo effects, patient-clinician communication, and therapeutic outcomes. JAMA 307, 567–568 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Drici, M. D., Raybaud, F., De Lunardo, C., Iacono, P. & Gustovic, P. Influence of the behaviour pattern on the nocebo response of healthy volunteers. Br. J. Clin. Pharmacol. 39, 204–206 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Palermo, S., Benedetti, F., Costa, T. & Amanzio, M. Pain anticipation: an activation likelihood estimation meta-analysis of brain imaging studies. Hum. Brain Mapp. 36, 1648–1661 (2015).

    PubMed  Google Scholar 

  15. LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E. & Phelps, E. A. Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20, 937–945 (1998).

    CAS  PubMed  Google Scholar 

  16. Jensen, K. B. et al. A neural mechanism for nonconscious activation of conditioned placebo and nocebo responses. Cereb. Cortex 25, 3903–3910 (2015).

    PubMed  Google Scholar 

  17. Kong, J. et al. A functional magnetic resonance imaging study on the neural mechanisms of hyperalgesic nocebo effect. J. Neurosci. 28, 13354–13362 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmid, J. et al. Neural underpinnings of nocebo hyperalgesia in visceral pain: a fMRI study in healthy volunteers. NeuroImage 120, 114–122 (2015).

    PubMed  Google Scholar 

  19. Tinnermann, A., Geuter, S., Sprenger, C., Finsterbusch, J. & Buchel, C. Interactions between brain and spinal cord mediate value effects in nocebo hyperalgesia. Science 358, 105–108 (2017).

    CAS  PubMed  Google Scholar 

  20. Devinsky, O., Morrell, M. J. & Vogt, B. A. Contributions of anterior cingulate cortex to behaviour. Brain 118, 279–306 (1995).

    PubMed  Google Scholar 

  21. Apkarian, A. V., Bushnell, M. C., Treede, R. D. & Zubieta, J. K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484 (2005).

    PubMed  Google Scholar 

  22. Gwilym, S. E. et al. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum. 61, 1226–1234 (2009).

    PubMed  Google Scholar 

  23. Freeman, S. et al. Distinct neural representations of placebo and nocebo effects. NeuroImage 112, 197–207 (2015).

    PubMed  Google Scholar 

  24. Tracey, I. Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans. Nature Med. 16, 1277–1283 (2010).

    CAS  PubMed  Google Scholar 

  25. Benedetti, F., Amanzio, M. & Maggi, G. Potentiation of placebo analgesia by proglumide. Lancet 346, 1231 (1995).

    CAS  PubMed  Google Scholar 

  26. Benedetti, F., Amanzio, M. & Thoen, W. Disruption of opioid-induced placebo responses by activation of cholecystokinin type-2 receptors. Psychopharmacology (Berl.) 213, 791–797 (2011).

    CAS  Google Scholar 

  27. Jensen, J. et al. Separate brain regions code for salience versus valence during reward prediction in humans. Hum. Brain Mapp. 28, 294–302 (2007).

    PubMed  Google Scholar 

  28. Scott, D. J. et al. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55, 325–336 (2007).

    CAS  PubMed  Google Scholar 

  29. Baliki, M. N., Geha, P. Y., Fields, H. L. & Apkarian, A. V. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66, 149–160 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Baliki, M., Katz, J., Chialvo, D. R. & Apkarian, A. V. Single subject pharmacological-MRI (phMRI) study: modulation of brain activity of psoriatic arthritis pain by cyclooxygenase-2 inhibitor. Mol. Pain 1, 32 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Benedetti, F., Durando, J. & Vighetti, S. Nocebo and placebo modulation of hypobaric hypoxia headache involves the cyclooxygenase-prostaglandins pathway. Pain 155, 921–928 (2014).

    CAS  PubMed  Google Scholar 

  32. Baliki, M. N. & Apkarian Nociception, A. V. Pain, negative moods, and behavior selection. Neuron 87, 474–491 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren, W. et al. The indirect pathway of the nucleus accumbens shell amplifies neuropathic pain. Nat. Neurosci. 19, 220–222 (2016).

    CAS  PubMed  Google Scholar 

  34. Rodriguez-Raecke, R. et al. Insular cortex activity is associated with effects of negative expectation on nociceptive long-term habituation. J. Neurosci. 30, 11363–11368 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Amanzio, M., Benedetti, F., Porro, C. A., Palermo, S. & Cauda, F. Activation likelihood estimation meta-analysis of brain correlates of placebo analgesia in human experimental pain. Hum. Brain Mapp. 34, 738–752 (2013).

    PubMed  Google Scholar 

  36. Blasini, M., Corsi, N., Klinger, R. & Colloca, L. Nocebo and pain: an overview of the psychoneurobiological mechanisms. Pain Rep. 2, e585 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Colloca, L. & Benedetti, F. Placebo analgesia induced by social observational learning. Pain 144, 28–34 (2009).

    PubMed  Google Scholar 

  38. Colloca, L., Sigaudo, M. & Benedetti, F. The role of learning in nocebo and placebo effects. Pain 136, 211–218 (2008).

    CAS  PubMed  Google Scholar 

  39. Potvin, S. & Marchand, S. Pain facilitation and pain inhibition during conditioned pain modulation in fibromyalgia and in healthy controls. Pain 157, 1704–1710 (2016).

    PubMed  Google Scholar 

  40. van Laarhoven, A. I. et al. Induction of nocebo and placebo effects on itch and pain by verbal suggestions. Pain 152, 1486–1494 (2011).

    PubMed  Google Scholar 

  41. Rossettini, G., Carlino, E. & Testa, M. Clinical relevance of contextual factors as triggers of placebo and nocebo effects in musculoskeletal pain. BMC Musculoskelet. Disord. 19, 27 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Colloca, L. & Benedetti, F. Nocebo hyperalgesia: how anxiety is turned into pain. Curr. Opin. Anaesthesiol. 20, 435–439 (2007).

    PubMed  Google Scholar 

  43. Hauser, W., Sarzi-Puttini, P., Tolle, T. R. & Wolfe, F. Placebo and nocebo responses in randomised controlled trials of drugs applying for approval for fibromyalgia syndrome treatment: systematic review and meta-analysis. Clin. Exp. Rheumatol. 30 (Suppl. 74), 78–87 (2012).

    PubMed  Google Scholar 

  44. Colloca, L., Lopiano, L., Lanotte, M. & Benedetti, F. Overt versus covert treatment for pain, anxiety, and Parkinson’s disease. Lancet Neurol. 3, 679–684 (2004).

    PubMed  Google Scholar 

  45. Mitsikostas, D. D., Chalarakis, N. G., Mantonakis, L. I., Delicha, E. M. & Sfikakis, P. P. Nocebo in fibromyalgia: meta-analysis of placebo-controlled clinical trials and implications for practice. Eur. J. Neurol. 19, 672–680 (2012).

    CAS  PubMed  Google Scholar 

  46. Vambheim, S. M. & Flaten, M. A. A systematic review of sex differences in the placebo and the nocebo effect. J. Pain Res. 10, 1831–1839 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Klosterhalfen, S. et al. Gender and the nocebo response following conditioning and expectancy. J. Psychosomat. Res. 66, 323–328 (2009).

    Google Scholar 

  48. Wendt, L. et al. Catechol-O-methyltransferase Val158Met polymorphism is associated with somatosensory amplification and nocebo responses. PLoS ONE 9, e107665 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Amanzio, M., Palermo, S., Skyt, I. & Vase, L. Lessons learned from nocebo effects in clinical trials for pain conditions and neurodegenerative disorders. J. Clin. Psychopharmacol. 36, 475–482 (2016).

    CAS  PubMed  Google Scholar 

  50. Rojas-Mirquez, J. C. et al. Nocebo effect in randomized clinical trials of antidepressants in children and adolescents: systematic review and meta-analysis. Front. Behav. Neurosci. 8, 375 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Amanzio, M. et al. Unawareness of deficits in Alzheimer’s disease: role of the cingulate cortex. Brain 134, 1061–1076 (2011).

    PubMed  Google Scholar 

  52. Benedetti, F. et al. Loss of expectation-related mechanisms in Alzheimer’s disease makes analgesic therapies less effective. Pain 121, 133–144 (2006).

    CAS  PubMed  Google Scholar 

  53. Klinger, R., Blasini, M., Schmitz, J. & Colloca, L. Nocebo effects in clinical studies: hints for pain therapy. Pain Rep. 2, e586 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Barsky, A. J. et al. Somatic style and symptom reporting in rheumatoid arthritis. Psychosomatics 40, 396–403 (1999).

    CAS  PubMed  Google Scholar 

  55. Barsky, A. J., Saintfort, R., Rogers, M. P. & Borus, J. F. Nonspecific medication side effects and the nocebo phenomenon. JAMA 287, 622–627 (2002).

    PubMed  Google Scholar 

  56. Corsi, N., Emadi Andani, M., Tinazzi, M. & Fiorio, M. Changes in perception of treatment efficacy are associated to the magnitude of the nocebo effect and to personality traits. Sci. Rep. 6, 30671 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Geers, A. L., Helfer, S. G., Weiland, P. E. & Kosbab, K. Expectations and placebo response: a laboratory investigation into the role of somatic focus. J. Behav. Med. 29, 171–178 (2006).

    PubMed  Google Scholar 

  58. Nestoriuc, Y., Orav, E. J., Liang, M. H., Horne, R. & Barsky, A. J. Prediction of nonspecific side effects in rheumatoid arthritis patients by beliefs about medicines. Arthritis Care Res. 62, 791–799 (2010).

    Google Scholar 

  59. Crichton, F. & Petrie, K. J. Accentuate the positive: counteracting psychogenic responses to media health messages in the age of the Internet. J. Psychosomat. Res. 79, 185–189 (2015).

    Google Scholar 

  60. Khan, S., Holbrook, A. & Shah, B. R. Does googling lead to statin intolerance? Int. J. Cardiol. 262, 25–27 (2018).

    PubMed  Google Scholar 

  61. Tausczik, Y., Faasse, K., Pennebaker, J. W. & Petrie, K. J. Public anxiety and information seeking following the H1N1 outbreak: blogs, newspaper articles, and Wikipedia visits. Health Commun. 27, 179–185 (2012).

    PubMed  Google Scholar 

  62. Faasse, K., Gamble, G., Cundy, T. & Petrie, K. J. Impact of television coverage on the number and type of symptoms reported during a health scare: a retrospective pre-post observational study. BMJ Open 2, e001607 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. Amanzio, M., Corazzini, L. L., Vase, L. & Benedetti, F. A systematic review of adverse events in placebo groups of anti-migraine clinical trials. Pain 146, 261–269 (2009).

    CAS  PubMed  Google Scholar 

  64. Mitsikostas, D. D., Mantonakis, L. I. & Chalarakis, N. G. Nocebo is the enemy, not placebo. A meta-analysis of reported side effects after placebo treatment in headaches. Cephalalgia 31, 550–561 (2011).

    PubMed  Google Scholar 

  65. Howick, J. Saying things the “right” way: avoiding “nocebo” effects and providing full informed consent. Am. J. Bioeth 12, 33–34 (2012).

    PubMed  Google Scholar 

  66. Bartels, D. J. P. et al. Minimizing nocebo effects by conditioning with verbal suggestion: a randomized clinical trial in healthy humans. PLoS ONE 12, e0182959 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Mancini, F., Beaumont, A. L., Hu, L., Haggard, P. & Iannetti, G. D. Touch inhibits subcortical and cortical nociceptive responses. Pain 156, 1936–1944 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Tweehuysen, L. et al. Open-label non-mandatory transitioning from originator etanercept to biosimilar SB4: 6-month results from a controlled cohort study. Arthritis Rheumatol. 70, 1408–1418 (2018).

    CAS  PubMed  Google Scholar 

  69. Vogtle, E., Barke, A. & Kroner-Herwig, B. Nocebo hyperalgesia induced by social observational learning. Pain 154, 1427–1433 (2013).

    PubMed  Google Scholar 

  70. Planes, S., Villier, C. & Mallaret, M. The nocebo effect of drugs. Pharmacol. Res. Persp. 4, e00208 (2016).

    Google Scholar 

  71. Kong, J. & Benedetti, F. Placebo and nocebo effects: an introduction to psychological and biological mechanisms. Handb. Exp. Pharmacol. 225, 3–15 (2014).

    PubMed  Google Scholar 

  72. Colgan, S. et al. Perceptions of generic medication in the general population, doctors and pharmacists: a systematic review. BMJ Open 5, e008915 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Weissenfeld, J., Stock, S., Lungen, M. & Gerber, A. The nocebo effect: a reason for patients’ non-adherence to generic substitution? Die Pharmazie 65, 451–456 (2010).

    CAS  PubMed  Google Scholar 

  74. Branthwaite, A. & Cooper, P. Analgesic effects of branding in treatment of headaches. Br. Med. J. (Clin. Res. Ed) 282, 1576–1578 (1981).

    CAS  Google Scholar 

  75. Faasse, K., Cundy, T., Gamble, G. & Petrie, K. J. The effect of an apparent change to a branded or generic medication on drug effectiveness and side effects. Psychosomat. Med. 75, 90–96 (2013).

    CAS  Google Scholar 

  76. Wells, G. et al. Validation of the 28-joint Disease Activity Score (DAS28) and European League Against Rheumatism response criteria based on C-reactive protein against disease progression in patients with rheumatoid arthritis, and comparison with the DAS28 based on erythrocyte sedimentation rate. Ann. Rheum. Dis. 68, 954–960 (2009).

    CAS  PubMed  Google Scholar 

  77. Garrett, S. et al. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J. Rheumatol. 21, 2286–2291 (1994).

    CAS  PubMed  Google Scholar 

  78. Park, W. et al. Efficacy and safety of switching from reference infliximab to CT-P13 compared with maintenance of CT-P13 in ankylosing spondylitis: 102-week data from the PLANETAS extension study. Ann. Rheum. Dis. 76, 346–354 (2017).

    CAS  PubMed  Google Scholar 

  79. Yoo, D. H. et al. Efficacy and safety of CT-P13 (biosimilar infliximab) in patients with rheumatoid arthritis: comparison between switching from reference infliximab to CT-P13 and continuing CT-P13 in the PLANETRA extension study. Ann. Rheum. Dis. 76, 355–363 (2017).

    CAS  PubMed  Google Scholar 

  80. Zou, K. et al. Examination of overall treatment effect and the proportion attributable to contextual effect in osteoarthritis: meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 75, 1964–1970 (2016).

    PubMed  Google Scholar 

  81. Mitsikostas, D. D. Nocebo in headache. Curr. Opin. Neurol. 29, 331–336 (2016).

    PubMed  Google Scholar 

  82. Galvez-Sanchez, C. M., Reyes Del Paso, G. A. & Duschek, S. Cognitive impairments in fibromyalgia syndrome: associations with positive and negative affect, alexithymia, pain catastrophizing and self-esteem. Front. Psychol. 9, 377 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Cepeda, M. S., Lobanov, V. & Berlin, J. A. Use of ClinicalTrials.gov to estimate condition-specific nocebo effects and other factors affecting outcomes of analgesic trials. J. Pain 14, 405–411 (2013).

    PubMed  Google Scholar 

  84. Javaid, M. K. et al. Individual magnetic resonance imaging and radiographic features of knee osteoarthritis in subjects with unilateral knee pain: the health, aging, and body composition study. Arthritis Rheum. 64, 3246–3255 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dieppe, P., Goldingay, S. & Greville-Harris, M. The power and value of placebo and nocebo in painful osteoarthritis. Osteoarthr. Cartil. 24, 1850–1857 (2016).

    CAS  Google Scholar 

  86. Schaible, H. G. Mechanisms of chronic pain in osteoarthritis. Curr. Rheumatol. Rep. 14, 549–556 (2012).

    CAS  PubMed  Google Scholar 

  87. Axford, J. et al. Prevalence of anxiety and depression in osteoarthritis: use of the Hospital Anxiety and Depression Scale as a screening tool. Clin. Rheumatol 29, 1277–1283 (2010).

    PubMed  Google Scholar 

  88. Zhang, W., Robertson, J., Jones, A. C., Dieppe, P. A. & Doherty, M. The placebo effect and its determinants in osteoarthritis: meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 67, 1716–1723 (2008).

    CAS  PubMed  Google Scholar 

  89. Bannuru, R. R. et al. Effectiveness and implications of alternative placebo treatments: a systematic review and network meta-analysis of osteoarthritis trials. Ann. Intern. Med. 163, 365–372 (2015).

    PubMed  Google Scholar 

  90. Koog, Y. H., Lee, J. S. & Wi, H. Nonspecific adverse events in knee osteoarthritis clinical trials: a systematic review. PLoS ONE 9, e111776 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Hermans, L. et al. Influence of morphine and naloxone on pain modulation in rheumatoid arthritis, chronic fatigue syndrome/fibromyalgia, and controls: a double-blind, randomized, placebo-controlled, cross-over study. Pain Pract. 18, 418–430 (2017).

    PubMed  Google Scholar 

  92. Neame, R. & Hammond, A. Beliefs about medications: a questionnaire survey of people with rheumatoid arthritis. Rheumatology 44, 762–767 (2005).

    CAS  PubMed  Google Scholar 

  93. Keystone, E. et al. Safety and efficacy of additional courses of rituximab in patients with active rheumatoid arthritis: an open-label extension analysis. Arthritis Rheum. 56, 3896–3908 (2007).

    CAS  PubMed  Google Scholar 

  94. Park, W. et al. Efficacy and safety of switching from innovator rituximab to biosimilar CT-P10 compared with continued treatment with CT-P10: results of a 56-week open-label study in patients with rheumatoid arthritis. BioDrugs 31, 369–377 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tak, P. P. et al. Sustained inhibition of progressive joint damage with rituximab plus methotrexate in early active rheumatoid arthritis: 2-year results from the randomised controlled trial IMAGE. Ann. Rheum. Dis. 71, 351–357 (2012).

    CAS  PubMed  Google Scholar 

  96. Cepeda, M. S., Lobanov, V. & Berlin, J. A. Using Sherlock and ClinicalTrials.gov data to understand nocebo effects and adverse event dropout rates in the placebo arm. J. Pain 14, 999 (2013).

    PubMed  Google Scholar 

  97. Dorner, T. & Kay, J. Biosimilars in rheumatology: current perspectives and lessons learnt. Nat. Rev. Rheumatol 11, 713–724 (2015).

    PubMed  Google Scholar 

  98. Choe, J. Y. et al. A randomised, double-blind, phase III study comparing SB2, an infliximab biosimilar, to the infliximab reference product Remicade in patients with moderate to severe rheumatoid arthritis despite methotrexate therapy. Ann. Rheum. Dis. 76, 58–64 (2017).

    PubMed  Google Scholar 

  99. Cohen, S. et al. A phase I pharmacokinetics trial comparing PF-05280586 (a potential biosimilar) and rituximab in patients with active rheumatoid arthritis. Br. J. Clin. Pharmacol. 82, 129–138 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Cohen, S. et al. Efficacy and safety of the biosimilar ABP 501 compared with adalimumab in patients with moderate to severe rheumatoid arthritis: a randomised, double-blind, phase III equivalence study. Ann. Rheum. Dis. 76, 1679–1687 (2017).

    CAS  PubMed  Google Scholar 

  101. Emery, P. et al. A phase III randomised, double-blind, parallel-group study comparing SB4 with etanercept reference product in patients with active rheumatoid arthritis despite methotrexate therapy. Ann. Rheum. Dis. 76, 51–57 (2017).

    CAS  PubMed  Google Scholar 

  102. Girolomoni, G. et al. Comparison of injection-site reactions between the etanercept biosimilar SB4 and the reference etanercept in patients with rheumatoid arthritis from a phase III study. Br. J. Dermatol. 178, e215–e216 (2018).

    CAS  PubMed  Google Scholar 

  103. Glintborg, B. et al. Drug concentrations and anti-drug antibodies during treatment with biosimilar infliximab (CT-P13) in routine care. Scand. J. Rheumatol. 47, 418–421 (2018).

    CAS  PubMed  Google Scholar 

  104. Matsuno, H. et al. Phase III, multicentre, double-blind, randomised, parallel-group study to evaluate the similarities between LBEC0101 and etanercept reference product in terms of efficacy and safety in patients with active rheumatoid arthritis inadequately responding to methotrexate. Ann. Rheum. Dis. 77, 488–494 (2018).

    CAS  PubMed  Google Scholar 

  105. Morita, J. et al. Pharmacokinetic bioequivalence, safety, and immunogenicity of DMB-3111, a trastuzumab biosimilar, and trastuzumab in healthy Japanese adult males: results of a randomized trial. BioDrugs 30, 17–25 (2016).

    CAS  PubMed  Google Scholar 

  106. Weinblatt, M. E. et al. Phase III randomized study of SB5, an adalimumab biosimilar, versus reference adalimumab in patients with moderate-to-severe rheumatoid arthritis. Arthritis Rheumatol. 70, 40–48 (2018).

    CAS  PubMed  Google Scholar 

  107. Yoo, D. H. et al. A phase III randomized study to evaluate the efficacy and safety of CT-P13 compared with reference infliximab in patients with active rheumatoid arthritis: 54-week results from the PLANETRA study. Arthritis Res. Ther. 18, 82 (2016).

    PubMed  PubMed Central  Google Scholar 

  108. Yoo, D. H. et al. A multicentre randomised controlled trial to compare the pharmacokinetics, efficacy and safety of CT-P10 and innovator rituximab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 76, 566–570 (2017).

    CAS  PubMed  Google Scholar 

  109. Avouac, J. et al. Systematic switch from innovator infliximab to biosimilar infliximab in inflammatory chronic diseases in daily clinical practice: The experience of Cochin University Hospital, Paris, France. Semin. Arthritis Rheum. 47, 741–748 (2018).

    PubMed  Google Scholar 

  110. Boone, N. W. et al. The nocebo effect challenges the non-medical infliximab switch in practice. Eur. J. Clin. Pharmacol. 74, 655–661 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Glintborg, B. et al. A nationwide non-medical switch from originator infliximab to biosimilar CT-P13 in 802 patients with inflammatory arthritis: 1-year clinical outcomes from the DANBIO registry. Ann. Rheum. Dis. 76, 1426–1431 (2017).

    CAS  PubMed  Google Scholar 

  112. Rezk, M. F. & Pieper, B. Treatment outcomes with biosimilars: be aware of the nocebo effect. Rheumatol. Ther. 4, 209–218 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Scherlinger, M. et al. Switching from originator infliximab to biosimilar CT-P13 in real-life: the weight of patient acceptance. Joint Bone Spine 85, 561–567 (2017).

    PubMed  Google Scholar 

  114. Tweehuysen, L. et al. Subjective complaints as the main reason for biosimilar discontinuation after open-label transition from reference infliximab to biosimilar infliximab. Arthritis Rheumatol. 70, 60–68 (2018).

    CAS  PubMed  Google Scholar 

  115. Cohen, H. et al. Awareness, knowledge, and perceptions of biosimilars among specialty physicians. Adv. Ther. 33, 2160–2172 (2017).

    PubMed  Google Scholar 

  116. Peyrin-Biroulet, L., Lonnfors, S., Roblin, X., Danese, S. & Avedano, L. Patient perspectives on biosimilars: a survey by the European Federation of Crohn’s and Ulcerative Colitis Associations. J. Crohns Colitis 11, 128–133 (2017).

    PubMed  Google Scholar 

  117. Jorgensen, K. K. et al. Switching from originator infliximab to biosimilar CT-P13 compared with maintained treatment with originator infliximab (NOR-SWITCH): a 52-week, randomised, double-blind, non-inferiority trial. Lancet 389, 2304–2316 (2017).

    PubMed  Google Scholar 

  118. Smolen, J. S. et al. Safety, immunogenicity and efficacy after switching from reference infliximab to biosimilar SB2 compared with continuing reference infliximab and SB2 in patients with rheumatoid arthritis: results of a randomised, double-blind, phase III transition study. Ann. Rheum. Dis. 77, 234–240 (2018).

    CAS  PubMed  Google Scholar 

  119. Gentileschi, S. et al. Switch from infliximab to infliximab biosimilar: efficacy and safety in a cohort of patients with different rheumatic diseases. Response to: Nikiphorou E, Kautiainen H, Hannonen P, et al. Clinical effectiveness of CT-P13 (Infliximab biosimilar) used as a switch from Remicade (infliximab) in patients with established rheumatic disease. Report of clinical experience based on prospective observational data. Expert Opin Biol Ther. 2015;15:1677–1683. Expert Opin. Biol. Ther. 16, 1311–1312 (2015).

    Google Scholar 

  120. Nikiphorou, E. et al. Clinical effectiveness of CT-P13 (Infliximab biosimilar) used as a switch from Remicade (infliximab) in patients with established rheumatic disease. Report of clinical experience based on prospective observational data. Expert Opin. Biol. Ther. 15, 1677–1683 (2015).

    CAS  PubMed  Google Scholar 

  121. Tanaka, Y. et al. Safety and efficacy of CT-P13 in Japanese patients with rheumatoid arthritis in an extension phase or after switching from infliximab. Mod. Rheumatol. 27, 237–245 (2017).

    CAS  PubMed  Google Scholar 

  122. Scherlinger, M., Langlois, E., Germain, V. & Schaeverbeke, T. Acceptance rate and sociological factors involved in the switch from originator to biosimilar etanercept (SB4). Semin. Arthritis Rheum. https://doi.org/10.1016/j.semarthrit.2018.07.005 (2018).

    Article  PubMed  Google Scholar 

  123. Desai, R. J. et al. Differences in rates of switchbacks after switching from branded to authorized generic and branded to generic drug products: cohort study. BMJ 361, k1180 (2018).

    PubMed  PubMed Central  Google Scholar 

  124. Ringe, J. D. & Moller, G. Differences in persistence, safety and efficacy of generic and original branded once weekly bisphosphonates in patients with postmenopausal osteoporosis: 1-year results of a retrospective patient chart review analysis. Rheumatol. Int. 30, 213–221 (2009).

    CAS  PubMed  Google Scholar 

  125. Faasse, K., Cundy, T. & Petrie, K. J. Medicine and the media. Thyroxine: anatomy of a health scare. BMJ 339, b5613 (2009).

    PubMed  Google Scholar 

  126. Rief, W. et al. Preoperative optimization of patient expectations improves long-term outcome in heart surgery patients: results of the randomized controlled PSY-HEART trial. BMC Med. 15, 4 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. Mitsikostas, D. D. & Deligianni, C. I. Q-No: a questionnaire to predict nocebo in outpatients seeking neurological consultation. Neurol. Sci. 36, 379–381 (2015).

    PubMed  Google Scholar 

  128. Younger, J., Gandhi, V., Hubbard, E. & Mackey, S. Development of the Stanford Expectations of Treatment Scale (SETS): a tool for measuring patient outcome expectancy in clinical trials. Clin. Trials 9, 767–776 (2012).

    PubMed  Google Scholar 

  129. Greco, C. M. et al. Measuring nonspecific factors in treatment: item banks that assess the healthcare experience and attitudes from the patient’s perspective. Qual. Life Res. 25, 1625–1634 (2016).

    PubMed  Google Scholar 

  130. Colagiuri, B. & Quinn, V. F. Autonomic arousal as a mechanism of the persistence of nocebo hyperalgesia. J. Pain 19, 476–486 (2017).

    PubMed  Google Scholar 

  131. Wells, R. E. & Kaptchuk, T. J. To tell the truth, the whole truth, may do patients harm: the problem of the nocebo effect for informed consent. Am. J. Bioeth. 12, 22–29 (2012).

    PubMed  PubMed Central  Google Scholar 

  132. Colloca, L. Nocebo effects can make you feel pain. Science 358, 44 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kaptchuk, T. J. et al. Components of placebo effect: randomised controlled trial in patients with irritable bowel syndrome. BMJ 336, 999–1003 (2008).

    PubMed  PubMed Central  Google Scholar 

  134. Rief, W., Bingel, U., Schedlowski, M. & Enck, P. Mechanisms involved in placebo and nocebo responses and implications for drug trials. Clin. Pharmacol. Ther. 90, 722–726 (2011).

    CAS  PubMed  Google Scholar 

  135. Bingel, U. Avoiding nocebo effects to optimize treatment outcome. JAMA 312, 693–694 (2014).

    CAS  PubMed  Google Scholar 

  136. Horne, R. et al. The perceived sensitivity to medicines (PSM) scale: an evaluation of validity and reliability. Br. J. Health Psychol. 18, 18–30 (2013).

    PubMed  Google Scholar 

  137. Kay, J. et al. Consensus-based recommendations for the use of biosimilars to treat rheumatological diseases. Ann. Rheum. Dis. 77, 165–174 (2018).

    CAS  PubMed  Google Scholar 

  138. van de Putte, L. B. et al. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. Ann. Rheum. Dis. 63, 508–516 (2004).

    PubMed  PubMed Central  Google Scholar 

  139. Gordon, K. B. et al. Clinical response to adalimumab treatment in patients with moderate to severe psoriasis: double-blind, randomized controlled trial and open-label extension study. J. Am. Acad. Dermatol. 55, 598–606 (2006).

    PubMed  Google Scholar 

  140. Chaudhari, U. et al. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 357, 1842–1847 (2001).

    CAS  PubMed  Google Scholar 

  141. van der Heijde, D. et al. Efficacy and safety of infliximab in patients with ankylosing spondylitis: results of a randomized, placebo-controlled trial (ASSERT). Arthritis Rheum. 52, 582–591 (2005).

    PubMed  Google Scholar 

  142. Gottlieb, A. B. et al. A randomized trial of etanercept as monotherapy for psoriasis. Arch. Dermatol. 139, 1627–1632 (2003).

    CAS  PubMed  Google Scholar 

  143. Emery, P. et al. Sustained remission with etanercept tapering in early rheumatoid arthritis. N. Engl. J. Med. 371, 1781–1792 (2014).

    CAS  PubMed  Google Scholar 

  144. Wechsler, M. E. et al. Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N. Engl. J. Med. 376, 1921–1932 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Tony, H. P. et al. Comparison of switching from the originator rituximab to the biosimilar rituximab GP2013 or re-treatment with the originator rituximab in patients with active rheumatoid arthritis: safety and immunogenicity results from a multicenter, randomized, double-blind study [abstract]. Arthritis Rheumatol. 69 (Suppl. 10), 2795 (2017).

    Google Scholar 

  146. Cohen, S. B. et al. An extension study of PF-05280586, a potential rituximab biosimilar, versus rituximab in subjects with active rheumatoid arthritis. Arthritis Care Res. https://doi.org/10.1002/acr.23586 (2018).

    Article  Google Scholar 

  147. Weinblatt, M. E. et al. Switching from reference adalimumab to SB5 (adalimumab biosimilar) in patients with rheumatoid arthritis: fifty-two-week phase III randomized study results. Arthritis Rheumatol. 70, 832–840 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Emery, P. et al. Long-term efficacy and safety in patients with rheumatoid arthritis continuing on SB4 or switching from reference etanercept to SB4. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2017-211591 (2017).

    Article  PubMed  Google Scholar 

  149. Glintborg, B. et al. One-year clinical outcomes in 1623 patients with inflammatory arthritis who switched from originator to biosimilar etanercept – an observational study from the Danish Danbio Registry [abstract]. Arthritis Rheumatol. 69 (Suppl. 10), 1550 (2017).

    Google Scholar 

  150. Abdalla, A. et al. Long-term safety and efficacy of biosimilar infliximab among patients with inflammatory arthritis switched from reference product. Open Access Rheumatol. 9, 29–35 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Benucci, M. et al. Safety, efficacy and immunogenicity of switching from innovator to biosimilar infliximab in patients with spondyloarthritis: a 6-month real-life observational study. Immunol. Res. 65, 419–422 (2017).

    CAS  PubMed  Google Scholar 

  152. Forejtová, Š. et al. Non-medical switch from originator infliximab to biosimilar CT-P13 in 36 patients with ankylosing spondylitis: 6 – months clinical outcomes from the Czech Biologic Registry ATTRA [abstract]. Arthritis Rheumatol. 69 (Suppl. 10), 1549 (2017).

    Google Scholar 

Download references

Acknowledgements

Reviewer information

Nature Reviews Rheumatology thanks J. Kay, R. Fleischmann, S. Palerma and U. Bingel for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Petros P. Sfikakis.

Ethics declarations

Competing interests

E.K. declares no competing interests. D.D.M has received honoraria and/or research and travel grants and/or consultation fees from Allegra, Amgen, Biogen, Cephaly, Electrocore, Elli Lilly, Merck-Serono, Merz, Novartis, Roche, Sanofi and Teva. G.D.K has received honoraria for lectures and advisory boards and/or support for the organization of educational meetings and/or attendance to congresses from Abbvie, Aenorasis, BMS, Genesis, GSK, MSD, Novartis, Roche, Pfizer and UCB. P.P.S. has received honoraria for lectures and/or advisory boards and/or funding for research and congress attendances from Abbvie, Aenorasis, Amgen, BMS, Boehringer, Elli Lilly, Elpen, Genesis, Jannsen, Pfizer, MSD, Novartis, Roche, Sanofi and UCB.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Nocebo

The word nocebo is derived from the Latin word noceo (‘to harm’) and is the opposite of placebo; nocebo denotes a medical intervention that causes adverse events owing to negative expectations of the patient, and can include inert substances or medications, medical procedures or patient–physician encounters.

Nocebo effects

Noxious changes in a patient’s symptoms or physiologic condition caused by a nocebo; nocebo effects can result in suboptimal outcomes and non-adherence.

Placebo

The word placebo is derived from the latin term placeo (“I shall please”) and denotes a medical intervention that induces beneficial effects owing to positive expectations of the patient.

Nocebo response

A neurobiological alteration of the brain–body unit that is not directly attributable to a drug’s pharmacokinetics and might cause a negative treatment outcome.

Placebo effect

An improvement in a patient’s symptoms or physiologic condition resulting from a placebo.

Placebo response

A positive treatment outcome caused by a placebo manipulation; the placebo response reflects the neurobiological and psychophysiological response of an individual to an inert substance or sham treatment and is mediated by various factors within the treatment context.

Hyperalgesia

An increased sensitivity to pain from a stimulus that normally provokes pain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravvariti, E., Kitas, G.D., Mitsikostas, D.D. et al. Nocebos in rheumatology: emerging concepts and their implications for clinical practice. Nat Rev Rheumatol 14, 727–740 (2018). https://doi.org/10.1038/s41584-018-0110-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0110-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing