Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by a failure of spontaneous resolution of inflammation. Although the pro-inflammatory cytokines and mediators that trigger RA have been the focus of intense investigations, the regulatory and anti-inflammatory cytokines responsible for the suppression and resolution of disease in a context-dependent manner have been less well characterized. However, knowledge of the pathways that control the suppression and resolution of inflammation in RA is clinically relevant and conceptually important for understanding the pathophysiology of the disease and for the development of treatments that enable long-term remission. Cytokine-mediated processes such as the activation of T helper 2 cells by IL-4 and IL-13, the resolution of inflammation by IL-9, IL-5-induced eosinophil expansion, IL-33-mediated macrophage polarization, the production of IL-10 by regulatory B cells and IL-27-mediated suppression of lymphoid follicle formation are all involved in governing the regulation and resolution of inflammation in RA. By better understanding these immune-regulatory signalling pathways, new therapeutic strategies for RA can be envisioned that aim to balance and resolve, rather than suppress, inflammation.

Key points

  • Anti-inflammatory cytokines counterbalance the chronic activation of innate and adaptive immune cells in rheumatoid arthritis (RA).

  • Macrophage polarization towards an immune-regulatory phenotype is mediated by cytokines involved in type 2 immune responses and in eosinophil activation, such as IL-4, IL-5, IL-13 and IL-33.

  • Regulatory T cell activation in RA depends on the release of IL-9 from group 2 innate lymphoid cells.

  • Regulatory B cells are activated during inflammation and mitigate adaptive immune responses in experimental arthritis via the release of IL-10.

  • Inducing anti-inflammatory pathways and the resolution of inflammation is an attractive therapeutic option for patients with RA to achieve long-term disease control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Involvement of IL-4, IL-13 and IL-5 in the inhibition of rheumatoid arthritis.
Fig. 2: Involvement of IL-33 and IL-9 in the resolution of rheumatoid arthritis.
Fig. 3: Immune regulation by IL-27 and IL-10 in rheumatoid arthritis.

Similar content being viewed by others

References

  1. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Schett, G., Elewaut, D., McInnes, I. B., Dayer, J. M. & Neurath, M. F. How cytokine networks fuel inflammation: Toward a cytokine-based disease taxonomy. Nat. Med. 19, 822–824 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Cascao, R., Rosario, H. S., Souto-Carneiro, M. M. & Fonseca, J. E. Neutrophils in rheumatoid arthritis: more than simple final effectors. Autoimmun. Rev. 9, 531–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Hueber, A. J. et al. Mast cells express IL-17A in rheumatoid arthritis synovium. J. Immunol. 184, 3336–3340 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Haringman, J. J. et al. Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 64, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ambarus, C. A., Noordenbos, T., de Hair, M. J., Tak, P. P. & Baeten, D. L. Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis. Arthritis Res. Ther. 14, R74 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dayer, J. M., Beutler, B. & Cerami, A. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J. Exp. Med. 162, 2163–2168 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Bertolini, D. R., Nedwin, G. E., Bringman, T. S., Smith, D. D. & Mundy, G. R. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 319, 516–518 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Ohshima, S. et al. Intreleukin-6 plays a key role in the development of antigen-induced arthritis. Proc. Natl Acad. Sci. USA 95, 8222–8226 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McInnes, I. B. & Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389, 2328–2337 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Haschka, J. et al. Relapse rates in patients with rheumatoid arthritis in stable remission tapering or stopping antirheumatic therapy: interim results from the prospective randomised controlled RETRO study. Ann. Rheum. Dis. 75, 45–51 (2016).

    Article  PubMed  Google Scholar 

  14. Hermann, J. A., Hall, M. A., Maini, R. N., Feldmann, M. & Brennan, F. M. Important immunoregulatory role of interleukin-11 in the inflammatory process in rheumatoid arthritis. Arthritis Rheum. 41, 1388–1397 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Walmsley, M., Butler, D. M., Marinova-Mutafchieva, L. & Feldmann, M. An anti-inflammatory role for interleukin-11 in established murine collagen-induced arthritis. Immunology 95, 31–37 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moreland, L. et al. Results of a phase-I/II randomized, masked, placebo-controlled trial of recombinant human interleukin-11 (rhIL-11) in the treatment of subjects with active rheumatoid arthritis. Arthritis Res. 3, 247–252 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tak, P. P. et al. The effects of interferon beta treatment on arthritis. Rheumatology 38, 362–369 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. van Holten, J. et al. Treatment with recombinant interferon-beta reduces inflammation and slows cartilage destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res. Ther. 6, R239–R249 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. van Holten, J. et al. A multicentre, randomised, double blind, placebo controlled phase II study of subcutaneous interferon beta-1a in the treatment of patients with active rheumatoid arthritis. Ann. Rheum. Dis. 64, 64–69 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Genovese, M. C., Chakravarty, E. F., Krishnan, E. & Moreland, L. W. A randomized, controlled trial of interferon-beta-1a (Avonex(R)) in patients with rheumatoid arthritis: a pilot study [ISRCTN03626626]. Arthritis Res. Ther. 6, R73–R77 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Kaplan, M. H., Schindler, U., Smiley, S. T. & Grusby, M. J. STAT6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4, 313–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Nelms, K., Keegan, A. D., Zamorano, J., Ryan, J. J. & Paul, W. E. The IL-4 receptor: signaling mechanisms and biologic functions. Annu. Rev. Immunol. 17, 701–738 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. May, R. D. & Fung, M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 75, 89–116 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Raza, K. et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res. Ther. 7, R784–R795 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Omata, Y. et al. Group 2 innate lymphoid cells attenuate inflammatory arthritis and protect from bone destruction in mice. Cell Rep. 24, 169–180 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Bessis, N. et al. Modulation of proinflammatory cytokine production in tumour necrosis factor-alpha (TNF-alpha)-transgenic mice by treatment with cells engineered to secrete IL-4, IL-10 or IL-13. Clin. Exp. Immunol. 111, 391–396 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bessis, N. et al. Attenuation of collagen-induced arthritis in mice by treatment with vector cells engineered to secrete interleukin-13. Eur. J. Immunol. 26, 2399–2403 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Finnegan, A., Mikecz, K., Tao, P. & Glant, T. T. Proteoglycan (aggrecan)-induced arthritis in BALB/c mice is a Th1-type disease regulated by Th2 cytokines. J. Immunol. 163, 5383–5390 (1999).

    CAS  PubMed  Google Scholar 

  29. Horsfall, A. C. et al. Suppression of collagen-induced arthritis by continuous administration of IL-4. J. Immunol. 159, 5687–5696 (1997).

    CAS  PubMed  Google Scholar 

  30. Joosten, L. A. et al. Role of interleukin-4 and interleukin-10 in murine collagen-induced arthritis. Protective effect of interleukin-4 and interleukin-10 treatment on cartilage destruction. Arthritis Rheum. 40, 249–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Joosten, L. A. et al. Protection against cartilage and bone destruction by systemic interleukin-4 treatment in established murine type II collagen-induced arthritis. Arthritis Res. 1, 81–91 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamada, A. et al. Interleukin-4 inhibition of osteoclast differentiation is stronger than that of interleukin-13 and they are equivalent for induction of osteoprotegerin production from osteoblasts. Immunology 120, 573–579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fujii, T., Kitaura, H., Kimura, K., Hakami, Z. W. & Takano-Yamamoto, T. IL-4 inhibits TNF-α-mediated osteoclast formation by inhibition of RANKL expression in TNF-α-activated stromal cells and direct inhibition of TNF-α-activated osteoclast precursors via a T cell-independent mechanism in vivo. Bone 51, 771–780 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Osada, Y., Shimizu, S., Kumagai, T., Yamada, S. & Kanazawa, T. Schistosoma mansoni infection reduces severity of collagen-induced arthritis via down-regulation of pro-inflammatory mediators. Int. J. Parasitol. 39, 457–464 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Salinas-Carmona, M. C. et al. Spontaneous arthritis in MRL/lpr mice is aggravated by Staphylococcus aureus and ameliorated by Nippostrongylus brasiliensis infections. Autoimmunity 42, 25–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Shi, M. et al. Infection with an intestinal helminth parasite reduces Freund’s complete adjuvant-induced monoarthritis in mice. Arthritis Rheum. 63, 434–444 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Song, X. et al. Impact of Schistosoma japonicum infection on collagen-induced arthritis in DBA/1 mice: a murine model of human rheumatoid arthritis. PLoS ONE 6, e23453 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Osada, Y., Yamada, S., Nakae, S., Sudo, K. & Kanazawa, T. Reciprocal effects of Schistosoma mansoni infection on spontaneous autoimmune arthritis in IL-1 receptor antagonist-deficient mice. Parasitol. Int. 64, 13–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Z. et al. Th2 and eosinophil responses suppress inflammatory arthritis. Nat. Commun. 7, 11596 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hirayama, T., Dai, S., Abbas, S., Yamanaka, Y. & Abu-Amer, Y. Inhibition of inflammatory bone erosion by constitutively active STAT-6 through blockade of JNK and NF-kappaB activation. Arthritis Rheum. 52, 2719–2729 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Hart, P. H., Ahern, M. J., Smith, M. D. & Finlay-Jones, J. J. Regulatory effects of IL-13 on synovial fluid macrophages and blood monocytes from patients with inflammatory arthritis. Clin. Exp. Immunol. 99, 331–337 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Isomaki, P., Luukkainen, R., Toivanen, P. & Punnonen, J. The presence of interleukin-13 in rheumatoid synovium and its antiinflammatory effects on synovial fluid macrophages from patients with rheumatoid arthritis. Arthritis Rheum. 39, 1693–1702 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Wenzel, S. et al. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med. 368, 2455–2466 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Atkins, M. B. et al. Phase I evaluation of thrice-daily intravenous bolus interleukin-4 in patients with refractory malignancy. J. Clin. Oncol. 10, 1802–1809 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Shanafelt, A. B. et al. An immune cell-selective interleukin 4 agonist. Proc. Natl Acad. Sci. USA 95, 9454–9458 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lopez, A. F. et al. Recombinant human interleukin 5 is a selective activator of human eosinophil function. J. Exp. Med. 167, 219–224 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Collins, P. D., Marleau, S., Griffiths-Johnson, D. A., Jose, P. J. & Williams, T. J. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J. Exp. Med. 182, 1169–1174 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Mattes, J. et al. Intrinsic defect in T cell production of interleukin (IL)-13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma. J. Exp. Med. 195, 1433–1444 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamada, T. et al. Eosinophils promote resolution of acute peritonitis by producing proresolving mediators in mice. FASEB J. 25, 561–568 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Masterson, J. C. et al. Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis. Gut 64, 1236–1247 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Stolarski, B., Kurowska-Stolarska, M., Kewin, P., Xu, D. & Liew, F. Y. IL-33 exacerbates eosinophil-mediated airway inflammation. J. Immunol. 185, 3472–3480 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Gebreselassie, N. G. et al. Eosinophils preserve parasitic nematode larvae by regulating local immunity. J. Immunol. 188, 417–425 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Isobe, Y., Kato, T. & Arita, M. Emerging roles of eosinophils and eosinophil-derived lipid mediators in the resolution of inflammation. Front. Immunol. 3, 270 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Duffney, P. F. et al. Key roles for lipid mediators in the adaptive immune response. J. Clin. Invest. 128, 2724–2731 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Linch, S. N. et al. Interleukin 5 is protective during sepsis in an eosinophil-independent manner Am. J. Respir. Crit. Care Med. 186, 246–254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Martin, N. T. & Martin, M. U. Interleukin 33 is a guardian of barriers and a local alarmin. Nat. Immunol. 17, 122–131 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Xu, D. et al. IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc. Natl Acad. Sci. USA 105, 10913–10918 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Verri, W. A. Jr. et al. IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann. Rheum. Dis. 69, 1697–1703 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Xu, D. et al. IL-33 exacerbates autoantibody-induced arthritis. J. Immunol. 184, 2620–2626 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Matsuyama, Y. et al. Increased levels of interleukin 33 in sera and synovial fluid from patients with active rheumatoid arthritis. J. Rheumatol 37, 18–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Mu, R. et al. Elevated serum interleukin 33 is associated with autoantibody production in patients with rheumatoid arthritis. J. Rheumatol 37, 2006–2013 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Kamradt, T. & Drube, S. A complicated liaison: IL-33 and IL-33R in arthritis pathogenesis. Arthritis Res. Ther. 15, 115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Martin, P. et al. Disease severity in K/B×N serum transfer-induced arthritis is not affected by IL-33 deficiency. Arthritis Res. Ther. 15, R13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Palmer, G. et al. Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum. 60, 738–749 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Talabot-Ayer, D. et al. Immune-mediated experimental arthritis in IL-33 deficient mice. Cytokine 69, 68–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Drube, S. et al. The receptor tyrosine kinase c-Kit controls IL-33 receptor signaling in mast cells. Blood 115, 3899–3906 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Licona-Limon, P., Kim, L. K., Palm, N. W. & Flavell, R. A. TH2, allergy and group 2 innate lymphoid cells. Nat. Immunol. 14, 536–542 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Duerr, C. U. & Fritz, J. H. Regulation of group 2 innate lymphoid cells. Cytokine 87, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Biton, J. et al. In vivo expansion of activated Foxp3+ regulatory T cells and establishment of a type 2 immune response upon IL-33 treatment protect against experimental arthritis. J. Immunol. 197, 1708–1719 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Stier, M. T. et al. IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow. J. Exp. Med. 215, 263–281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Matta, B. M. et al. Peri-allo HCT IL-33 administration expands recipient T-regulatory cells that protect mice against acute GVHD. Blood 128, 427–439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rauber, S. et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat. Med. 23, 938–944 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zaiss, M. M. et al. IL-33 shifts the balance from osteoclast to alternatively activated macrophage differentiation and protects from TNF-alpha-mediated bone loss. J. Immunol. 186, 6097–6105 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Goswami, R. & Kaplan, M. H. A brief history of IL-9. J. Immunol. 186, 3283–3288 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Bauer, J. H., Liu, K. D., You, Y., Lai, S. Y. & Goldsmith, M. A. Heteromerization of the γc chain with the interleukin-9 receptor alpha subunit leads to STAT activation and prevention of apoptosis. J. Biol. Chem. 273, 9255–9260 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Veldhoen, M. et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Elyaman, W. et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc. Natl Acad. Sci. USA 106, 12885–12890 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nowak, E. C. et al. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 206, 1653–1660 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hughes-Austin, J. M. et al. Multiple cytokines and chemokines are associated with rheumatoid arthritis-related autoimmunity in first-degree relatives without rheumatoid arthritis: Studies of the Aetiology of Rheumatoid Arthritis (SERA). Ann. Rheum. Dis. 72, 901–907 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Ciccia, F. et al. Potential involvement of IL-9 and Th9 cells in the pathogenesis of rheumatoid arthritis. Rheumatology 54, 2264–2272 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Kundu-Raychaudhuri, S., Abria, C. & Raychaudhuri, S. P. IL-9, a local growth factor for synovial T cells in inflammatory arthritis. Cytokine 79, 45–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Chowdhury, K. et al. Synovial IL-9 facilitates neutrophil survival, function and differentiation of Th17 cells in rheumatoid arthritis. Arthritis Res. Ther. 20, 18 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Parker, J. M. et al. Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm Med. 11, 14 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Angkasekwinai, P., Chang, S. H., Thapa, M., Watarai, H. & Dong, C. Regulation of IL-9 expression by IL-25 signaling. Nat. Immunol. 11, 250–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nakatsukasa, H. et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat. Immunol. 16, 1077–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mern, D. S., Hoppe-Seyler, K., Hoppe-Seyler, F., Hasskarl, J. & Burwinkel, B. Targeting Id1 and Id3 by a specific peptide aptamer induces E-box promoter activity, cell cycle arrest, and apoptosis in breast cancer cells. Breast Cancer Res. Treat. 124, 623–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Mauri, C. & Menon, M. Human regulatory B cells in health and disease: therapeutic potential. J. Clin. Invest. 127, 772–779 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Meng, X. et al. Hypoxia-inducible factor-1α is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nat. Commun. 9, 251 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Katsikis, P. D., Chu, C. Q., Brennan, F. M., Maini, R. N. & Feldmann, M. Immunoregulatory role of interleukin 10 in rheumatoid arthritis. J. Exp. Med. 179, 1517–1527 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Park, M. J. et al. Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumatoid inflammation in mice. Sci. Rep. 8, 3753 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Cush, J. J. et al. Elevated interleukin-10 levels in patients with rheumatoid arthritis. Arthritis Rheum. 38, 96–104 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Bober, L. A. et al. Regulatory effects of interleukin-4 and interleukin-10 on human neutrophil function ex vivo and on neutrophil influx in a rat model of arthritis. Arthritis Rheum. 43, 2660–2667 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Smallie, T. et al. IL-10 inhibits transcription elongation of the human TNF gene in primary macrophages. J. Exp. Med. 207, 2081–2088 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maini, R. et al. rHuIL-10 in subjects with active rheumatoid arthritis: a phase I and cytokine response study [abstract]. Arthritis Rheum. 40 (Suppl), S224 (1997).

    Google Scholar 

  97. St Clair, E. W. Interleukin 10 treatment for rheumatoid arthritis. Ann. Rheum. Dis. 58 (Suppl.1), I99–I102 (1999).

    Article  Google Scholar 

  98. van Roon, J. et al. Interleukin 10 treatment of patients with rheumatoid arthritis enhances Fc gamma receptor expression on monocytes and responsiveness to immune complex stimulation. J. Rheumatol 30, 648–651 (2003).

    PubMed  Google Scholar 

  99. Yoshida, H. & Hunter, C. A. The immunobiology of interleukin-27. Annu. Rev. Immunol. 33, 417–443 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Wong, C. K. et al. Effects of inflammatory cytokine IL-27 on the activation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res. Ther. 12, R129 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Goldberg, R. et al. Suppression of ongoing adjuvant-induced arthritis by neutralizing the function of the p28 subunit of IL-27. J. Immunol. 173, 1171–1178 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Awasthi, A. et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat. Immunol. 8, 1380–1389 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Hirahara, K. et al. Interleukin-27 priming of T cells controls IL-17 production in trans via induction of the ligand PD-L1. Immunity 36, 1017–1030 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kalliolias, G. D., Gordon, R. A. & Ivashkiv, L. B. Suppression of TNF-α and IL-1 signaling identifies a mechanism of homeostatic regulation of macrophages by IL-27. J. Immunol. 185, 7047–7056 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Kalliolias, G. D., Zhao, B., Triantafyllopoulou, A., Park-Min, K. H. & Ivashkiv, L. B. Interleukin-27 inhibits human osteoclastogenesis by abrogating RANKL-mediated induction of nuclear factor of activated T cells c1 and suppressing proximal RANK signaling. Arthritis Rheum. 62, 402–413 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Shen, H., Xia, L., Xiao, W. & Lu, J. Increased levels of interleukin-27 in patients with rheumatoid arthritis. Arthritis Rheum. 63, 860–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Tanida, S. et al. IL-27-producing CD14(+) cells infiltrate inflamed joints of rheumatoid arthritis and regulate inflammation and chemotactic migration. Cytokine 55, 237–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Niedbala, W. et al. Interleukin 27 attenuates collagen-induced arthritis. Ann. Rheum. Dis. 67, 1474–1479 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Pickens, S. R. et al. Local expression of interleukin-27 ameliorates collagen-induced arthritis. Arthritis Rheum. 63, 2289–2298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rajaiah, R., Puttabyatappa, M., Polumuri, S. K. & Moudgil, K. D. Interleukin-27 and interferon-gamma are involved in regulation of autoimmune arthritis. J. Biol. Chem. 286, 2817–2825 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Jones, G. W. et al. Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis. J. Exp. Med. 212, 1793–1802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Meka, R. R. et al. IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmun. Rev. 14, 1131–1141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Timmer, T. C. et al. Inflammation and ectopic lymphoid structures in rheumatoid arthritis synovial tissues dissected by genomics technology: identification of the interleukin-7 signaling pathway in tissues with lymphoid neogenesis. Arthritis Rheum. 56, 2492–2502 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Figueiredo, C. P. et al. Antimodified protein antibody response pattern influences the risk for disease relapse in patients with rheumatoid arthritis tapering disease modifying antirheumatic drugs. Ann. Rheum. Dis. 76, 399–407 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Maizels, R. M. & McSorley, H. J. Regulation of the host immune system by helminth parasites. J. Allergy Clin. Immunol. 138, 666–675 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pineda, M. A. et al. The parasitic helminth product ES-62 suppresses pathogenesis in collagen-induced arthritis by targeting the interleukin-17-producing cellular network at multiple sites. Arthritis Rheum. 64, 3168–3178 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. McInnes, I. B. et al. A novel therapeutic approach targeting articular inflammation using the filarial nematode-derived phosphorylcholine-containing glycoprotein ES-62. J. Immunol. 171, 2127–2133 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Harnett, M. M. et al. The phosphorycholine moiety of the filarial nematode immunomodulator ES-62 is responsible for its anti-inflammatory action in arthritis. Ann. Rheum. Dis. 67, 518–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Al-Riyami, L. et al. Designing anti-inflammatory drugs from parasitic worms: a synthetic small molecule analogue of the Acanthocheilonema viteae product ES-62 prevents development of collagen-induced arthritis. J. Med. Chem. 56, 9982–10002 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rodgers, D. T. et al. Protection against collagen-induced arthritis in mice afforded by the parasitic worm product, ES-62, is associated with restoration of the levels of interleukin-10-producing B cells and reduced plasma cell infiltration of the joints. Immunology 141, 457–466 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pineda, M. A., Rodgers, D. T., Al-Riyami, L., Harnett, W. & Harnett, M. M. ES-62 protects against collagen-induced arthritis by resetting interleukin-22 toward resolution of inflammation in the joints. Arthritis Rheumatol. 66, 1492–1503 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rzepecka, J. et al. Prophylactic and therapeutic treatment with a synthetic analogue of a parasitic worm product prevents experimental arthritis and inhibits IL-1β production via NRF2-mediated counter-regulation of the inflammasome. J. Autoimmun. 60, 59–73 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Finlay, C. M. et al. Helminth products protect against autoimmunity via innate type 2 cytokines IL-5 and IL-33, which promote eosinophilia. J. Immunol. 196, 703–714 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Lund, M. E. et al. A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of type 1 diabetes and multiple sclerosis. Sci. Rep. 6, 37789 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000 Prime Rep. 6, 13 (2014).

    Article  Google Scholar 

  126. Vats, D. et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, Y. et al. Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species. J. Biol. Chem. 288, 16225–16234 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of Inflammation. Cell Metab. 24, 158–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the National Natural Science Foundation of China (81501344 to Z.C.), the Natural Science Foundation of Anhui Province (1608085MH172 to Z.C.) and by the German Research Council (CRC1181 to A.B. and G.S. and SPP1937 to A.R.).

Author information

Authors and Affiliations

Authors

Contributions

Z.C. and G.S. wrote the article. All authors researched data for the article, made substantial contributions to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Georg Schett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Bozec, A., Ramming, A. et al. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol 15, 9–17 (2019). https://doi.org/10.1038/s41584-018-0109-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0109-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing