Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rheumatic immune-related adverse events from cancer immunotherapy

Abstract

Immunotherapy has revolutionized the treatment of cancer, but a rapid rise in the use of the family of therapeutic agents known as checkpoint inhibitors (CPIs) is associated with a new group of immune-related adverse events (irAEs) in almost any organ system. Among these irAEs, rheumatic complications are common and seem to have features that are distinct from irAEs in other organ systems, including a highly variable time of clinical onset and the capacity to persist, possibly indefinitely, even after cessation of CPI therapy. In this Review, mechanisms of action of CPIs and how they might cause rheumatic irAEs are described. Also covered are epidemiology and clinical descriptions of rheumatic irAEs, plus guiding principles for managing irAEs. Finally, we outline future directions that must be taken in response to a series of unanswered questions and unmet needs that now confront rheumatologists who are, or will be, engaged in this new area of rheumatology.

Key points

  • Cancer immunotherapy with checkpoint inhibitors (CPIs) has revolutionized the treatment of cancer but presents the risk of developing autoimmune or autoinflammatory complications know as immune-related adverse events (irAEs).

  • irAEs are clinically common and can occur in almost any organ system during and/or after treatment with a CPI.

  • Treatment of irAEs often requires immunosuppression with glucocorticoids, which are sometimes administered with conventional synthetic or biologic disease-modifying drugs.

  • Rheumatic irAEs are not as common as some other irAEs but are underdiagnosed and less well recognized.

  • Rheumatic irAEs seem to be nosologically distinct, occurring both early and late in response to CPI therapy, and a substantial proportion of them are chronic, persisting even after cessation of CPI therapy.

  • Rheumatologists must be prepared for irAEs and contribute to inter-professional teams in managing immunotherapy for patients with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: irAEs can affect most organ systems.
Fig. 2: Immunopathogenic mechanisms of irAEs: four broad mechanisms that might account for the immunopathogenesis of CPI-induced irAEs.

Similar content being viewed by others

References

  1. Hoos, A. Development of immuno-oncology drugs — from CTLA4 to PD1 to the next generations. Nat. Rev. Drug Discov. 15, 235–247 (2016).

    CAS  PubMed  Google Scholar 

  2. Calabrese, L. H. Sorting out the complexities of autoimmunity and checkpoint inhibitors: not so easy. Ann. Intern. Med. 168, 149–150 (2018).

    PubMed  Google Scholar 

  3. Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    PubMed  Google Scholar 

  5. Weber, J. S. et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 35, 785–792 (2017).

    CAS  PubMed  Google Scholar 

  6. Cappelli, L. C., Gutierrez, A. K., Bingham, C. O. 3rd & Shah, A. A. Rheumatic and musculoskeletal immune-related adverse events due to immune checkpoint inhibitors: a systematic review of the literature. Arthritis Care Res. 69, 1751–1763 (2017).

    Google Scholar 

  7. Suarez-Almazor, M. E., Kim, S. T., Abdel-Wahab, N. & Diab, A. Review: immune-related adverse events with use of checkpoint inhibitors for immunotherapy of cancer. Arthritis Rheumatol. 69, 687–699 (2017).

    PubMed  Google Scholar 

  8. The Lancet Oncology. Calling time on the immunotherpay gold rush. Lancet Oncol. 18, 981 (2017).

    CAS  PubMed  Google Scholar 

  9. van der Vlist, M., Kuball, J., Radstake, T. R. & Meyaard, L. Immune checkpoints and rheumatic diseases: what can cancer immunotherapy teach us? Nat. Rev. Rheumatol. 12, 593–604 (2016).

    PubMed  Google Scholar 

  10. June, C. H., Warshauer, J. T. & Bluestone, J. A. Is autoimmunity the Achilles’ heel of cancer immunotherapy? Nat. Med. 23, 540–547 (2017).

    CAS  PubMed  Google Scholar 

  11. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    CAS  PubMed  Google Scholar 

  12. Tocheva, A. S. & Mor, A. Checkpoint inhibitors: applications for autoimmunity. Curr. Allergy Asthma Rep. 17, 72 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Hotchkiss, R. S. & Moldawer, L. L. Parallels between cancer and infectious disease. N. Engl. J. Med. 371, 380–383 (2014).

    PubMed  Google Scholar 

  14. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    CAS  PubMed  Google Scholar 

  15. Calabrese, L. & Velcheti, V. Checkpoint immunotherapy: good for cancer therapy, bad for rheumatic diseases. Ann. Rheum. Dis. 76, 1–3 (2017).

    CAS  PubMed  Google Scholar 

  16. Lemery, S., Keegan, P. & Pazdur, R. First FDA approval agnostic of cancer site — when a biomarker defines the indication. N. Engl. J. Med. 377, 1409–1412 (2017).

    PubMed  Google Scholar 

  17. Eggermont, A. M. et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N. Engl. J. Med. 375, 1845–1855 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bertrand, A., Kostine, M., Barnetche, T., Truchetet, M. E. & Schaeverbeke, T. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med. 13, 211 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Puzanov, I. et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 5, 95 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Khoja, L., Day, D., Wei-Wu Chen, T., Siu, L. L. & Hansen, A. R. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann. Oncol. 28, 2377–2385 (2017).

    CAS  PubMed  Google Scholar 

  21. Boutros, C. et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 13, 473–486 (2016).

    CAS  PubMed  Google Scholar 

  22. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kyi, C., Carvajal, R. D., Wolchok, J. D. & Postow, M. A. Ipilimumab in patients with melanoma and autoimmune disease. J. Immunother. Cancer 2, 35 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Woodworth, T. et al. Standardizing assessment and reporting of adverse effects in rheumatology clinical trials II: the rheumatology common toxicity criteria v.2.0. J. Rheumatol. 34, 1401–1414 (2007).

    PubMed  Google Scholar 

  25. Brahmer, J. R. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice guideline. J. Clin. Oncol. 36, 1714–1768 (2018).

    PubMed  Google Scholar 

  26. Cappelli, L. C., Shah, A. A. & Bingham, C. O. 3rd. Immune-related adverse effects of cancer immunotherapy — implications for rheumatology. Rheum. Dis. Clin. North Am. 43, 65–78 (2017).

    PubMed  Google Scholar 

  27. Calabrese, C., Kirchner, E., Kontzias, K., Velcheti, V. & Calabrese, L. H. Rheumatic immune-related adverse events of checkpoint therapy for cancer: case series of a new nosological entity. RMD Open 3, e000412 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Buder-Bakhaya, K. et al. Characterization of arthralgia induced by PD-1 antibody treatment in patients with metastasized cutaneous malignancies. Cancer Immunol. Immunother. 67, 175–182 (2018).

    CAS  PubMed  Google Scholar 

  29. Lidar, M. et al. Rheumatic manifestations among cancer patients treated with immune checkpoint inhibitors. Autoimmun. Rev. 17, 284–289 (2018).

    CAS  PubMed  Google Scholar 

  30. Le Burel, S. et al. Prevalence of immune-related systemic adverse events in patients treated with anti-programmed cell death 1/anti-programmed cell death-ligand 1 agents: a single-centre pharmacovigilance database analysis. Eur. J. Cancer 82, 34–44 (2017).

    PubMed  Google Scholar 

  31. Liewluck, T., Kao, J. C. & Mauermann, M. L. PD-1 inhibitor-associated myopathies: emerging immune-mediated myopathies. J. Immunother. 41, 208–211 (2017).

    Google Scholar 

  32. Albayda, J., Bingham, C. O. 3rd, Shah, A. A., Kelly, R. J. & Cappelli, L. Metastatic joint involvement or inflammatory arthritis? A conundrum with immune checkpoint inhibitor-related adverse events. Rheumatology 57, 760–762 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Cappelli, L. C. et al. Inflammatory arthritis and sicca syndrome induced by nivolumab and ipilimumab. Ann. Rheum. Dis. 76, 43–50 (2017).

    CAS  PubMed  Google Scholar 

  34. Smith, M. H. & Bass, A. R. Arthritis after cancer immunotherapy: symptom duration and treatment response. Arthritis Care. Res. https://doi.org/10.1002/acr.23467 (2017).

    Article  Google Scholar 

  35. Chan, M. M., Kefford, R. F., Carlino, M., Clements, A. & Manolios, N. Arthritis and tenosynovitis associated with the anti-PD1 antibody pembrolizumab in metastatic melanoma. J. Immunother. 38, 37–39 (2015).

    CAS  PubMed  Google Scholar 

  36. Belkhir, R. et al. Rheumatoid arthritis and polymyalgia rheumatica occurring after immune checkpoint inhibitor treatment. Ann. Rheum. Dis. 76, 1747–1750 (2017).

    CAS  PubMed  Google Scholar 

  37. Kim, S. T. et al. Successful treatment of arthritis induced by checkpoint inhibitors with tocilizumab: a case series. Ann. Rheum. Dis. 76, 2061–2064 (2017).

    PubMed  Google Scholar 

  38. Law-Ping-Man, S., Martin, A., Briens, E., Tisseau, L. & Safa, G. Psoriasis and psoriatic arthritis induced by nivolumab in a patient with advanced lung cancer. Rheumatology 55, 2087–2089 (2016).

    PubMed  Google Scholar 

  39. Ruiz-Banobre, J. et al. Development of psoriatic arthritis during nivolumab therapy for metastatic non-small cell lung cancer, clinical outcome analysis and review of the literature. Lung Cancer 108, 217–221 (2017).

    PubMed  Google Scholar 

  40. Goldstein, B. L., Gedmintas, L. & Todd, D. J. Drug-associated polymyalgia rheumatica/giant cell arteritis occurring in two patients after treatment with ipilimumab, an antagonist of ctla-4. Arthritis Rheumatol. 66, 768–769 (2014).

    PubMed  Google Scholar 

  41. Micaily, I. & Chernoff, M. An unknown reaction to pembrolizumab: giant cell arteritis. Ann. Oncol. 28, 2621–2622 (2017).

    CAS  PubMed  Google Scholar 

  42. Hunter, G., Voll, C. & Robinson, C. A. Autoimmune inflammatory myopathy after treatment with ipilimumab. Can. J. Neurol. Sci. 36, 518–520 (2009).

    PubMed  Google Scholar 

  43. Yoshioka, M., Kambe, N., Yamamoto, Y., Suehiro, K. & Matsue, H. Case of respiratory discomfort due to myositis after administration of nivolumab. J. Dermatol. 42, 1008–1009 (2015).

    PubMed  Google Scholar 

  44. Suzuki, S. et al. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology 89, 1127–1134 (2017).

    CAS  PubMed  Google Scholar 

  45. Kimura, T. et al. Myasthenic crisis and polymyositis induced by one dose of nivolumab. Cancer Sci. 107, 1055–1058 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sheik Ali, S. et al. Drug-associated dermatomyositis following ipilimumab therapy: a novel immune-mediated adverse event associated with cytotoxic T-lymphocyte antigen 4 blockade. JAMA Dermatol. 151, 195–199 (2015).

    PubMed  Google Scholar 

  47. Daoussis, D., Kraniotis, P., Liossis, S. N. & Solomou, A. Immune checkpoint inhibitor-induced myo-fasciitis. Rheumatology 56, 2161 (2017).

    PubMed  Google Scholar 

  48. Barbosa, N. S. et al. Scleroderma induced by pembrolizumab: a case series. Mayo Clin. Proc. 92, 1158–1163 (2017).

    PubMed  Google Scholar 

  49. Gambichler, T., Strutzmann, S., Tannapfel, A. & Susok, L. Paraneoplastic acral vascular syndrome in a patient with metastatic melanoma under immune checkpoint blockade. BMC Cancer 17, 327 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Khoja, L. et al. Eosinophilic fasciitis and acute encephalopathy toxicity from pembrolizumab treatment of a patient with metastatic melanoma. Cancer Immunol. Res. 4, 175–178 (2016).

    PubMed  Google Scholar 

  51. Reule, R. B. & North, J. P. Cutaneous and pulmonary sarcoidosis-like reaction associated with ipilimumab. J. Am. Acad. Dermatol. 69, e272–e273 (2013).

    PubMed  Google Scholar 

  52. Lomax, A. J. et al. Immunotherapy-induced sarcoidosis in patients with melanoma treated with PD-1 checkpoint inhibitors: case series and immunophenotypic analysis. Int. J. Rheum. Dis. 20, 1277–1285 (2017).

    CAS  PubMed  Google Scholar 

  53. Reddy, S. B., Possick, J. D., Kluger, H. M., Galan, A. & Han, D. Sarcoidosis following anti-PD-1 and anti-CTLA-4 therapy for metastatic melanoma. J. Immunother. 40, 307–311 (2017).

    CAS  PubMed  Google Scholar 

  54. Danlos, F. X. et al. Nivolumab-induced sarcoid-like granulomatous reaction in a patient with advanced melanoma. Chest 149, e133–e136 (2016).

    PubMed  Google Scholar 

  55. Laubli, H. et al. Cerebral vasculitis mimicking intracranial metastatic progression of lung cancer during PD-1 blockade. J. Immunother. Cancer 5, 46 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Minor, D. R., Bunker, S. R. & Doyle, J. Lymphocytic vasculitis of the uterus in a patient with melanoma receiving ipilimumab. J. Clin. Oncol. 31, e356 (2013).

    PubMed  Google Scholar 

  57. Manusow, J. S., Khoja, L., Pesin, N., Joshua, A. M. & Mandelcorn, E. D. Retinal vasculitis and ocular vitreous metastasis following complete response to PD-1 inhibition in a patient with metastatic cutaneous melanoma. J. Immunother. Cancer 2, 41 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Rutgers, A., van den Brom, R. R. H., Hospers, G. A. P., Heeringa, P. & Brouwer, E. Systemic vasculitis developed after immune checkpoint inhibition. Arthritis Care Res. https://doi.org/10.1002/acr.23481 (2017).

    Article  Google Scholar 

  59. Daxini, A., Cronin, K. & Sreih, A. G. Vasculitis associated with immune checkpoint inhibitors-a systematic review. Clin. Rheumatol. https://doi.org/10.1007/s10067-018-4177-0 (2018).

    Article  PubMed  Google Scholar 

  60. Fadel, F., El Karoui, K. & Knebelmann, B. Anti-CTLA4 antibody-induced lupus nephritis. N. Engl. J. Med. 361, 211–212 (2009).

    CAS  PubMed  Google Scholar 

  61. Liu, R. C., Sebaratnam, D. F., Jackett, L., Kao, S. & Lowe, P. M. Subacute cutaneous lupus erythematosus induced by nivolumab. Australas. J. Dermatol. 59, e152–e154 (2018).

    PubMed  Google Scholar 

  62. Haanen, J. et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 28, iv119–iv142 (2018).

    Google Scholar 

  63. Wolchok, J. D. et al. Ipilimumab efficacy and safety in patients with advanced melanoma: a retrospective analysis of HLA subtype from four trials. Cancer Immun. 10, 9 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).

    CAS  PubMed  Google Scholar 

  65. Olde Nordkamp, M. J., Koeleman, B. P. & Meyaard, L. Do inhibitory immune receptors play a role in the etiology of autoimmune disease? Clin. Immunol. 150, 31–42 (2014).

    CAS  PubMed  Google Scholar 

  66. Lo, B. et al. CHAI and LATAIE: new genetic diseases of CTLA-4 checkpoint insufficiency. Blood 128, 1037–1042 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo, Y. et al. Immune checkpoint inhibitor PD-1 pathway is down-regulated in synovium at various stages of rheumatoid arthritis disease progression. PLOS ONE 13, e0192704 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. Zhang, H. et al. Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proc. Natl Acad. Sci. USA 114, e970–e979 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. McKinney, E. F., Lee, J. C., Jayne, D. R., Lyons, P. A. & Smith, K. G. T cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612–616 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, A. C. et al. T cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, J., Ahn, E., Kissick, H. T. & Ahmed, R. Reinvigorating exhausted T cells by blockade of the PD-1 pathway. For. Immunopathol. Dis. Therap. 6, 7–17 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Manson, G., Norwood, J., Marabelle, A., Kohrt, H. & Houot, R. Biomarkers associated with checkpoint inhibitors. Ann. Oncol. 27, 1199–1206 (2016).

    CAS  PubMed  Google Scholar 

  74. Esfahani, K. & Miller, W. H. Jr. Reversal of autoimmune toxicity and loss of tumor response by interleukin-17 blockade. N. Engl. J. Med. 376, 1989–1991 (2017).

    PubMed  Google Scholar 

  75. Tarhini, A. Immune-mediated adverse events associated with ipilimumab ctla-4 blockade therapy: the underlying mechanisms and clinical management. Scientifica 2013, 857519 (2013).

    PubMed  PubMed Central  Google Scholar 

  76. Iwama, S. et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl Med. 6, 230ra45 (2014).

    PubMed  Google Scholar 

  77. Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004).

    PubMed  Google Scholar 

  78. Mehta, H. B., Mehta, V. & Goodwin, J. S. Association of hypoglycemia with subsequent dementia in older patients with type 2 diabetes mellitus. J. Gerontol. A Biol. Sci. Med. Sci. 72, 1110–1116 (2017).

    PubMed  Google Scholar 

  79. Kobayashi, T. et al. Patients with antithyroid antibodies are prone to develop destructive thyroiditis by nivolumab: a prospective study. J. Endocr. Soc. 2, 241–251 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. Yoest, J. M. Clinical features, predictive correlates, and pathophysiology of immune-related adverse events in immune checkpoint inhibitor treatments in cancer: a short review. Immunotargets Ther. 6, 73–82 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Cooling, L. L., Sherbeck, J., Mowers, J. C. & Hugan, S. L. Development of red blood cell autoantibodies following treatment with checkpoint inhibitors: a new class of anti-neoplastic, immunotherapeutic agents associated with immune dysregulation. Immunohematology 33, 15–21 (2017).

    PubMed  Google Scholar 

  82. Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Laubli, H. et al. The T cell repertoire in tumors overlaps with pulmonary inflammatory lesions in patients treated with checkpoint inhibitors. Oncoimmunology 7, e1386362 (2018).

    PubMed  Google Scholar 

  84. Menzies, A. M. et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. 28, 368–376 (2017).

    CAS  PubMed  Google Scholar 

  85. Johnson, D. B. et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2, 234–240 (2016).

    PubMed  Google Scholar 

  86. Johnson, D. B., Sullivan, R. J. & Menzies, A. M. Immune checkpoint inhibitors in challenging populations. Cancer 123, 1904–1911 (2017).

    PubMed  Google Scholar 

  87. Abdel-Wahab, N., Alshawa, A. & Suarez-Almazor, M. E. Adverse events in cancer immunotherapy. Adv. Exp. Med. Biol. 995, 155–174 (2017).

    CAS  PubMed  Google Scholar 

  88. Danlos, F. X. et al. Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur. J. Cancer 91, 21–29 (2018).

    CAS  PubMed  Google Scholar 

  89. Attia, P. et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J. Clin. Oncol. 23, 6043–6053 (2005).

    CAS  PubMed  Google Scholar 

  90. Martini, D. J. et al. Durable clinical benefit in metastatic renal cell carcinoma patients who discontinue PD-1/PD-L1 therapy for immune-related adverse events. Cancer Immunol. Res. 6, 402–408 (2018).

    CAS  PubMed  Google Scholar 

  91. Tetzlaff, M. T. et al. Granulomatous/sarcoid-like lesions associated with checkpoint inhibitors: a marker of therapy response in a subset of melanoma patients. J. Immunother. Cancer 6, 14 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Schadendorf, D. et al. Efficacy and safety outcomes in patients with advanced melanoma who discontinued treatment with nivolumab and ipilimumab because of adverse events: a pooled analysis of randomized phase II and III trials. J. Clin. Oncol. 35, 3807–3814 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Cappelli, L. C. et al. Clinical presentation of immune checkpoint inhibitor-induced inflammatory arthritis differs by immunotherapy regimen. Semin. Arthritis Rheum. https://doi.org/10.1016/j.semarthrit.2018.02.011 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Das, R. et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Invest. 128, 715–720 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Da Gama Duarte, J. et al. Autoantibodies may predict immune-related toxicity: results from a phase I study of intralesional bacillus calmette-guerin followed by ipilimumab in patients with advanced metastatic melanoma. Front. Immunol. 9, 411 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Gowen, M. F. et al. Baseline antibody profiles predict toxicity in melanoma patients treated with immune checkpoint inhibitors. J. Transl. Med. 16, 82 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Baksh, K. & Weber, J. Immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Semin. Oncol. 42, 363–377 (2015).

    CAS  PubMed  Google Scholar 

  98. Burugu, S., Dancsok, A. R. & Nielsen, T. O. Emerging targets in cancer immunotherapy. Semin. Cancer Biol. https://doi.org/10.1016/j.semcancer.2017.10.001 (2017).

    Article  PubMed  Google Scholar 

  99. Gay, F. et al. Immuno-oncologic approaches: CAR-T cells and checkpoint inhibitors. Clin. Lymphoma Myeloma Leuk. 17, 471–478 (2017).

    PubMed  Google Scholar 

  100. Ott, P. A., Hodi, F. S., Kaufman, H. L., Wigginton, J. M. & Wolchok, J. D. Combination immunotherapy: a road map. J. Immunother. Cancer 5, 16 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Calabrese, L. & Mariette, X. The evolving role of the rheumatologist in the management of immune-related adverse events (irAEs) caused by cancer immunotherapy. Ann. Rheum. Dis. 77, 162–164 (2018).

    PubMed  Google Scholar 

  102. Cappelli, L., Calabrese, C., Calabrese, L., Bingham, C. O. 3rd Immunotherapy-induced rheumatic disease: how prepared are rheumatologists to address this emerging condition (Poster)? Arthritis Rheumatol. 69 (2017).

  103. Ribas, A. Releasing the brakes on cancer immunotherapy. N. Engl. J. Med. 373, 1490–1492 (2015).

    PubMed  Google Scholar 

  104. Boussiotis, V. A. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N. Engl. J. Med. 375, 1767–1778 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Karunarathne, D. S. et al. Programmed death-1 ligand 2-mediated regulation of the PD-L1 to PD-1 axis is essential for establishing CD4(+) T cell immunity. Immunity 45, 333–345 (2016).

    CAS  PubMed  Google Scholar 

  106. Bardhan, K., Anagnostou, T. & Boussiotis, V. A. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front. Immunol. 7, 550 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. Spain, L., Diem, S. & Larkin, J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat. Rev. 44, 51–60 (2016).

    CAS  PubMed  Google Scholar 

  108. Shiuan, E. et al. Thrombocytopenia in patients with melanoma receiving immune checkpoint inhibitor therapy. J. Immunother. Cancer 5, 8 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. Horvat, T. Z. et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 33, 3193–3198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. US Food & Drug Administration. Hematology/Oncology (Cancer) Approvals & Safety Notifications. US Department of Health and Human Services https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm (updated 8 Aug 2018).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the article and contributed to reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Leonard H. Calabrese.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Immune-related adverse events

(irAEs). A term now used commonly to describe the range of toxic effects in one or more organs after exposure to checkpoint inhibitors.

Antimetabolites

Chemicals that inhibit the function of a metabolite, for example, the DMARDs methotrexate or azathioprine.

Amaurosis fugax

A temporary loss of vision in one eye or both eyes owing to lack of blood flow to the retina.

Parotitis

Inflammation of the parotid salivary glands.

Eosinophilic fasciitis

A rare scleroderma-like disorder that involves inflammation, thickening and tethering of the skin and underlying fascia.

Hypophysitis

A general term used to describe inflammation of the pituitary gland. Before checkpoint inhibitor therapy, hypophysitis was exceedingly rare in medical practice, but it is now one of the most well described and common immune-related adverse events, especially with anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA4) therapy.

Cross presentation

In immunology, this term refers to the capacity of professional antigen-presenting cells to take up antigens of extracellular origin and present these in the context of MHC class I molecules to cytotoxic CD8+ T cells. This phenomenon is believed to occur in the tumour microenvironment when tumour cells and nearby host cells of non-cancerous origin are destroyed, and might be important in the pathogenesis of off-target autoimmune responses mediated by T cells.

Sialagogues

Drugs that cause salivation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calabrese, L.H., Calabrese, C. & Cappelli, L.C. Rheumatic immune-related adverse events from cancer immunotherapy. Nat Rev Rheumatol 14, 569–579 (2018). https://doi.org/10.1038/s41584-018-0074-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0074-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing