Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Axial disease in psoriatic arthritis and ankylosing spondylitis: a critical comparison

Abstract

Ankylosing spondylitis (AS) was first identified in the late 17th century. 250 years later, inflammatory spine disease was recognized to be one of the patterns of psoriatic arthritis (PsA). Isolated spondylitis is rare among patients with PsA, occurring in less than 5% of patients; however, many patients with PsA have axial disease that is concurrent with peripheral arthritis. At the other end of the spondyloarthritis spectrum, psoriasis is observed in 10% of patients with AS. Although axial involvement in PsA can be indistinguishable from axial disease in AS, it can also differ in several respects, raising the question of whether axial PsA and AS (with or without psoriasis) are different clinical presentations of the same disease, or whether they are separate diseases that have overlapping features. In this Review, the clinical presentation, metrology, radiographic characteristics, genetic factors, treatment options and axial prognosis of the two diseases are addressed. The aim of this Review is to capture all available comparisons made to date, to highlight the similarities and differences between AS and axial PsA and to propose a research agenda.

Key points

  • Ankylosing spondylitis and axial psoriatic arthritis are both part of the spectrum of spondyloarthritis and have overlapping features but also differ in their genetic, clinical, radiographic and prognostic characteristics.

  • HLA-B*27 occurs less frequently in axial psoriatic arthritis than in ankylosing spondylitis but is a genetic risk factor for both diseases.

  • Axial psoriatic arthritis develops at an older age, is less symptomatic and is associated with distinct radiographic features compared with ankylosing spondylitis.

  • The majority of comparative studies to date have had a cross-sectional design, which captures patients at different stages of disease and hampers the true comparison of these two diseases.

  • The lack of a universally accepted definition of axial psoriatic arthritis needs to be addressed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Genetic overlap between psoriatic arthritis and ankylosing spondylitis.

References

  1. 1.

    Rudwaleit, M. et al. The assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 70, 25–31 (2011).

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    van der Linden, S. M., Valkenburg, H. A., de Jongh, B. M. & Cats, A. The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population. Arthritis Rheum. 27, 241–249 (1984).

    PubMed  Article  Google Scholar 

  3. 3.

    Taurog, J. D., Chhabra, A. & Colbert, R. A. Ankylosing spondylitis and axial spondyloarthritis. N. Engl. J. Med. 374, 2563–2574 (2016).

    PubMed  Article  Google Scholar 

  4. 4.

    Moll, J. M. & Wright, V. Psoriatic arthritis. Semin. Arthritis Rheum. 3, 55–78 (1973).

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Ritchlin, C. T. et al. Treatment recommendations for psoriatic arthritis. Ann. Rheum. Dis. 68, 1387–1394 (2009).

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Taylor, W. J., Zmierczak, H. G. & Helliwell, P. S. Problems with the definition of axial and peripheral disease patterns in psoriatic arthritis. J. Rheumatol. 32, 974–977 (2005).

    PubMed  Google Scholar 

  7. 7.

    Gladman, D. D. Axial disease in psoriatic arthritis. Curr. Rheumatol. Rep. 9, 455–460 (2007).

    PubMed  Article  Google Scholar 

  8. 8.

    Chandran, V., Tolusso, D. C., Cook, R. J. & Gladman, D. D. Risk factors for axial inflammatory arthritis in patients with psoriatic arthritis. J. Rheumatol. 37, 809–815 (2010).

    PubMed  Article  Google Scholar 

  9. 9.

    Baraliakos, X., Coates, L. C. & Braun, J. The involvement of the spine in psoriatic arthritis. Clin. Exp. Rheumatol. 33, S31–35 (2015).

    PubMed  Google Scholar 

  10. 10.

    Torre Alonso, J. C. et al. Psoriatic arthritis (PA): a clinical, immunological and radiological study of 180 patients. Br. J. Rheumatol. 30, 245–250 (1991).

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Yang, Q. et al. Prevalence and characteristics of psoriatic arthritis in Chinese patients with psoriasis. J. Eur. Acad. Dermatol. Venereol. 25, 1409–1414 (2011).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Moghaddassi, M., Shahram, F., Chams-Davatchi, C., Najafizadeh, S. R. & Davatchi, F. Different aspects of psoriasis: analysis of 150 Iranian patients. Arch. Iran. Med. 12, 279–283 (2009).

    PubMed  Google Scholar 

  13. 13.

    Coates, L. C. et al. Sensitivity and specificity of the classification of psoriatic arthritis criteria in early psoriatic arthritis. Arthritis Rheum. 64, 3150–3155 (2012).

    PubMed  Article  Google Scholar 

  14. 14.

    Niccoli, L. et al. Frequency of iridocyclitis in patients with early psoriatic arthritis: a prospective, follow up study. Int. J. Rheum. Dis. 15, 414–418 (2012).

    PubMed  Article  Google Scholar 

  15. 15.

    Nossent, J. C. & Gran, J. T. Epidemiological and clinical characteristics of psoriatic arthritis in northern Norway. Scand. J. Rheumatol. 38, 251–255 (2009).

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    van der Linden, S., Valkenburg, H. A. & Cats, A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 27, 361–368 (1984).

    PubMed  Article  Google Scholar 

  17. 17.

    Chandran, V., Barrett, J., Schentag, C. T., Farewell, V. T. & Gladman, D. D. Axial psoriatic arthritis: update on a longterm prospective study. J. Rheumatol. 36, 2744–2750 (2009).

    PubMed  Article  Google Scholar 

  18. 18.

    Hanly, J. G., Russell, M. L. & Gladman, D. D. Psoriatic spondyloarthropathy: a long term prospective study. Ann. Rheum. Dis. 47, 386–393 (1988).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Queiro, R. et al. Clinically asymptomatic axial disease in psoriatic spondyloarthropathy. A retrospective study. Clin. Rheumatol. 21, 10–13 (2002).

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Gladman, D. D., Brubacher, B., Buskila, D., Langevitz, P. & Farewell, V. T. Differences in the expression of spondyloarthropathy: a comparison between ankylosing spondylitis and psoriatic arthritis. Clin. Invest. Med. 16, 1–7 (1993).

    PubMed  CAS  Google Scholar 

  21. 21.

    Lubrano, E. et al. The definition and measurement of axial psoriatic arthritis. J. Rheumatol. Suppl. 93, 40–42 (2015).

    PubMed  Article  Google Scholar 

  22. 22.

    Lubrano, E. & Spadaro, A. Axial psoriatic arthritis: an intriguing clinical entity or a subset of an intriguing disease? Clin. Rheumatol. 31, 1027–1032 (2012).

    PubMed  Article  Google Scholar 

  23. 23.

    Jadon, D. R. et al. Axial disease in psoriatic arthritis study: defining the clinical and radiographic phenotype of psoriatic spondyloarthritis. Ann. Rheum. Dis. 76, 701–707 (2017).

    PubMed  Article  Google Scholar 

  24. 24.

    Exarchou, S. et al. The prevalence of clinically diagnosed ankylosing spondylitis and its clinical manifestations: a nationwide register study. Arthritis Res. Ther. 17, 118 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Cortes, A. et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    O’Rielly, D. D., Uddin, M. & Rahman, P. Ankylosing spondylitis: beyond genome-wide association studies. Curr. Opin. Rheumatol. 28, 337–345 (2016).

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Brown, M. A., Kenna, T. & Wordsworth, B. P. Genetics of ankylosing spondylitis — insights into pathogenesis. Nat. Rev. Rheumatol. 12, 81–91 (2016).

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Wordsworth, P. Genes in the spondyloarthropathies. Rheum. Dis. Clin. North Am. 24, 845–863 (1998).

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Uddin, M. et al. Integrated genomics identifies convergence of ankylosing spondylitis with global immune mediated disease pathways. Sci. Rep. 5, 10314 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Essers, I. et al. Characteristics associated with the presence and development of extra-articular manifestations in ankylosing spondylitis: 12-year results from OASIS. Rheumatology 54, 633–640 (2015).

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Machado, P. et al. Ankylosing spondylitis patients with and without psoriasis do not differ in disease phenotype. Ann. Rheum. Dis. 72, 1104–1107 (2013).

    PubMed  Article  Google Scholar 

  32. 32.

    Parkes, M., Cortes, A., van Heel, D. A. & Brown, M. A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Chandran, V. & Raychaudhuri, S. P. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J. Autoimmun. 34, J314–321 (2010).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Ritchlin, C. T., Colbert, R. A. & Gladman, D. D. Psoriatic Arthritis. N. Engl. J. Med. 376, 957–970 (2017).

    PubMed  Article  Google Scholar 

  35. 35.

    Ananthakrishnan, R., Eckes, L. & Walter, H. On the genetics of psoriasis. An analysis of Hellgren’s data for a model of multifactorial inheritance. Arch. Dermatol. Forsch. 247, 53–58 (1973).

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Brandrup, F., Holm, N., Grunnet, N., Henningsen, K. & Hansen, H. E. Psoriasis in monozygotic twins: variations in expression in individuals with identical genetic constitution. Acta Derm. Venereol. 62, 229–236 (1982).

    PubMed  CAS  Google Scholar 

  37. 37.

    Lonnberg, A. S. et al. Heritability of psoriasis in a large twin sample. Br. J. Dermatol. 169, 412–416 (2013).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Myers, A., Kay, L. J., Lynch, S. A. & Walker, D. J. Recurrence risk for psoriasis and psoriatic arthritis within sibships. Rheumatology 44, 773–776 (2005).

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Chandran, V. et al. Familial aggregation of psoriatic arthritis. Ann. Rheum. Dis. 68, 664–667 (2009).

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Karason, A., Love, T. J. & Gudbjornsson, B. A strong heritability of psoriatic arthritis over four generations — the Reykjavik Psoriatic Arthritis Study. Rheumatology 48, 1424–1428 (2009).

    PubMed  Article  Google Scholar 

  41. 41.

    Winchester, R. et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 64, 1134–1144 (2012).

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Eder, L., Chandran, V. & Gladman, D. D. What have we learned about genetic susceptibility in psoriasis and psoriatic arthritis? Curr. Opin. Rheumatol. 27, 91–98 (2015).

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Chandran, V. et al. Human leukocyte antigen alleles and susceptibility to psoriatic arthritis. Hum. Immunol. 74, 1333–1338 (2013).

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Eder, L. et al. Human leucocyte antigen risk alleles for psoriatic arthritis among patients with psoriasis. Ann. Rheum. Dis. 71, 50–55 (2012).

    PubMed  Article  Google Scholar 

  45. 45.

    Queiro, R. et al. HLA-C locus alleles may modulate the clinical expression of psoriatic arthritis. Arthritis Res. Ther. 8, R185 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    FitzGerald, O., Haroon, M., Giles, J. T. & Winchester, R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res. Ther. 17, 115 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Tang, H. et al. A large-scale screen for coding variants predisposing to psoriasis. Nat. Genet. 46, 45–50 (2014).

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Ellinghaus, E. et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat. Genet. 42, 991–995 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80, 273–290 (2007).

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Liu, Y. et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 4, e1000041 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    Huffmeier, U. et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat. Genet. 42, 996–999 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Ellinghaus, E. et al. Genome-wide meta-analysis of psoriatic arthritis identifies susceptibility locus at REL. J. Invest. Dermatol. 132, 1133–1140 (2012).

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Stuart, P. E. et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am. J. Hum. Genet. 97, 816–836 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Lanier, L. L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Chandran, V. et al. Killer-cell immunoglobulin-like receptor gene polymorphisms and susceptibility to psoriatic arthritis. Rheumatology 53, 233–239 (2014).

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Weisman, M. H., Witter, J. P. & Reveille, J. D. The prevalence of inflammatory back pain: population-based estimates from the US National Health and Nutrition Examination Survey, 2009–2010. Ann. Rheum. Dis. 72, 369–373 (2013).

    PubMed  Article  Google Scholar 

  57. 57.

    Mease, P. J., Garg, A., Helliwell, P. S., Park, J. J. & Gladman, D. D. Development of criteria to distinguish inflammatory from noninflammatory arthritis, enthesitis, dactylitis, and spondylitis: a report from the GRAPPA 2013 annual meeting. J. Rheumatol. 41, 1249–1251 (2014).

    PubMed  Article  Google Scholar 

  58. 58.

    Queiro, R. et al. Clinical expression, but not disease outcome, may vary according to age at disease onset in psoriatic spondylitis. Joint Bone Spine 75, 544–547 (2008).

    PubMed  Article  Google Scholar 

  59. 59.

    Helliwell, P. S., Hickling, P. & Wright, V. Do the radiological changes of classic ankylosing spondylitis differ from the changes found in the spondylitis associated with inflammatory bowel disease, psoriasis, and reactive arthritis? Ann. Rheum. Dis. 57, 135–140 (1998).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Lindstrom, U. et al. Back pain and health status in patients with clinically diagnosed ankylosing spondylitis, psoriatic arthritis and other spondyloarthritis: a cross-sectional population-based study. BMC Musculoskelet. Disord. 17, 106 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Perez Alamino, R. et al. Differential features between primary ankylosing spondylitis and spondylitis associated with psoriasis and inflammatory bowel disease. J. Rheumatol. 38, 1656–1660 (2011).

    PubMed  Article  Google Scholar 

  62. 62.

    Gladman, D. D., Brubacher, B., Buskila, D., Langevitz, P. & Farewell, V. T. Psoriatic spondyloarthropathy in men and women: a clinical, radiographic, and HLA study. Clin. Invest. Med. 15, 371–375 (1992).

    PubMed  CAS  Google Scholar 

  63. 63.

    Landi, M. et al. Gender differences among patients with primary ankylosing spondylitis and spondylitis associated with psoriasis and inflammatory bowel disease in an iberoamerican spondyloarthritis cohort. Medicine 95, e5652 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64.

    Gladman, D. D. et al. International spondyloarthritis interobserver reliability exercise — the INSPIRE study: I. Assessment of spinal measures. J. Rheumatol. 34, 1733–1739 (2007).

    PubMed  Google Scholar 

  65. 65.

    Helliwell, P. S. Assessment of disease activity in psoriatic arthritis. Clin. Exp. Rheumatol. 33, S44–S47 (2015).

    PubMed  Google Scholar 

  66. 66.

    Taylor, W. J. & Harrison, A. A. Could the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) be a valid measure of disease activity in patients with psoriatic arthritis? Arthritis Rheum. 51, 311–315 (2004).

    PubMed  Article  Google Scholar 

  67. 67.

    Fernandez-Sueiro, J. L. et al. Validity of the Bath Ankylosing Spondylitis Disease Activity Index for the evaluation of disease activity in axial psoriatic arthritis. Arthritis Care Res. 62, 78–85 (2010).

    Article  Google Scholar 

  68. 68.

    Orbai, A. M. et al. International patient and physician consensus on a psoriatic arthritis core outcome set for clinical trials. Ann. Rheum. Dis. 76, 673–680 (2017).

    PubMed  Article  Google Scholar 

  69. 69.

    Eder, L., Chandran, V., Shen, H., Cook, R. J. & Gladman, D. D. Is ASDAS better than BASDAI as a measure of disease activity in axial psoriatic arthritis? Ann. Rheum. Dis. 69, 2160–2164 (2010).

    PubMed  Article  Google Scholar 

  70. 70.

    Turkiewicz, A. M. & Moreland, L. W. Psoriatic arthritis: current concepts on pathogenesis-oriented therapeutic options. Arthritis Rheum. 56, 1051–1066 (2007).

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    MacKay, K., Mack, C., Brophy, S. & Calin, A. The Bath Ankylosing Spondylitis Radiology Index (BASRI): a new, validated approach to disease assessment. Arthritis Rheum. 41, 2263–2270 (1998).

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Averns, H. L. et al. Radiological outcome in ankylosing spondylitis: use of the Stoke Ankylosing Spondylitis Spine Score (SASSS). Br. J. Rheumatol. 35, 373–376 (1996).

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Creemers, M. C. et al. Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann. Rheum. Dis. 64, 127–129 (2005).

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Lubrano, E. et al. Psoriatic Arthritis Spondylitis Radiology Index: a modified index for radiologic assessment of axial involvement in psoriatic arthritis. J. Rheumatol. 36, 1006–1011 (2009).

    PubMed  Article  Google Scholar 

  75. 75.

    Baraliakos, X., Listing, J., Rudwaleit, M., Sieper, J. & Braun, J. Development of a radiographic scoring tool for ankylosing spondylitis only based on bone formation: addition of the thoracic spine improves sensitivity to change. Arthritis Rheum. 61, 764–771 (2009).

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Biagioni, B. J. et al. Reliability of radiographic scoring methods in axial psoriatic arthritis. Arthritis Care Res. 66, 1417–1422 (2014).

    Article  Google Scholar 

  77. 77.

    Lubrano, E. et al. The radiological assessment of axial involvement in psoriatic arthritis: a validation study of the BASRI total and the modified SASSS scoring methods. Clin. Exp. Rheumatol. 27, 977–980 (2009).

    PubMed  CAS  Google Scholar 

  78. 78.

    Rudwaleit, M. et al. The development of Assessment of SpondyloArthritis International Society classification criteria for axial spondyloarthritis (part I): classification of paper patients by expert opinion including uncertainty appraisal. Ann. Rheum. Dis. 68, 770–776 (2009).

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Rudwaleit, M. et al. The development of Assessment of SpondyloArthritis International Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann. Rheum. Dis. 68, 777–783 (2009).

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Richette, P. et al. Psoriasis and phenotype of patients with early inflammatory back pain. Ann. Rheum. Dis. 72, 566–571 (2013).

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Poggenborg, R. P., Sorensen, I. J., Pedersen, S. J. & Ostergaard, M. Magnetic resonance imaging for diagnosing, monitoring and prognostication in psoriatic arthritis. Clin. Exp. Rheumatol. 33, S66–S69 (2015).

    PubMed  Google Scholar 

  82. 82.

    Williamson, L. et al. Clinical assessment of sacroiliitis and HLA-B27 are poor predictors of sacroiliitis diagnosed by magnetic resonance imaging in psoriatic arthritis. Rheumatology 43, 85–88 (2004).

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Ostergaard, M., Poggenborg, R. P., Axelsen, M. B. & Pedersen, S. J. Magnetic resonance imaging in spondyloarthritis — how to quantify findings and measure response. Best Pract. Res. Clin. Rheumatol. 24, 637–657 (2010).

    PubMed  Article  Google Scholar 

  84. 84.

    Maldonado-Ficco, H., Sheane, B. J., Thavaneswaran, A., Chandran, V. & Gladman, D. D. Magnetic resonance imaging in psoriatic arthritis: a descriptive study of indications, features and effect on treatment change. J. Clin. Rheumatol. 23, 243–245 (2017).

    PubMed  Article  Google Scholar 

  85. 85.

    Queiro, R., Tejon, P., Alonso, S., Alperi, M. & Ballina, J. Erosive discovertebral lesion (Andersson lesion) as the first sign of disease in axial psoriatic arthritis. Scand. J. Rheumatol. 42, 220–225 (2013).

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Castillo-Gallego, C., Aydin, S. Z., Emery, P., McGonagle, D. G. & Marzo-Ortega, H. Magnetic resonance imaging assessment of axial psoriatic arthritis: extent of disease relates to HLA-B27. Arthritis Rheum. 65, 2274–2278 (2013).

    PubMed  Article  Google Scholar 

  87. 87.

    Poggenborg, R. P. et al. Head-to-toe whole-body MRI in psoriatic arthritis, axial spondyloarthritis and healthy subjects: first steps towards global inflammation and damage scores of peripheral and axial joints. Rheumatology 54, 1039–1049 (2015).

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Braun, J. et al. 2010 update of the ASAS/EULAR recommendations for the management of ankylosing spondylitis. Ann. Rheum. Dis. 70, 896–904 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89.

    Rohekar, S. et al. 2014 update of the Canadian Rheumatology Association/Spondyloarthritis Research Consortium of Canada treatment recommendations for the management of spondyloarthritis. Part I: principles of the management of spondyloarthritis in Canada. J. Rheumatol. 42, 654–664 (2015).

    PubMed  Article  Google Scholar 

  90. 90.

    Ward, M. M. et al. American College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research and Treatment Network 2015 recommendations for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis. Arthritis Care Res. 68, 151–166 (2016).

    Article  Google Scholar 

  91. 91.

    Sieper, J. et al. Secukinumab efficacy in anti-TNF-naive and anti-TNF-experienced subjects with active ankylosing spondylitis: results from the MEASURE 2 Study. Ann. Rheum. Dis. 76, 571–592 (2017).

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Mease, P. J. et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N. Engl. J. Med. 373, 1329–1339 (2015).

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Strand, V. et al. Secukinumab improves patient-reported outcomes in subjects with active psoriatic arthritis: results from a randomised phase III trial (FUTURE 1). Ann. Rheum. Dis. 76, 203–207 (2017).

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Mease, P. & McInnes, I. B. Secukinumab: a new treatment option for psoriatic arthritis. Rheumatol. Ther. 3, 5–29 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02721966 (2017).

  96. 96.

    Poddubnyy, D., Hermann, K. G., Callhoff, J., Listing, J. & Sieper, J. Ustekinumab for the treatment of patients with active ankylosing spondylitis: results of a 28-week, prospective, open-label, proof-of-concept study (TOPAS). Ann. Rheum. Dis. 73, 817–823 (2014).

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Yeremenko, N., Paramarta, J. E. & Baeten, D. The interleukin-23/interleukin-17 immune axis as a promising new target in the treatment of spondyloarthritis. Curr. Opin. Rheumatol. 26, 361–370 (2014).

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Baeten, D. et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N. Engl. J. Med. 373, 2534–2548 (2015).

    PubMed  Article  CAS  Google Scholar 

  99. 99.

    Pathan, E. et al. Efficacy and safety of apremilast, an oral phosphodiesterase 4 inhibitor, in ankylosing spondylitis. Ann. Rheum. Dis. 72, 1475–1480 (2013).

    PubMed  Article  CAS  Google Scholar 

  100. 100.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01583374 (2018).

  101. 101.

    van der Heijde, D. et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann. Rheum. Dis. 76, 1340–1347 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Coates, L. C. et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis 2015 treatment recommendations for psoriatic arthritis. Arthritis Rheumatol. 68, 1060–1071 (2016).

    PubMed  Google Scholar 

  103. 103.

    Gossec, L. et al. European League Against Rheumatism (EULAR) recommendations for the management of psoriatic arthritis with pharmacological therapies: 2015 update. Ann. Rheum. Dis. 75, 499–510 (2016).

    PubMed  Article  CAS  Google Scholar 

  104. 104.

    Nash, P. et al. Updated guidelines for the management of axial disease in psoriatic arthritis. J. Rheumatol. 41, 2286–2289 (2014).

    PubMed  Article  Google Scholar 

  105. 105.

    Mease, P. J. et al. Etanercept treatment of psoriatic arthritis: safety, efficacy, and effect on disease progression. Arthritis Rheum. 50, 2264–2272 (2004).

    PubMed  Article  CAS  Google Scholar 

  106. 106.

    Mease, P. J. et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 52, 3279–3289 (2005).

    PubMed  Article  CAS  Google Scholar 

  107. 107.

    Mease, P. J. et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N. Engl. J. Med. 370, 2295–2306 (2014).

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Antoni, C. E. et al. Sustained benefits of infliximab therapy for dermatologic and articular manifestations of psoriatic arthritis: results from the infliximab multinational psoriatic arthritis controlled trial (IMPACT). Arthritis Rheum. 52, 1227–1236 (2005).

    PubMed  Article  CAS  Google Scholar 

  109. 109.

    Kavanaugh, A. et al. Clinical efficacy, radiographic and safety findings through 5 years of subcutaneous golimumab treatment in patients with active psoriatic arthritis: results from a long-term extension of a randomised, placebo-controlled trial (the GO-REVEAL study). Ann. Rheum. Dis. 73, 1689–1694 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  110. 110.

    Kavanaugh, A. et al. Radiographic progression of patients with psoriatic arthritis who achieve minimal disease activity in response to golimumab therapy: results through 5 years of a randomized, placebo-controlled study. Arthritis Care Res. 68, 267–274 (2016).

    Article  CAS  Google Scholar 

  111. 111.

    Gladman, D. D. et al. Adalimumab for long-term treatment of psoriatic arthritis: forty-eight week data from the adalimumab effectiveness in psoriatic arthritis trial. Arthritis Rheum. 56, 476–488 (2007).

    PubMed  Article  CAS  Google Scholar 

  112. 112.

    McInnes, I. B. et al. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann. Rheum. Dis. 73, 349–356 (2014).

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Lubrano, E., Parsons, W. J. & Perrotta, F. M. Assessment of response to treatment, remission, and minimal disease activity in axial psoriatic arthritis treated with tumor necrosis factor inhibitors. J. Rheumatol. 43, 918–923 (2016).

    PubMed  Article  CAS  Google Scholar 

  114. 114.

    Lubrano, E. et al. The effectiveness of a biologic agent on axial manifestations of psoriatic arthritis. A twelve months observational study in a group of patients treated with etanercept. Clin. Exp. Rheumatol. 29, 80–84 (2011).

    PubMed  Google Scholar 

  115. 115.

    Maharaj, A. B. & Chandran, V. Treatment of psoriatic arthritis with traditional DMARD’s and novel therapies: approaches and recommendations. Expert Rev. Clin. Immunol. 13, 319–331 (2017).

    PubMed  Article  CAS  Google Scholar 

  116. 116.

    Raychaudhuri, S. P., Wilken, R., Sukhov, A. C., Raychaudhuri, S. K. & Maverakis, E. Management of psoriatic arthritis: early diagnosis, monitoring of disease severity and cutting edge therapies. J. Autoimmun. 76, 21–37 (2017).

    PubMed  Article  Google Scholar 

  117. 117.

    Gladman, D. et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N. Engl. J. Med. 377, 1525–1536 (2017).

    PubMed  Article  CAS  Google Scholar 

  118. 118.

    Carette, S., Graham, D., Little, H., Rubenstein, J. & Rosen, P. The natural disease course of ankylosing spondylitis. Arthritis Rheum. 26, 186–190 (1983).

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Kaprove, R. E., Little, A. H., Graham, D. C. & Rosen, P. S. Ankylosing spondylitis: survival in men with and without radiotherapy. Arthritis Rheum. 23, 57–61 (1980).

    PubMed  Article  CAS  Google Scholar 

  120. 120.

    Machado, P. et al. Both structural damage and inflammation of the spine contribute to impairment of spinal mobility in patients with ankylosing spondylitis. Ann. Rheum. Dis. 69, 1465–1470 (2010).

    PubMed  Article  Google Scholar 

  121. 121.

    Poddubnyy, D. & Sieper, J. Radiographic progression in ankylosing spondylitis/axial spondyloarthritis: how fast and how clinically meaningful? Curr. Opin. Rheumatol. 24, 363–369 (2012).

    PubMed  Article  Google Scholar 

  122. 122.

    van der Heijde, D. et al. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum. 58, 3063–3070 (2008).

    PubMed  Article  Google Scholar 

  123. 123.

    van der Heijde, D. et al. Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum. 58, 1324–1331 (2008).

    PubMed  Article  CAS  Google Scholar 

  124. 124.

    van der Heijde, D. et al. Adalimumab effectiveness for the treatment of ankylosing spondylitis is maintained for up to 2 years: long-term results from the ATLAS trial. Ann. Rheum. Dis. 68, 922–929 (2009).

    PubMed  Article  CAS  Google Scholar 

  125. 125.

    Haroon, N. et al. The impact of tumor necrosis factor alpha inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum. 65, 2645–2654 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  126. 126.

    Molnar, C. et al. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort. Ann. Rheum. Dis. 77, 63–69 (2018).

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the role of the Krembil Foundation in financially supporting the Psoriatic Arthritis Research Program at the University of Toronto. The work of J.F. was supported financially by a fellowship grant from Novartis.

Author information

Affiliations

Authors

Contributions

All authors researched data for the article, provided substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Dafna Gladman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feld, J., Chandran, V., Haroon, N. et al. Axial disease in psoriatic arthritis and ankylosing spondylitis: a critical comparison. Nat Rev Rheumatol 14, 363–371 (2018). https://doi.org/10.1038/s41584-018-0006-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing