Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes

Abstract

Mitochondria and mitochondrial DNA (mtDNA) variation are now recognized as important factors in the development of osteoarthritis (OA). Mitochondria are the energy powerhouses of the cell, and also regulate different processes involved in the pathogenesis of OA including inflammation, apoptosis, calcium metabolism and the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Mitochondria contain their own genetic material, mtDNA, which evolved through the sequential accumulation of mtDNA variants to enable humans to adapt to different climates. The ROS and reactive metabolic intermediates that are by-products of mitochondrial metabolism are regulated in part by mtDNA and are among the signals that transmit information between mitochondria and the nucleus. These signals can alter nuclear gene expression and, when disrupted, affect a number of cellular processes and metabolic pathways, leading to disease. mtDNA variation influences OA-associated phenotypes, including those related to metabolism, inflammation and even ageing, as well as nuclear epigenetic regulation. This influence also enables the use of specific mtDNA haplogroups as complementary diagnostic and prognostic biomarkers of OA.

Key points

  • Both mitochondrial dysfunction and variation in mitochondrial DNA (mtDNA) contribute to cartilage degeneration and are implicated in the pathogenesis of osteoarthritis (OA).

  • mtDNA influences the interactions between the nucleus and mitochondria through intracellular signalling pathways, such as production of reactive oxygen species (ROS) and reactive metabolic intermediates from mitochondrial metabolism.

  • Mitochondria have regulatory roles in OA pathogenesis including bioenergetics metabolism, inflammatory responses, apoptosis, ageing-related responses, ROS production and calcium metabolism.

  • mtDNA variation, through individual groups of mtDNA characterized by particular mtDNA polymorphisms (mtDNA haplogroups) modulates critical cell functions including ATP production, oxygen consumption, generation of ROS and mitochondrial and nuclear gene expression.

  • mtDNA haplogroups are associated with the prevalence, incidence and progression of knee OA in various populations, and with comorbidities closely related to various OA phenotypes.

  • mtDNA variation affects the development of OA phenotypes and contributes to the low-grade chronic inflammation and other molecular processes underlying these phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The connection between mitochondrial genetics and the pathogenesis of OA.
Fig. 2: Models to study the effects of mtDNA variation.
Fig. 3: Mitochondrial function influences OA phenotypes.

Similar content being viewed by others

References

  1. Blanco, F. J., Rego, I. & Ruiz-Romero, C. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol. 7, 161–169 (2011).

    Article  PubMed  CAS  Google Scholar 

  2. Kraus, V. B., Blanco, F. J., Englund, M., Karsdal, M. A. & Lohmander, L. S. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartilage 23, 1233–1241 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sellam, J. & Berenbaum, F. Is osteoarthritis a metabolic disease? Joint Bone Spine 80, 568–573 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Blanco, F. J. & Rego-Pérez, I. Editorial: is it time for epigenetics in osteoarthritis? Arthritis Rheumatol. 66, 2324–2327 (2014).

    Article  PubMed  CAS  Google Scholar 

  5. Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 21, 16–21 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Mobasheri, A. & Batt, M. An update on the pathophysiology of osteoarthritis. Ann. Phys. Rehabil. Med. 59, 333–339 (2016).

    Article  PubMed  Google Scholar 

  7. Minafra, L. et al. Genetic, clinical and radiographic signs in knee osteoarthritis susceptibility. Arthritis Res. Ther. 16, R91 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wang, Y., Zhao, X., Lotz, M., Terkeltaub, R. & Liu-Bryan, R. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol. 67, 2141–2153 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Henze, K. & Martin, W. Evolutionary biology: essence of mitochondria. Nature 426, 127–128 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. Picard, M., Wallace, D. C. & Burelle, Y. The rise of mitochondria in medicine. Mitochondrion 30, 105–116 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Shadel, G. S. & Horvath, T. L. Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560–569 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wallace, D. C. & Fan, W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12–31 (2010).

    Article  PubMed  CAS  Google Scholar 

  13. Wallace, D. C. Maternal genes: mitochondrial diseases. Birth Defects Orig. Artic. Ser. 23, 137–190 (1987).

    PubMed  CAS  Google Scholar 

  14. Torroni, A. et al. Classification of European mtDNAs from an analysis of three European populations. Genetics 144, 1835–1850 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V. & Wallace, D. C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303, 223–226 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. Kwak, S. H. & Park, K. S. Role of mitochondrial DNA variation in the pathogenesis of diabetes mellitus. Front. Biosci. 21, 1151–1167 (2016).

    Article  CAS  Google Scholar 

  17. Hudson, G. et al. Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease. Neurology 80, 2042–2048 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. De Benedictis, G. et al. Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J. 13, 1532–1536 (1999).

    Article  PubMed  Google Scholar 

  19. Niemi, A. K. et al. Mitochondrial DNA polymorphisms associated with longevity in a Finnish population. Hum. Genet. 112, 29–33 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. Courtenay, M. D. et al. Mitochondrial haplogroup X is associated with successful aging in the Amish. Hum. Genet. 131, 201–208 (2012).

    Article  PubMed  Google Scholar 

  21. Wallace, D. C. Mitochondrial DNA variation in human radiation and disease. Cell 163, 33–38 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fang, H. et al. Role of mtDNA haplogroups in the prevalence of knee osteoarthritis in a southern Chinese population. Int. J. Mol. Sci. 15, 2646–2659 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Shen, J. M., Feng, L. & Feng, C. Role of mtDNA haplogroups in the prevalence of osteoarthritis in different geographic populations: a meta-analysis. PLoS ONE 9, e108896 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Soto-Hermida, A. et al. mtDNA haplogroups and osteoarthritis in different geographic populations. Mitochondrion 15, 18–23 (2014).

    Article  PubMed  CAS  Google Scholar 

  25. Fernández-Moreno, M. et al. A replication study and meta-analysis of mitochondrial DNA variants in the radiographic progression of knee osteoarthritis. Rheumatology 56, 263–270 (2017).

    Article  PubMed  Google Scholar 

  26. Fernández-Moreno, M. et al. Mitochondrial DNA haplogroups influence the risk of incident knee osteoarthritis in OAI and CHECK cohorts. A meta-analysis and functional study. Ann. Rheum. Dis. 76, 1114–1122 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Picard, M. et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc. Natl Acad. Sci. USA 112, E6614–E6623 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wallace, D. C. Genetics: Mitochondrial DNA in evolution and disease. Nature 535, 498–500 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Terkeltaub, R., Johnson, K., Murphy, A. & Ghosh, S. Invited review: the mitochondrion in osteoarthritis. Mitochondrion 1, 301–319 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. Lee, R. B. & Urban, J. P. Evidence for a negative Pasteur effect in articular cartilage. Biochem. J. 321, 95–102 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Maneiro, E. et al. Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes. Arthritis Rheum. 48, 700–708 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. Kim, H. A. & Blanco, F. J. Cell death and apoptosis in osteoarthritic cartilage. Curr. Drug Targets 8, 333–345 (2007).

    Article  PubMed  CAS  Google Scholar 

  33. Hwang, H. S. & Kim, H. A. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J. Mol. Sci. 16, 26035–26054 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Vaamonde-García, C. et al. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 64, 2927–2936 (2012).

    Article  PubMed  CAS  Google Scholar 

  35. Cillero-Pastor, B. et al. Mitochondrial dysfunction activates cyclooxygenase 2 expression in cultured normal human chondrocytes. Arthritis Rheum. 58, 2409–2419 (2008).

    Article  PubMed  CAS  Google Scholar 

  36. Cillero-Pastor, B., Rego-Perez, I., Oreiro, N., Fernandez-Lopez, C. & Blanco, F. J. Mitochondrial respiratory chain dysfunction modulates metalloproteases -1,-3 and -13 in human normal chondrocytes in culture. BMC Musculoskelet. Disord. 14, 235 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Collins, J. A. et al. Oxidative stress promotes peroxiredoxin hyperoxidation and attenuates pro-survival signaling in aging chondrocytes. J. Biol. Chem. 291, 6641–6654 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Blanco, F. J., Lopez-Armada, M. J. & Maneiro, E. Mitochondrial dysfunction in osteoarthritis. Mitochondrion 4, 715–728 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. Henrotin, Y. & Kurz, B. Antioxidant to treat osteoarthritis: dream or reality? Curr. Drug Targets 8, 347–357 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. Grishko, V. I., Ho, R., Wilson, G. L. & Pearsall, A. W. Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes. Osteoarthritis Cartilage 17, 107–113 (2009).

    Article  PubMed  CAS  Google Scholar 

  41. Farnaghi, S. et al. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis. FASEB J. 31, 356–367 (2017).

    Article  PubMed  CAS  Google Scholar 

  42. Lotz, M. & Loeser, R. F. Effects of aging on articular cartilage homeostasis. Bone 51, 241–248 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gavriilidis, C., Miwa, S., von Zglinicki, T., Taylor, R. W. & Young, D. A. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum. 65, 378–387 (2013).

    Article  PubMed  CAS  Google Scholar 

  44. Ruiz-Romero, C. et al. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol. Cell. Proteom. 8, 172–189 (2009).

    Article  CAS  Google Scholar 

  45. Scott, J. L. et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann. Rheum. Dis. 69, 1502–1510 (2010).

    Article  PubMed  CAS  Google Scholar 

  46. Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 1845–1846 (2013).

    Article  PubMed  CAS  Google Scholar 

  47. López de Figueroa, P., Lotz, M. K., Blanco, F. J. & Caramés, B. Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes. Arthritis Rheumatol. 67, 966–976 (2015).

    Article  PubMed  CAS  Google Scholar 

  48. Alvarez-Garcia, O. et al. Regulated in development and DNA damage response 1 deficiency impairs autophagy and mitochondrial biogenesis in articular cartilage and increases the severity of experimental osteoarthritis. Arthritis Rheumatol. 69, 1418–1428 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Mishmar, D. et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100, 171–176 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Martínez-Redondo, D. et al. Human mitochondrial haplogroup H: the highest VO2max consumer — is it a paradox? Mitochondrion 10, 102–107 (2010).

    Article  PubMed  CAS  Google Scholar 

  52. Pierron, D. et al. Mutation rate switch inside Eurasian mitochondrial haplogroups: impact of selection and consequences for dating settlement in Europe. PLoS ONE 6, e21543 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wallace, D. C., Brown, M. D. & Lott, M. T. Mitochondrial DNA variation in human evolution and disease. Gene 238, 211–230 (1999).

    Article  PubMed  CAS  Google Scholar 

  54. Chen, A., Raule, N., Chomyn, A. & Attardi, G. Decreased reactive oxygen species production in cells with mitochondrial haplogroups associated with longevity. PLoS ONE 7, e46473 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kenney, M. C. et al. Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration. PLoS ONE 8, e54339 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kenney, M. C. et al. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions. Hum. Mol. Genet. 23, 3537–3551 (2014).

    Article  PubMed  CAS  Google Scholar 

  57. Chang, M. C. et al. Accumulation of mitochondrial DNA with 4977-bp deletion in knee cartilage — an association with idiopathic osteoarthritis. Osteoarthritis Cartilage 13, 1004–1011 (2005).

    Article  PubMed  Google Scholar 

  58. Chomyn, A. Platelet-mediated transformation of human mitochondrial DNA-less cells. Methods Enzymol. 264, 334–339 (1996).

    Article  PubMed  CAS  Google Scholar 

  59. van Gisbergen, M. W. et al. How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutat. Res. Rev. Mutat. Res. 764, 16–30 (2015).

    Article  PubMed  CAS  Google Scholar 

  60. Weng, S. W. et al. Study of insulin resistance in cybrid cells harboring diabetes-susceptible and diabetes-protective mitochondrial haplogroups. Mitochondrion 13, 888–897 (2013).

    Article  PubMed  CAS  Google Scholar 

  61. Fang, H. et al. Mitochondrial DNA haplogroups modify the risk of osteoarthritis by altering mitochondrial function and intracellular mitochondrial signals. Biochim Biophys. Acta 1862, 829–836 (2016).

    Article  PubMed  CAS  Google Scholar 

  62. Roubertoux, P. L. et al. Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat. Genet. 35, 65–69 (2003).

    Article  PubMed  CAS  Google Scholar 

  63. Yu, X. et al. Dissecting the effects of mtDNA variations on complex traits using mouse conplastic strains. Genome Res. 19, 159–165 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).

    Article  PubMed  CAS  Google Scholar 

  65. Achilli, A. et al. Mitochondrial DNA backgrounds might modulate diabetes complications rather than T2DM as a whole. PLoS ONE 6, e21029 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Rego-Perez, I., Fernandez-Moreno, M., Fernandez-Lopez, C., Arenas, J. & Blanco, F. J. Mitochondrial DNA haplogroups: role in the prevalence and severity of knee osteoarthritis. Arthritis Rheum. 58, 2387–2396 (2008).

    Article  PubMed  CAS  Google Scholar 

  67. Rego, I. et al. Role of European mitochondrial DNA haplogroups in the prevalence of hip osteoarthritis in Galicia, Northern Spain. Ann. Rheum. Dis. 69, 210–213 (2010).

    Article  PubMed  CAS  Google Scholar 

  68. Hudson, G. et al. No evidence of an association between mitochondrial DNA variants and osteoarthritis in 7393 cases and 5122 controls. Ann. Rheum. Dis. 72, 136–139 (2013).

    Article  PubMed  Google Scholar 

  69. Hannan, M. T., Felson, D. T. & Pincus, T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J. Rheumatol. 27, 1513–1517 (2000).

    PubMed  CAS  Google Scholar 

  70. Soto-Hermida, A. et al. Mitochondrial DNA haplogroups modulate the radiographic progression of Spanish patients with osteoarthritis. Rheumatol. Int. 35, 337–344 (2015).

    Article  PubMed  CAS  Google Scholar 

  71. Soto-Hermida, A. et al. Mitochondrial DNA (mtDNA) haplogroups influence the progression of knee osteoarthritis. Data from the Osteoarthritis Initiative (OAI). PLoS ONE 9, e112735 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wesseling, J. et al. CHECK (Cohort Hip and Cohort Knee): similarities and differences with the Osteoarthritis Initiative. Ann. Rheum. Dis. 68, 1413–1419 (2009).

    Article  PubMed  CAS  Google Scholar 

  73. Fernandez-Moreno, M. et al. Mitochondrial haplogroups define two phenotypes of osteoarthritis. Front. Physiol. 3, 129 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rego-Perez, I. et al. Mitochondrial DNA haplogroups modulate the serum levels of biomarkers in patients with osteoarthritis. Ann. Rheum. Dis. 69, 910–917 (2010).

    Article  PubMed  CAS  Google Scholar 

  75. Rego-Perez, I. et al. Mitochondrial DNA haplogroups and serum levels of proteolytic enzymes in patients with osteoarthritis. Ann. Rheum. Dis. 70, 646–652 (2011).

    Article  PubMed  CAS  Google Scholar 

  76. Valdes, A. M. & Goldring, M. B. Mitochondrial DNA haplogroups and ageing mechanisms in osteoarthritis. Ann. Rheum. Dis. 76, 939–941 (2017).

    Article  PubMed  Google Scholar 

  77. Glyn-Jones, S. et al. Osteoarthritis. Lancet 386, 376–387 (2015).

    Article  PubMed  CAS  Google Scholar 

  78. Visser, A. W. et al. The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the NEO study. Ann. Rheum. Dis. 74, 1842–1847 (2015).

    Article  PubMed  CAS  Google Scholar 

  79. Yusuf, E. et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann. Rheum. Dis. 69, 761–765 (2010).

    Article  PubMed  Google Scholar 

  80. Choi, C. H. J. & Cohen, P. Adipose crosstalk with other cell types in health and disease. Exp. Cell Res. 360, 6–11 (2017).

    Article  PubMed  CAS  Google Scholar 

  81. Azamar-Llamas, D., Hernández-Molina, G., Ramos-Ávalos, B. & Furuzawa-Carballeda, J. Adipokine contribution to the pathogenesis of osteoarthritis. Mediators Inflamm. 2017, 5468023 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Scotece, M. et al. Adipokines as drug targets in joint and bone disease. Drug Discov. Today 19, 241–258 (2014).

    Article  PubMed  CAS  Google Scholar 

  83. Nardelli, C. et al. Haplogroup T is an obesity risk factor: mitochondrial DNA haplotyping in a morbid obese population from southern Italy. Biomed. Res. Int. 2013, 631082 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ebner, S. et al. Mitochondrial haplogroup T is associated with obesity in Austrian juveniles and adults. PLoS ONE 10, e0135622 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Yang, T. L. et al. Genetic association study of common mitochondrial variants on body fat mass. PLoS ONE 6, e21595 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Knoll, N. et al. Mitochondrial DNA variants in obesity. PLoS ONE 9, e94882 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Alé, A., Zhang, Y., Han, C. & Cai, D. Obesity-associated extracellular mtDNA activates central TGFβ pathway to cause blood pressure increase. Am. J. Physiol. Endocrinol. Metab. 312, E161–E174 (2017).

    Article  PubMed  Google Scholar 

  88. Heinonen, S. et al. Mitochondria-related transcriptional signature is downregulated in adipocytes in obesity: a study of young healthy MZ twins. Diabetologia 60, 169–181 (2017).

    Article  PubMed  CAS  Google Scholar 

  89. Cheng, Y. J. et al. Prevalence of diagnosed arthritis and arthritis-attributable activity limitation among adults with and without diagnosed diabetes: United States, 2008–2010. Diabetes Care 35, 1686–1691 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Williams, M. F., London, D. A., Husni, E. M., Navaneethan, S. & Kashyap, S. R. Type 2 diabetes and osteoarthritis: a systematic review and meta-analysis. J. Diabetes Complications 30, 944–950 (2016).

    Article  PubMed  Google Scholar 

  91. Rosa, S. C. et al. Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport and GLUT-1 content by insulin. Osteoarthritis Cartilage 19, 719–727 (2011).

    Article  PubMed  CAS  Google Scholar 

  92. Gugliucci, A. Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Adv. Nutr. 8, 54–62 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Larkin, D. J. et al. Inflammatory markers associated with osteoarthritis after destabilization surgery in young mice with and without receptor for advanced glycation end-products (RAGE). Front. Physiol. 4, 121 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Abella, V. et al. Adipokines, metabolic syndrome and rheumatic diseases. J. Immunol. Res. 2014, 343746 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Feder, J. et al. Parental diabetes status reveals association of mitochondrial DNA haplogroup J1 with type 2 diabetes. BMC Med. Genet. 10, 60 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Marom, S., Friger, M. & Mishmar, D. MtDNA meta-analysis reveals both phenotype specificity and allele heterogeneity: a model for differential association. Sci. Rep. 7, 43449 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Kuo, H. M. et al. Altered mitochondrial dynamics and response to insulin in cybrid cells harboring a diabetes-susceptible mitochondrial DNA haplogroup. Free Rad. Biol. Med. 96, 116–129 (2016).

    Article  PubMed  CAS  Google Scholar 

  98. Chinnery, P. F. et al. Mitochondrial DNA haplogroups and type 2 diabetes: a study of 897 cases and 1010 controls. J. Med. Genet. 44, e80 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Estopinal, C. B. et al. Mitochondrial haplogroups are associated with severity of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 55, 5589–5595 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bregman, J. A. et al. Mitochondrial haplogroups affect severity but not prevalence of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 58, 1346–1351 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625–635 (2010).

    Article  PubMed  CAS  Google Scholar 

  102. Goldring, M. B. & Otero, M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 23, 471–478 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Goldring, M. B. et al. Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur. Cell. Mater. 21, 202–220 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Escames, G. et al. Mitochondrial DNA and inflammatory diseases. Hum. Genet. 131, 161–173 (2012).

    Article  PubMed  CAS  Google Scholar 

  106. Tang, S. et al. Increased IL-33 in synovial fluid and paired serum is associated with disease activity and autoantibodies in rheumatoid arthritis. Clin. Dev. Immunol. 2013, 985301 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. Loeser, R. F. et al. Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum. 64, 705–717 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Atilano, S. R. et al. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes. Hum. Mol. Genet. 24, 4491–4503 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Bougault, C. et al. Stress-induced cartilage degradation does not depend on the NLRP3 inflammasome in human osteoarthritis and mouse models. Arthritis Rheum. 64, 3972–3981 (2012).

    Article  PubMed  CAS  Google Scholar 

  110. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    Article  PubMed  CAS  Google Scholar 

  111. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  PubMed  CAS  Google Scholar 

  112. Lepetsos, P. & Papavassiliou, A. G. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys. Acta 1862, 576–591 (2016).

    Article  PubMed  CAS  Google Scholar 

  113. Jones, D. P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol. 295, C849–C868 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Henrotin, Y. E., Bruckner, P. & Pujol, J. P. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11, 747–755 (2003).

    Article  PubMed  CAS  Google Scholar 

  115. Henrotin, Y., Kurz, B. & Aigner, T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage 13, 643–654 (2005).

    Article  PubMed  CAS  Google Scholar 

  116. Marcuello, A. et al. Human mitochondrial variants influence on oxygen consumption. Mitochondrion 9, 27–30 (2009).

    Article  PubMed  CAS  Google Scholar 

  117. Zhang, J. et al. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc. Natl Acad. Sci. USA 100, 1116–1121 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Vidal-Bralo, L. et al. Specific premature epigenetic aging of cartilage in osteoarthritis. Aging 8, 2222–2231 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Goldring, M. B. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther. Adv. Musculoskelet. Dis. 4, 269–285 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Valdes, A. M., Glass, D. & Spector, T. D. Omics technologies and the study of human ageing. Nat. Rev. Genet. 14, 601–607 (2013).

    Article  PubMed  CAS  Google Scholar 

  121. Sun, N., Youle, R. J. & Finkel, T. The mitochondrial basis of aging. Mol. Cell 61, 654–666 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Greene, M. A. & Loeser, R. F. Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage 23, 1966–1971 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 412–420 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Cesari, M. et al. Sarcopenia, obesity, and inflammation — results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors study. Am. J. Clin. Nutr. 82, 428–434 (2005).

    Article  PubMed  CAS  Google Scholar 

  125. Fu, Y. et al. Aging promotes sirtuin 3-dependent cartilage superoxide dismutase 2 acetylation and osteoarthritis. Arthritis Rheumatol. 68, 1887–1898 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Hirschey, M. D., Shimazu, T., Huang, J. Y. & Verdin, E. Acetylation of mitochondrial proteins. Methods Enzymol. 457, 137–147 (2009).

    Article  PubMed  CAS  Google Scholar 

  127. D’Aquila, P., Rose, G., Panno, M. L., Passarino, G. & Bellizzi, D. SIRT3 gene expression: a link between inherited mitochondrial DNA variants and oxidative stress. Gene 497, 323–329 (2012).

    Article  PubMed  CAS  Google Scholar 

  128. Payne, B. A. & Chinnery, P. F. Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim. Biophys. Acta 1847, 1347–1353 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Kim, J. et al. Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis Cartilage 18, 424–432 (2010).

    Article  PubMed  CAS  Google Scholar 

  130. Reed, K. N., Wilson, G., Pearsall, A. & Grishko, V. I. The role of mitochondrial reactive oxygen species in cartilage matrix destruction. Mol. Cell. Biochem. 397, 195–201 (2014).

    Article  PubMed  CAS  Google Scholar 

  131. Ferrington, D. A. et al. Increased retinal mtDNA damage in the CFH variant associated with age-related macular degeneration. Exp. Eye Res. 145, 269–277 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Krzywanski, D. M. et al. Endothelial cell bioenergetics and mitochondrial DNA damage differ in humans having African or West Eurasian maternal ancestry. Circ. Cardiovasc. Genet. 9, 26–36 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Ross, O. A. et al. Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Exp. Gerontol. 36, 1161–1178 (2001).

    Article  PubMed  CAS  Google Scholar 

  134. Raule, N. et al. The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific. Aging Cell 13, 401–407 (2014).

    Article  PubMed  CAS  Google Scholar 

  135. Domínguez-Garrido, E. et al. Association of mitochondrial haplogroup J and mtDNA oxidative damage in two different North Spain elderly populations. Biogerontology 10, 435–442 (2009).

    Article  PubMed  CAS  Google Scholar 

  136. Rea, I. M. et al. Mitochondrial J haplogroup is associated with lower blood pressure and anti-oxidant status: findings in octo/nonagenarians from the BELFAST Study. Age 35, 1445–1456 (2013).

    Article  PubMed  CAS  Google Scholar 

  137. Fernandez-Moreno, M. et al. mtDNA haplogroup J modulates telomere length and nitric oxide production. BMC Musculoskelet. Disord. 12, 283 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Maruszak, A., Canter, J. A., Styczynska, M., Zekanowski, C. & Barcikowska, M. Mitochondrial haplogroup H and Alzheimer’s disease — is there a connection? Neurobiol. Aging 30, 1749–1755 (2009).

    Article  PubMed  CAS  Google Scholar 

  139. Gaweda-Walerych, K. & Zekanowski, C. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson’s disease. Curr. Genom. 14, 543–559 (2013).

    Article  CAS  Google Scholar 

  140. Blein, S. et al. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Res. 17, 61 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Tranah, G. J. Mitochondrial-nuclear epistasis: implications for human aging and longevity. Ageing Res. Rev. 10, 238–252 (2011).

    Article  PubMed  CAS  Google Scholar 

  142. Warner, S. C. & Valdes, A. M. Genetic association studies in osteoarthritis: is it fairytale? Curr. Opin. Rheumatol. 29, 103–109 (2017).

    Article  PubMed  CAS  Google Scholar 

  143. Roach, H. I. et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum. 52, 3110–3124 (2005).

    Article  PubMed  CAS  Google Scholar 

  144. Reynard, L. N. & Loughlin, J. Genetics and epigenetics of osteoarthritis. Maturitas 71, 200–204 (2012).

    Article  PubMed  CAS  Google Scholar 

  145. Hashimoto, K. et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1β (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J. Biol. Chem. 288, 10061–10072 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Fernández-Tajes, J. et al. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann. Rheum. Dis. 73, 668–677 (2014).

    Article  PubMed  CAS  Google Scholar 

  147. Rushton, M. et al. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol. 66, 2450–2460 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Horan, M. P. & Cooper, D. N. The emergence of the mitochondrial genome as a partial regulator of nuclear function is providing new insights into the genetic mechanisms underlying age-related complex disease. Hum. Genet. 133, 435–458 (2014).

    Article  PubMed  CAS  Google Scholar 

  149. Bellizzi, D., D’Aquila, P., Giordano, M., Montesanto, A. & Passarino, G. Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics 4, 17–27 (2012).

    Article  PubMed  CAS  Google Scholar 

  150. Schroeder, E. A., Raimundo, N. & Shadel, G. S. Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab. 17, 954–964 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by Fondo de Investigación Sanitaria (grants CIBERCB06/01/0040-Spain, RETIC-RIER-RD16/0012/0002, PRB2-ISCIII-PT13/0001, PI12/0329 and PI16/02124 to F.J.B. and grant PI14/01254 to I.R.P.) integrated in the National Plan for Scientific Program, Development and Technological Innovation 2013–2016 and funded by the ISCIII-General Subdirection of Assessment and Promotion of Research-European Regional Development Fund (FEDER) “A way of making Europe”. I.R.P. is supported by Contrato Miguel Servet-Fondo de Investigación Sanitaria (CP12/03192). F.J.B. is supported in part by Programa Intensificacion ISCIII (INT16/00222).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the article and contributed to reviewing and editing of the manuscript before submission.

Corresponding authors

Correspondence to Francisco J. Blanco or Ignacio Rego-Pérez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, F.J., Valdes, A.M. & Rego-Pérez, I. Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes. Nat Rev Rheumatol 14, 327–340 (2018). https://doi.org/10.1038/s41584-018-0001-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0001-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing