Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structure–function coupling in macroscale human brain networks

Abstract

Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure–function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computing the structure–function coupling of a brain region.
Fig. 2: Axes of variation in normative structure–function coupling.
Fig. 3: Structure–function coupling in neurotypical and neuroatypical individuals.

Similar content being viewed by others

References

  1. Park, H.-J. & Friston, K. Structural and functional brain networks: from connections to cognition. Science 342, 1238411 (2013).

    Article  PubMed  Google Scholar 

  2. Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking structure and function in macroscale brain networks. Trends Cogn. Sci. 24, 302–315 (2020).

    Article  PubMed  Google Scholar 

  3. Vázquez-Rodríguez, B. et al. Gradients of structure–function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hagmann, P. et al. White matter maturation reshapes structural connectivity in the late developing human brain. Proc. Natl Acad. Sci. USA 107, 19067–19072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Honey, C. J., Thivierge, J.-P. & Sporns, O. Can structure predict function in the human brain? NeuroImage 52, 766–776 (2010).

    Article  PubMed  Google Scholar 

  6. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Skudlarski, P. et al. Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. NeuroImage 43, 554–561 (2008).

    Article  PubMed  Google Scholar 

  8. Hermundstad, A. M. et al. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl Acad. Sci. USA 110, 6169–6174 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Diez, I. et al. A novel brain partition highlights the modular skeleton shared by structure and function. Sci. Rep. 5, 10532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bettinardi, R. G. et al. How structure sculpts function: unveiling the contribution of anatomical connectivity to the brain’s spontaneous correlation structure. Chaos Interdiscip. J. Nonlinear Sci. 27, 047409 (2017).

    Article  CAS  Google Scholar 

  11. Horn, A., Ostwald, D., Reisert, M. & Blankenburg, F. The structural–functional connectome and the default mode network of the human brain. NeuroImage 102, 142–151 (2014).

    Article  PubMed  Google Scholar 

  12. Hermundstad, A. M. et al. Structurally-constrained relationships between cognitive states in the human brain. PLoS Comput. Biol. 10, e1003591 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang, Z., Dai, Z., Gong, G., Zhou, C. & He, Y. Understanding structural-functional relationships in the human brain: a large-scale network perspective. Neuroscientist 21, 290–305 (2015).

    Article  PubMed  Google Scholar 

  14. Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Damoiseaux, J. S. & Greicius, M. D. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct. Funct. 213, 525–533 (2009).

    Article  PubMed  Google Scholar 

  16. Batista-García-Ramó, K. & Fernández-Verdecia, C. What we know about the brain structure–function relationship. Behav. Sci. 8, 39 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shen, K. et al. Stable long-range interhemispheric coordination is supported by direct anatomical projections. Proc. Natl Acad. Sci. USA 112, 6473–6478 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Butt, O. H., Benson, N. C., Datta, R. & Aguirre, G. K. Hierarchical and homotopic correlations of spontaneous neural activity within the visual cortex of the sighted and blind. Front. Hum. Neurosci. 9, 25 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Uddin, L. Q. et al. Residual functional connectivity in the split-brain revealed with resting-state functional MRI. NeuroReport 19, 703–709 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tyszka, J. M., Kennedy, D. P., Adolphs, R. & Paul, L. K. Intact bilateral resting-state networks in the absence of the corpus callosum. J. Neurosci. 31, 15154–15162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Uddin, L. Q. Complex relationships between structural and functional brain connectivity. Trends Cogn. Sci. 17, 600–602 (2013).

    Article  PubMed  Google Scholar 

  22. Baum, G. L. et al. Development of structure–function coupling in human brain networks during youth. Proc. Natl Acad. Sci. USA 117, 771–778 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Preti, M. G. & Van De Ville, D. Decoupling of brain function from structure reveals regional behavioral specialization in humans. Nat. Commun. 10, 4747 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Luo, N. et al. Structural brain architectures match intrinsic functional networks and vary across domains: a study from 15 000+ individuals. Cereb. Cortex 30, 5460–5470 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fotiadis, P. et al. Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex. Nat. Commun. 14, 6115 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gu, Z., Jamison, K. W., Sabuncu, M. R. & Kuceyeski, A. Heritability and interindividual variability of regional structure-function coupling. Nat. Commun. 12, 4894 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liegeois, R., Santos, A., Matta, V., Van De Ville, D. & Sayed, A. H. Revisiting correlation-based functional connectivity and its relationship with structural connectivity. Netw. Neurosci. 4, 1235–1251 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  29. von Economo, C. & Koskinas, G. Die Cytoarchitectonik Der Hirnrinde Des Erwachsenen Menschen (Springer, 1925).

  30. Scholtens, L. H., de Reus, M. A., de Lange, S. C., Schmidt, R. & van den Heuvel, M. P. An MRI von economo — koskinas atlas. NeuroImage 170, 249–256 (2018).

    Article  PubMed  Google Scholar 

  31. Pijnenburg, R. et al. Myelo- and cytoarchitectonic microstructural and functional human cortical atlases reconstructed in common MRI space. NeuroImage 239, 118274 (2021).

    Article  PubMed  Google Scholar 

  32. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biol. 17, e3000284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amunts, K. et al. BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez-Iriondo, I. et al. Small variation in dynamic functional connectivity in cerebellar networks. Neurocomputing 461, 751–761 (2021).

    Article  Google Scholar 

  36. Sydnor, V. J. et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keller, A. S. et al. Hierarchical functional system development supports executive function. Trends Cogn. Sci. 27, 160–174 (2023).

    Article  PubMed  Google Scholar 

  38. Wu, D. et al. Hierarchy of connectivity–function relationship of the human cortex revealed through predicting activity across functional domains. Cereb. Cortex 30, 4607–4616 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yeo, B. T. T. et al. Functional specialization and flexibility in human association cortex. Cereb. Cortex 25, 3654–3672 (2015).

    Article  PubMed  Google Scholar 

  40. Medaglia, J. D. et al. Functional alignment with anatomical networks is associated with cognitive flexibility. Nat. Hum. Behav. 2, 156–164 (2018).

    Article  PubMed  Google Scholar 

  41. Liu, Z.-Q. et al. Time-resolved structure-function coupling in brain networks. Commun. Biol. 5, 532 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Griffa, A., Amico, E., Liégeois, R., Van De Ville, D. & Preti, M. G. Brain structure-function coupling provides signatures for task decoding and individual fingerprinting. NeuroImage 250, 118970 (2022).

    Article  PubMed  Google Scholar 

  44. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, S. et al. Sex differences in anatomical rich-club and structural–functional coupling in the human brain network. Cereb. Cortex 31, 1987–1997 (2021).

    Article  PubMed  Google Scholar 

  46. Valk, S. L. et al. Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex. Nat. Commun. 13, 2341 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl Acad. Sci. USA 108, 7641–7646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Büchel, C., Coull, J. T. & Friston, K. J. The predictive value of changes in effective connectivity for human learning. Science 283, 1538–1541 (1999).

    Article  PubMed  Google Scholar 

  49. Wang, Z. et al. Changes in the brain intrinsic organization in both on-task state and post-task resting state. NeuroImage 62, 394–407 (2012).

    Article  PubMed  Google Scholar 

  50. Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L. & Corbetta, M. Learning sculpts the spontaneous activity of the resting human brain. Proc. Natl Acad. Sci. USA 106, 17558–17563 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Albert, N. B., Robertson, E. M. & Miall, R. C. The resting human brain and motor learning. Curr. Biol. 19, 1023–1027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vernet, M., Quentin, R., Chanes, L., Mitsumasu, A. & Valero-Cabré, A. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front. Integr. Neurosci. 8, 66 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Canto, C. B., Onuki, Y., Bruinsma, B., van der Werf, Y. D. & De Zeeuw, C. I. The sleeping cerebellum. Trends Neurosci. 40, 309–323 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Uddin, L. Q., Supekar, K. S., Ryali, S. & Menon, V. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J. Neurosci. 31, 18578–18589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Supekar, K. et al. Development of functional and structural connectivity within the default mode network in young children. NeuroImage 52, 290–301 (2010).

    Article  PubMed  Google Scholar 

  56. Vandewouw, M. M., Hunt, B. A. E., Ziolkowski, J. & Taylor, M. J. The developing relations between networks of cortical myelin and neurophysiological connectivity. NeuroImage 237, 118142 (2021).

    Article  PubMed  Google Scholar 

  57. Esfahlani, F. Z., Faskowitz, J., Slack, J., Mišić, B. & Betzel, R. F. Local structure-function relationships in human brain networks across the human lifespan. Nat. Commun. https://doi.org/10.1038/s41467-022-29770-y (2022).

  58. Douaud, G. et al. A common brain network links development, aging, and vulnerability to disease. Proc. Natl Acad. Sci. USA 111, 17648–17653 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saragosa-Harris, N. M. et al. A practical guide for researchers and reviewers using the ABCD Study and other large longitudinal datasets. Dev. Cogn. Neurosci. 55, 101115 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bookheimer, S. Y. et al. The lifespan human connectome project in aging: an overview. NeuroImage 185, 335–348 (2019).

    Article  PubMed  Google Scholar 

  61. Fotiadis, P. Structure-Function Coupling in Human Brain Networks. PhD dissertation, ch. 5, Univ. Pennsylvania (2023).

  62. Althubaiti, A. Sample size determination: a practical guide for health researchers. J. Gen. Fam. Med. 24, 72–78 (2023).

    Article  PubMed  Google Scholar 

  63. Miletić, S. et al. fMRI protocol optimization for simultaneously studying small subcortical and cortical areas at 7 T. NeuroImage 219, 116992 (2020).

    Article  PubMed  Google Scholar 

  64. Srirangarajan, T., Mortazavi, L., Bortolini, T., Moll, J. & Knutson, B. Multi-band FMRI compromises detection of mesolimbic reward responses. NeuroImage 244, 118617 (2021).

    Article  PubMed  Google Scholar 

  65. Baijot, J. et al. Signal quality as Achilles’ heel of graph theory in functional magnetic resonance imaging in multiple sclerosis. Sci. Rep. 11, 7376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gugger, J. J. et al. Structural brain network deviations predict recovery after traumatic brain injury. NeuroImage Clin. 38, 103392 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Koubiyr, I. et al. Dynamic modular-level alterations of structural-functional coupling in clinically isolated syndrome. Brain 142, 3428–3439 (2019).

    Article  PubMed  Google Scholar 

  68. Koubiyr, I. et al. Structural constraints of functional connectivity drive cognitive impairment in the early stages of multiple sclerosis. Mult. Scler. J. 27, 559–567 (2021).

    Article  CAS  Google Scholar 

  69. Shah, P. et al. Characterizing the role of the structural connectome in seizure dynamics. Brain 142, 1955–1972 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jiang, X. et al. Connectome analysis of functional and structural hemispheric brain networks in major depressive disorder. Transl. Psychiatry 9, 136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang, R. et al. Aberrant brain structural–functional connectivity coupling in euthymic bipolar disorder. Hum. Brain Mapp. 40, 3452–3463 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lee, D. et al. Analysis of structure–function network decoupling in the brain systems of spastic diplegic cerebral palsy. Hum. Brain Mapp. 38, 5292–5306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Edlow, B. L., Claassen, J., Schiff, N. D. & Greer, D. M. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat. Rev. Neurol. 17, 135–156 (2021).

    Article  PubMed  Google Scholar 

  74. Sussman, E. S., Pendharkar, A. V., Ho, A. L. & Ghajar, J. in Handbook of Clinical Neurology Vol. 158 (eds Hainline, B. & Stern, R. A.) Ch. 3 (Elsevier, 2018).

  75. Wang, S. et al. Decoupling of structural and functional connectivity in hubs and cognitive impairment after mild traumatic brain injury. Brain Connect. 11, 745–758 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Caeyenberghs, K., Leemans, A., Leunissen, I., Michiels, K. & Swinnen, S. P. Topological correlations of structural and functional networks in patients with traumatic brain injury. Front. Hum. Neurosci. 7, 726 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kinnunen, K. M. et al. White matter damage and cognitive impairment after traumatic brain injury. Brain 134, 449–463 (2011).

    Article  PubMed  Google Scholar 

  78. Wardlaw, J. M., Valdés Hernández, M. C. & Muñoz‐Maniega, S. What are white matter hyperintensities made of?: relevance to vascular cognitive impairment. J. Am. Heart Assoc. 4, 6 (2015).

    Article  Google Scholar 

  79. Reijmer, Y. D. et al. Decoupling of structural and functional brain connectivity in older adults with white matter hyperintensities. NeuroImage 117, 222–229 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Bubb, E. J., Metzler-Baddeley, C. & Aggleton, J. P. The cingulum bundle: anatomy, function, and dysfunction. Neurosci. Biobehav. Rev. 92, 104–127 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tay, J. et al. Network structure-function coupling and neurocognition in cerebral small vessel disease. NeuroImage Clin. 38, 103421 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Reijmer, Y. D. et al. Relationship between white matter connectivity loss and cortical thinning in cerebral amyloid angiopathy. Hum. Brain Mapp. 38, 3723–3731 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pasi, M., van Uden, I. W. M., Tuladhar, A. M., de Leeuw, F.-E. & Pantoni, L. White matter microstructural damage on diffusion tensor imaging in cerebral small vessel disease. Stroke 47, 1679–1684 (2016).

    Article  PubMed  Google Scholar 

  84. Baykara, E. et al. A novel imaging marker for small vessel disease based on skeletonization of white matter tracts and diffusion histograms. Ann. Neurol. 80, 581–592 (2016).

    Article  Google Scholar 

  85. Raposo, N. et al. Peak width of skeletonized mean diffusivity as neuroimaging biomarker in cerebral amyloid angiopathy. Am. J. Neuroradiol. 42, 875–881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, J. et al. Alterations in brain network topology and structural-functional connectome coupling relate to cognitive impairment. Front. Aging Neurosci. 10, 404 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cao, R. et al. Abnormal anatomical rich-club organization and structural–functional coupling in mild cognitive impairment and Alzheimer’s disease. Front. Neurol. 11, 53 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sun, Y. et al. Disrupted functional brain connectivity and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer’s disease. PLoS ONE 9, e96505 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dai, Z. et al. Disrupted structural and functional brain networks in Alzheimer’s disease. Neurobiol. Aging 75, 71–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Leys, D., Henon, H., Mackowiak-Cordoliani, M.-A. & Pasquier, F. Poststroke dementia. Lancet Neurol. 4, 752–759 (2005).

    Article  PubMed  Google Scholar 

  91. Mozaffarian, D. et al. Heart disease and stroke statistics — 2016 update. Circulation 133, e38–e360 (2016).

    PubMed  Google Scholar 

  92. Ng, Y. S., Stein, J., Ning, M. & Black-Schaffer, R. M. Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories. Stroke 38, 2309–2314 (2007).

    Article  PubMed  Google Scholar 

  93. Zhang, J. et al. Disrupted structural and functional connectivity networks in ischemic stroke patients. Neuroscience 364, 212–225 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Chen, H. et al. Alterations of brain network topology and structural connectivity‐functional connectivity coupling in capsular versus pontine stroke. Eur. J. Neurol. 28, 1967–1976 (2021).

    Article  PubMed  Google Scholar 

  95. Aarsland, D. et al. Cognitive decline in Parkinson disease. Nat. Rev. Neurol. 13, 217–231 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zarkali, A. et al. Organisational and neuromodulatory underpinnings of structural-functional connectivity decoupling in patients with Parkinson’s disease. Commun. Biol. 4, 86 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Garcia-Garcia, D. et al. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur. J. Nucl. Med. Mol. Imaging 39, 1767–1777 (2012).

    Article  PubMed  Google Scholar 

  98. Bohnen, N. I. et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J. Nucl. Med. 52, 848–855 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Shu, N. et al. Progressive brain rich-club network disruption from clinically isolated syndrome towards multiple sclerosis. NeuroImage Clin. 19, 232–239 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Article  PubMed  Google Scholar 

  101. Collin, G., Sporns, O., Mandl, R. C. W. & van den Heuvel, M. P. Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb. Cortex 24, 2258–2267 (2014).

    Article  PubMed  Google Scholar 

  102. Schoonheim, M. M., Meijer, K. A. & Geurts, J. J. G. Network collapse and cognitive impairment in multiple sclerosis. Front. Neurol. 6, 82 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Eigenbrodt, A. K. et al. Diagnosis and management of migraine in ten steps. Nat. Rev. Neurol. 17, 501–514 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Li, K. et al. Abnormal rich club organization and impaired correlation between structural and functional connectivity in migraine sufferers. Brain Imaging Behav. 11, 526–540 (2017).

    Article  PubMed  Google Scholar 

  105. Dehghani, N. et al. Dynamic balance of excitation and inhibition in human and monkey neocortex. Sci. Rep. 6, 23176 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, Z. et al. Altered functional–structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 134, 2912–2928 (2011).

    Article  PubMed  Google Scholar 

  107. Chiang, S., Stern, J. M., Engel, J. & Haneef, Z. Structural–functional coupling changes in temporal lobe epilepsy. Brain Res. 1616, 45–57 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu, G. et al. Aberrant dynamic structure–function relationship of rich-club organization in treatment-naïve newly diagnosed juvenile myoclonic epilepsy. Hum. Brain Mapp. 43, 3633–3645 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Siris, S. G. Depression in schizophrenia: perspective in the era of “atypical” antipsychotic agents. Am. J. Psychiatry 157, 1379–1389 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Skudlarski, P. et al. Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach. Biol. Psychiatry 68, 61–69 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cocchi, L. et al. Disruption of structure–function coupling in the schizophrenia connectome. NeuroImage Clin. 4, 779–787 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jiang, Y. et al. Function–structure coupling: white matter functional magnetic resonance imaging hyper‐activation associates with structural integrity reductions in schizophrenia. Hum. Brain Mapp. 42, 4022–4034 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. van den Heuvel, M. P. et al. Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 70, 783 (2013).

    Article  PubMed  Google Scholar 

  114. Sun, Y., Dai, Z., Li, J., Collinson, S. L. & Sim, K. Modular-level alterations of structure-function coupling in schizophrenia connectome. Hum. Brain Mapp. 38, 2008–2025 (2017).

    Article  PubMed  Google Scholar 

  115. Lesh, T. A., Niendam, T. A., Minzenberg, M. J. & Carter, C. S. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology 36, 316–338 (2011).

    Article  PubMed  Google Scholar 

  116. Butler, P. D. & Javitt, D. C. Early-stage visual processing deficits in schizophrenia. Curr. Opin. Psychiatry 18, 151–157 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cui, L.-B. et al. Connectome-based patterns of first-episode medication-naïve patients with schizophrenia. Schizophr. Bull. 45, 1291–1299 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nierenberg, A. A. et al. Diagnosis and treatment of bipolar disorder: a review. JAMA 330, 1370–1380 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Chakrabarti, S. & Singh, N. Psychotic symptoms in bipolar disorder and their impact on the illness: a systematic review. World J. Psychiatry 12, 1204–1232 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  121. Mühleisen, T. W. et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat. Commun. 5, 3339 (2014).

    Article  PubMed  Google Scholar 

  122. Palmer, D. S. et al. Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nat. Genet. 54, 541–547 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Collin, G., Scholtens, L. H., Kahn, R. S., Hillegers, M. H. J. & van den Heuvel, M. P. Affected anatomical rich club and structural–functional coupling in young offspring of schizophrenia and bipolar disorder patients. Biol. Psychiatry 82, 746–755 (2017).

    Article  PubMed  Google Scholar 

  124. Betzel, R. F. & Bassett, D. S. Specificity and robustness of long-distance connections in weighted, interareal connectomes. Proc. Natl Acad. Sci. USA 115, E4880–E4889 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. van den Heuvel, M. P., Kahn, R. S., Goni, J. & Sporns, O. High-cost, high-capacity backbone for global brain communication. Proc. Natl Acad. Sci. USA 109, 11372–11377 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Schiweck, C. et al. Comorbidity of ADHD and adult bipolar disorder: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 124, 100–123 (2021).

    Article  PubMed  Google Scholar 

  127. Hosang, G. M., Lichtenstein, P., Ronald, A., Lundstrom, S. & Taylor, M. J. Association of genetic and environmental risks for attention-deficit/hyperactivity disorder with hypomanic symptoms in youths. JAMA Psychiatry 76, 1150–1158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Peterson, B. S. et al. Tools for the diagnosis of ADHD in children and adolescents: a systematic review. Pediatrics 153, e2024065854 (2024).

    Article  PubMed  Google Scholar 

  129. Wang, B. et al. Rich-club analysis in adults with ADHD connectomes reveals an abnormal structural core network. J. Atten. Disord. 25, 1068–1079 (2021).

    Article  PubMed  Google Scholar 

  130. Hearne, L. J. et al. ADHD symptoms map onto noise-driven structure–function decoupling between hub and peripheral brain regions. Mol. Psychiatry 26, 4036–4045 (2019).

    Article  PubMed  Google Scholar 

  131. Nomi, J. S. et al. Resting-state brain signal variability in prefrontal cortex is associated with ADHD symptom severity in children. Front. Hum. Neurosci. 12, 90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sørensen, L., Eichele, T., van Wageningen, H., Plessen, K. J. & Stevens, M. C. Amplitude variability over trials in hemodynamic responses in adolescents with ADHD: the role of the anterior default mode network and the non-specific role of the striatum. NeuroImage Clin. 12, 397–404 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Mitchell, S. M., Lange, S. & Brus, H. Gendered citation patterns in international relations journals. Int. Stud. Perspect. 14, 485–492 (2013).

    Article  Google Scholar 

  134. Dion, M. L., Sumner, J. L. & Mitchell, S. M. Gendered citation patterns across political science and social science methodology fields. Polit. Anal. 26, 312–327 (2018).

    Article  Google Scholar 

  135. Caplar, N., Tacchella, S. & Birrer, S. Quantitative evaluation of gender bias in astronomical publications from citation counts. Nat. Astron. 1, 1–5 (2017).

    Google Scholar 

  136. Maliniak, D., Powers, R. & Walter, B. F. The gender citation gap in international relations. Int. Organ. 67, 889–922 (2013).

    Article  Google Scholar 

  137. Dworkin, J. D. et al. The extent and drivers of gender imbalance in neuroscience reference lists. Nat. Neurosci. 23, 918–926 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. de Kwaasteniet, B. et al. Relation between structural and functional connectivity in major depressive disorder. Biol. Psychiatry 74, 40–47 (2013).

    Article  PubMed  Google Scholar 

  139. Kong, L. et al. Divergent alterations of structural–functional connectivity couplings in first-episode and chronic schizophrenia patients. Neuroscience 460, 1–12 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Miranda-Dominguez, O. et al. Bridging the gap between the human and macaque connectome: a quantitative comparison of global interspecies structure-function relationships and network topology. J. Neurosci. 34, 5552–5563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Reid, A. T. et al. A cross-modal, cross-species comparison of connectivity measures in the primate brain. NeuroImage 125, 311–331 (2016).

    Article  PubMed  Google Scholar 

  142. Straathof, M., Sinke, M. R. T., Dijkhuizen, R. M., Otte, W. M. & on behalf of the TACTICS consortium. A systematic review on the quantitative relationship between structural and functional network connectivity strength in mammalian brains. J. Cereb. Blood Flow. Metab. 39, 189–209 (2019).

    Article  PubMed  Google Scholar 

  143. Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).

    Article  PubMed  Google Scholar 

  144. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Sinha, N. et al. Intracranial EEG structure-function coupling and seizure outcomes after epilepsy surgery. Neurology 101, e1293–e1306 (2023).

    Article  PubMed  Google Scholar 

  146. Kulik, S. D. et al. Structure-function coupling as a correlate and potential biomarker of cognitive impairment in multiple sclerosis. Netw. Neurosci. 6, 339–356 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Atasoy, S., Donnelly, I. & Pearson, J. Human brain networks function in connectome-specific harmonic waves. Nat. Commun. 7, 10340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Atasoy, S. et al. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Sci. Rep. 7, 17661 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Becker, C. O. et al. Spectral mapping of brain functional connectivity from diffusion imaging. Sci. Rep. 8, 1411 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Raj, A. et al. Spectral graph theory of brain oscillations. Hum. Brain Mapp. 41, 2980–2998 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Verma, P., Nagarajan, S. & Raj, A. Spectral graph theory of brain oscillations — revisited and improved. NeuroImage 249, 118919 (2022).

    Article  PubMed  Google Scholar 

  152. Deslauriers-Gauthier, S., Zucchelli, M., Frigo, M. & Deriche, R. A unified framework for multimodal structure–function mapping based on eigenmodes. Med. Image Anal. 66, 101799 (2020).

    Article  PubMed  Google Scholar 

  153. Lioi, G., Gripon, V., Brahim, A., Rousseau, F. & Farrugia, N. Gradients of connectivity as graph Fourier bases of brain activity. Netw. Neurosci. 5, 322–336 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Baller, E. B. et al. Developmental coupling of cerebral blood flow and fMRI fluctuations in youth. Cell Rep. 38, 110576 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hu, F. et al. Voxel-wise intermodal coupling analysis of two or more modalities using local covariance decomposition. Hum. Brain Mapp. 43, 4650–4663 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grants T32-EB020087 (P.F.), R01MH113550 (D.S.B. and T.D.S.), RF1MH116920 (D.S.B.), R21MH106799 (D.S.B.), R01MH112847 (R.T.S. and T.D.S.), R01EB022573 (T.D.S.), R01MH120482 (T.D.S.), R37MH125829 (T.D.S.), R01MH112847 (R.T.S.), R01MH123550 (R.T.S.), R01NS112274 (R.T.S.), RF1MH116920 (D.S.B. and T.D.S.) and K99MH127296 (L.P.), the Swartz Foundation (D.S.B.), the AE Foundation (T.D.S.), the Brain & Behaviour Research Foundation (2020 NARSAD Young Investigator Grant to L.P.) and the John D. and Catherine T. MacArthur Foundation (D.S.B.).

Author information

Authors and Affiliations

Authors

Contributions

P.F. researched data for the article and wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Panagiotis Fotiadis or Dani S. Bassett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Hae-Jeong Park, Jesus Cortes and Lucina Uddin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Coefficient of variation

A statistical metric quantifying the dispersion of a set of data points in relation to their mean value and defined as the ratio between the standard deviation and mean value of the data points.

Discriminant function analyses

Statistical analyses used in classification problems to determine the discriminant functions — weighted combinations of the provided independent variables — that maximize separability among two or more categories within the outcome (dependent) variable; accuracy of classification is also evaluated.

Global efficiency

The average of the inverse shortest-path distances from one node to all other nodes, capturing network efficiency in transferring information.

Heteromodal association cortices

Regions receiving convergent inputs from unimodal areas from more than one sensory modality.

Hub regions

Brain regions characterized by a relatively large number of connections to other regions (more commonly referred to as high-degree nodes).

Ictal periods

The periods between seizure onset and seizure termination, as defined electrographically.

Laminar differentiation

Brain regions with high levels of laminar differentiation (also referred to as granularization) are characterized by well-defined, highly developed cortical layers II and IV.

Limbic regions

Cortices including the hippocampal complex, the amygdaloid complex, the prepiriform olfactory cortex, the septal area and the substantia innominata.

Local connections

Connections linking non-rich club nodes to other non-rich club nodes.

Modules

A group of densely interconnected brain regions that are sparsely connected to the rest of the brain (also known as a community).

Paralimbic regions

Cortices including the caudal orbitofrontal cortex, the insula, the temporal pole, the parahippocampal gyrus and the retrosplenial–cingulate–parolfactory complex.

Path length

The minimum number of edges (the shortest path) required to traverse from one node to another.

Primary sensory and motor cortices

The cortical regions wherein sensory information from the external environment is first projected into the brain; the primary motor cortex relays motor programmes into spinal motor neurons to initiate further action.

Rich club

A subset of high-degree brain regions (nodes) that are densely interconnected; connections between rich club nodes are referred to as rich club connections.

Transmodal regions

The combined set of heteromodal association cortices and paralimbic and limbic regions; transmodal areas receive and integrate input from multiple sensory modalities to give rise to complex conscious perception and flexible cognition, and often exert a ‘top–down’ influence on unimodal association cortices.

Unimodal association cortices

Regions receiving projections from primary sensory areas and other unimodal association areas from the same sensory modality.

Unimodal sensory regions

The combined set of primary sensory and unimodal association cortical regions.

Variance

A statistical metric quantifying the dispersion of a set of data points around their mean.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotiadis, P., Parkes, L., Davis, K.A. et al. Structure–function coupling in macroscale human brain networks. Nat. Rev. Neurosci. (2024). https://doi.org/10.1038/s41583-024-00846-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41583-024-00846-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing