Abstract
The lateral prefrontal cortex (PFC) in humans and other primates is critical for immediate, goal-directed behaviour and working memory, which are classically considered distinct from the cognitive and neural circuits that support long-term learning and memory. Over the past few years, a reconsideration of this textbook perspective has emerged, in that different timescales of memory-guided behaviour are in constant interaction during the pursuit of immediate goals. Here, we will first detail how neural activity related to the shortest timescales of goal-directed behaviour (which requires maintenance of current states and goals in working memory) is sculpted by long-term knowledge and learning — that is, how the past informs present behaviour. Then, we will outline how learning across different timescales (from seconds to years) drives plasticity in the primate lateral PFC, from single neuron firing rates to mesoscale neuroimaging activity patterns. Finally, we will review how, over days and months of learning, dense local and long-range connectivity patterns in PFC facilitate longer-lasting changes in population activity by changing synaptic weights and recruiting additional neural resources to inform future behaviour. Our Review sheds light on how the machinery of plasticity in PFC circuits facilitates the integration of learned experiences across time to best guide adaptive behaviour.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Li, W., Piëch, V. & Gilbert, C. D. Perceptual learning and top-down influences in primary visual cortex. Nat. Neurosci. 7, 651–657 (2004).
Li, W., Piech, V. & Gilbert, C. D. Learning to link visual contours. Neuron 57, 442–451 (2008).
Kaminski, J. et al. Persistently active neurons in human medial frontal and medial temporal lobe support working memory. Nat. Neurosci. 20, 590–601 (2017).
Boran, E. et al. Persistent hippocampal neural firing and hippocampal–cortical coupling predict verbal working memory load. Sci. Adv. 5, eaav3687 (2019). This paper shows elevated neuronal firing in the human hippocampus during working memory (WM); this activity tracks increasing WM load while coupling to simultaneous scalp electroencephalography signals, suggesting integration of hippocampal functioning with distributed WM systems.
Ranganath, C. & D’Esposito, M. Medial temporal lobe activity associated with active maintenance of novel information. Neuron 31, 865–873 (2001).
Goodrich, R. I., Baer, T. L., Quent, J. A. & Yonelinas, A. P. Visual working memory impairments for single items following medial temporal lobe damage. Neuropsychologia 134, 107227 (2019). Contrary to classical neuropsychology findings, this paper details how hippocampal/medial temporal lobe damage in human patients leads to working memory deficits on tasks using even a single visual item, with sensory-based judgements particularly affected.
Jeneson, A. & Squire, L. R. Working memory, long-term memory, and medial temporal lobe function. Learn. Mem. 19, 15–25 (2012).
Yonelinas, A., Hawkins, C., Abovian, A. & Aly, M. The role of recollection, familiarity, and the hippocampus in episodic and working memory. Neuropsychologia 193, 108777 (2023).
Noudoost, B., Clark, K. L. & Moore, T. Working memory gates visual input to primate prefrontal neurons. eLife 10, e64814 (2021).
Bahmani, Z. et al. Prefrontal contributions to attention and working memory. Curr. Top. Behav. Neurosci. 41, 129–153 (2019).
Bahmani, Z., Daliri, M. R., Merrikhi, Y., Clark, K. & Noudoost, B. Working memory enhances cortical representations via spatially specific coordination of spike times. Neuron 97, 967–979.e6 (2018).
Rezayat, E. et al. Frontotemporal coordination predicts working memory performance and its local neural signatures. Nat. Commun. 12, 1103 (2021).
Sreenivasan, K. K. & D’Esposito, M. The what, where and how of delay activity. Nat. Rev. Neurosci. 20, 466–481 (2019).
Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R. & Haynes, J. D. The distributed nature of working memory. Trends Cogn. Sci. 21, 111–124 (2017).
Lara, A. H. & Wallis, J. D. The role of prefrontal cortex in working memory: a mini review. Front. Syst. Neurosci. 9, 173 (2015).
Nairne, J. S. & Tulving, E. in The Foundations of Remembering: Essays in Honor of Henry L. Roediger, III (ed. Nairne, J. S.) 39–52 (Psychology Press, 2007).
Roediger, I. I. I., Henry L. & Uner, O. Critical concepts in the study of learning and memory. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/4r5pj (2022).
Zhang, H. et al. Working memory for spatial sequences: developmental and evolutionary factors in encoding ordinal and relational structures. J. Neurosci. 42, 850–864 (2022).
Read, D. W., Manrique, H. M. & Walker, M. J. On the working memory of humans and great apes: strikingly similar or remarkably different? Neurosci. Biobehav. Rev. 134, 104496 (2022).
Völter, C. J., Mundry, R., Call, J. & Seed, A. M. Chimpanzees flexibly update working memory contents and show susceptibility to distraction in the self-ordered search task. Proc. Biol. Sci. 286, 20190715 (2019).
Fuster, J. & Alexander, G. Neuron activity related to short-term memory. Science 173, 652–654 (1971).
Constantinidis, C. et al. Persistent spiking activity underlies working memory. J. Neurosci. 38, 7020–7028 (2018).
Funahashi, S. & Kubota, K. Working memory and prefrontal cortex. Neurosci. Res. 21, 1–11 (1994).
Miller, E. K., Lundqvist, M. & Bastos, A. M. Working memory 2.0. Neuron 100, 463–475 (2018).
D’Esposito, M. & Postle, B. R. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 66, 115–142 (2015).
Wang, X. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24, 455–463 (2001).
Hazy, T. E., Frank, M. J. & O’Reilly R, C. Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1601–1613 (2007).
Hazy, T. E., Frank, M. J. & O’Reilly, R. C. in The Cambridge Handbook of Computational Cognitive Sciences 611–663 (Cambridge Univ. Press, 2023).
Meyer, T., Qi, X.-L., Stanford, T. R. & Constantinidis, C. Stimulus selectivity in dorsal and ventral prefrontal cortex after training in working memory tasks. J. Neurosci. 31, 6266–6276 (2011).
Constantinidis, C. & Klingberg, T. The neuroscience of working memory capacity and training. Nat. Rev. Neurosci. 17, 438–449 (2016).
Brady, T. F. & Störmer, V. S. The role of meaning in visual working memory: real-world objects, but not simple features, benefit from deeper processing. J. Exp. Psychol. Learn. Mem. Cogn. 48, 942–958 (2022).
Fukuda, K. & Woodman, G. F. Visual working memory buffers information retrieved from visual long-term memory. Proc. Natl Acad. Sci. USA 114, 5306–5311 (2017).
Murray, J. D. et al. Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. Proc. Natl Acad. Sci. USA 114, 394–399 (2017).
Curtis, C. E. & Sprague, T. C. Persistent activity during working memory from front to back. Front. Neural Circuits 15, 696060 (2021).
Stokes, M. G. ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn. Sci. 19, 394–405 (2015).
Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory. Science 319, 1543–1546 (2008).
Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M. & Norman, K. A. Complementary learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160049 (2017).
Beukers, A. O., Buschman, T. J., Cohen, J. D. & Norman, K. A. Is activity silent working memory simply episodic memory? Trends Cogn. Sci. 25, 284–293 (2021). In this Opinion article, the authors propose that ‘activity-silent’ periods during working memory tasks may be indicative of the involvement of episodic, long-term memory functioning, and long-term memory-based synaptic weight changes can facilitate working memory maintenance over longer timescales than recurrent activity alone.
Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477–485 (1995).
D’Esposito, M. From cognitive to neural models of working memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 761–772 (2007).
Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259–271 (2000).
Compte, A., Brunel, N., Goldman-Rakic, P. S. & Wang, X. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000).
Papadimitriou, C., Holmes, C. D. & Snyder, L. H. Primate spatial memory cells become tuned early and lose tuning at cell-specific times. Cereb. Cortex 31, 4206–4219 (2021).
Tang, H., Qi, X.-L., Riley, M. R. & Constantinidis, C. Working memory capacity is enhanced by distributed prefrontal activation and invariant temporal dynamics. Proc. Natl Acad. Sci. USA 116, 7095–7100 (2019).
Christophel, T. B., Hebart, M. N. & Haynes, J. D. Decoding the contents of visual short-term memory from human visual and parietal cortex. J. Neurosci. 32, 12983–12989 (2012).
Gazzaley, A., Rissman, J. & D’Esposito, M. Functional connectivity during working memory maintenance. Cogn. Affect. Behav. Neurosci. 4, 580–599 (2004).
Mendoza-Halliday, D., Torres, S. & Martinez-Trujillo, J. C. Sharp emergence of feature-selective sustained activity along the dorsal visual pathway. Nat. Neurosci. 17, 1255–1262 (2014).
Vallentin, D., Bongard, S. & Nieder, A. Numerical rule coding in the prefrontal, premotor, and posterior parietal cortices of macaques. J. Neurosci. 32, 6621–6630 (2012).
Badre, D. & Nee, D. E. Frontal cortex and the hierarchical control of behavior. Trends Cogn. Sci. 22, 170–188 (2018).
Mikkelsen, C., Charczynski, S. J., Warden, M. R., Miller, E. K. & Howard, M. Coding of time with non-linear mixed selectivity in prefrontal cortex ensembles. Preprint at bioRxiv https://doi.org/10.1101/2023.04.07.535754 (2023).
Chatham, C. H. & Badre, D. Multiple gates on working memory. Curr. Opin. Behav. Sci. 1, 23–31 (2015).
Kruijne, W., Bohte, S. M., Roelfsema, P. R. & Olivers, C. N. L. Flexible working memory through selective gating and attentional tagging. Neural Comput. 33, 1–40 (2021).
Chateau-Laurent, H. & Alexandre, F. The opportunistic PFC: downstream modulation of a hippocampus-inspired network is optimal for contextual memory recall. In 36th Conference on Neural Information Processing Systems https://memari-workshop.github.io/papers/paper_14.pdf (2022).
Oehrn, C. R. et al. Direct electrophysiological evidence for prefrontal control of hippocampal processing during voluntary forgetting. Curr. Biol. 28, 3016–3022.e4 (2018). This paper shows that intracranial electroencephalography signals in human prefrontal cortex provide top-down inhibition of memory processes in the hippocampus, showing how canonical working memory and long-term memory systems are interrelated.
Wang, T. H., Placek, K. & Lewis-Peacock, J. A. More is less: increased processing of unwanted memories facilitates forgetting. J. Neurosci. 39, 3551–3560 (2019).
Sherman, B. E. & Turk-Browne, N. B. Statistical prediction of the future impairs episodic encoding of the present. Proc. Natl Acad. Sci. USA 117, 22760–22770 (2020).
Lewis-Peacock, J. A. & Norman, K. A. Competition between items in working memory leads to forgetting. Nat. Commun. 5, 5768 (2014).
Ma, W. J., Husain, M. & Bays, P. M. Changing concepts of working memory. Nat. Neurosci. 17, 347–356 (2014).
Brady, T. F., Störmer, V. S. & Alvarez, G. A. Working memory is not fixed-capacity: more active storage capacity for real-world objects than for simple stimuli. Proc. Natl Acad. Sci. USA 113, 7459–7464 (2016).
Xie, W. & Zhang, W. Familiarity speeds up visual short-term memory consolidation: electrophysiological evidence from contralateral delay activities. J. Cogn. Neurosci. 30, 1–13 (2018).
Adam, K. C. S., Zhao, C. & Vogel, E. K. Behavioral signatures of the rapid recruitment of long-term memory to overcome working memory capacity limits. Mem. Cognit. https://doi.org/10.31234/osf.io/2h5pf (2023).
Dresler, M. et al. Mnemonic training reshapes brain networks to support superior memory. Neuron 93, 1227–1235.e6 (2017).
Spitmaan, M., Seo, H., Lee, D. & Soltani, A. Multiple timescales of neural dynamics and integration of task-relevant signals across cortex. Proc. Natl Acad. Sci. USA 117, 22522–22531 (2020).
Zhao, J., Al-Aidroos, N. & Turk-Browne, N. B. Attention is spontaneously biased toward regularities. Psychol. Sci. 24, 667–677 (2013).
Turk-Browne, N. B., Scholl, B. J., Johnson, M. K. & Chun, M. M. Implicit perceptual anticipation triggered by statistical learning. J. Neurosci. 30, 11177–11187 (2010).
Xie, W. & Zhang, W. Familiarity increases the number of remembered Pokémon in visual short-term memory. Mem. Cogn. 45, 677–689 (2017).
Asp, I. E., Störmer, V. S. & Brady, T. F. Greater visual working memory capacity for visually matched stimuli when they are perceived as meaningful. J. Cogn. Neurosci. 33, 902–918 (2021).
Xie, Y. et al. Natural constraints explain working memory capacity limitations in sensory-cognitive models. Preprint at bioRxiv https://doi.org/10.1101/2023.03.30.534982 (2023).
van den Berg, R. & Ma, W. J. A resource-rational theory of set size effects in human visual working memory. eLife 7, e34963 (2018).
Oberauer, K. Design for a working memory. Psychol. Learn. Motiv. 51, 45–100 (2009).
Miller, J. A., Tambini, A., Kiyonaga, A. & D’Esposito, M. Long-term learning transforms prefrontal cortex representations during working memory. Neuron 110, 3805–3819.e6 (2022). This paper shows that dense, longitudinal sampling reveals that working memory activity patterns in human prefrontal cortex transform to represent stimulus features after they are learned across weeks to months; this contextualizes the role of the prefrontal cortex as flexible for process or representational functioning in working memory based on learning and experience.
LaRocque, J. J., Lewis-Peacock, J. A. & Postle, B. R. Multiple neural states of representation in short-term memory? It’s a matter of attention. Front. Hum. Neurosci. 8, 5 (2014).
Sala, G. & Gobet, F. Does far transfer exist? Negative evidence from chess, music, and working memory training. Curr. Dir. Psychol. Sci. 26, 515–520 (2017).
Hoskin, A. N., Bornstein, A. M., Norman, K. A. & Cohen, J. D. Refresh my memory: episodic memory reinstatements intrude on working memory maintenance. Cogn. Affect. Behav. Neurosci. 19, 338–354 (2019).
Bornstein, A. M. & Norman, K. A. Reinstated episodic context guides sampling-based decisions for reward. Nat. Neurosci. 20, 997–1003 (2017).
Collins, A. G. E., Ciullo, B., Frank, M. J. & Badre, D. Working memory load strengthens reward prediction errors. J. Neurosci. 37, 4332–4342 (2017).
Yoo, A. H. & Collins, A. G. E. How working memory and reinforcement learning are intertwined: a cognitive, neural, and computational perspective. J. Cogn. Neurosci. 34, 551–568 (2022).
van Opheusden, B. et al. Expertise increases planning depth in human gameplay. Nature 618, 1000–1005 (2023).
Birman, D. & Gardner, J. L. Parietal and prefrontal: categorical differences? Nat. Neurosci. 19, 5–7 (2016).
Inoue, S. & Matsuzawa, T. Working memory of numerals in chimpanzees. Curr. Biol. 17, R1004–R1005 (2007).
Cook, P. & Wilson, M. Do young chimpanzees have extraordinary working memory? Psychon. Bull. Rev. 17, 599–600 (2010).
Donahue, C. J., Glasser, M. F., Preuss, T. M., Rilling, J. K. & Van Essen, D. C. Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. Proc. Natl Acad. Sci. USA 115, E5183–E5192 (2018).
Miller, J. A. & Weiner, K. S. Unfolding the evolution of human cognition. Trends Cogn. Sci. 26, 735–737 (2022).
Ponce de León, M. S. et al. The primitive brain of early Homo. Science 372, 165–171 (2021).
Goudar, V. et al. Comparing rapid rule-learning strategies in humans and monkeys. Preprint at bioRxiv https://doi.org/10.1101/2023.01.10.523416 (2023).
Smith, J. D., Beran, M. J., Crossley, M. J., Boomer, J. & Ashby, F. G. Implicit and explicit category learning by macaques (Macaca mulatta) and humans (Homo sapiens). J. Exp. Psychol. Anim. Behav. Process. 36, 54–65 (2010).
Petrides, M., Tomaiuolo, F., Yeterian, E. H. & Pandya, D. N. The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48, 46–57 (2012).
Carlen, M. What constitutes the prefrontal cortex? Science 358, 478–482 (2017).
Lewis, D. A., Melchitzky, D. S. & Burgos, G.-G. Specificity in the functional architecture of primate prefrontal cortex. J. Neurocytol. 31, 265–276 (2002).
Kritzer, M. F. & Goldman-Rakic, P. S. Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 359, 131–143 (1995).
Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).
Li, S. & Wang, X.-J. Hierarchical timescales in the neocortex: mathematical mechanism and biological insights. Proc. Natl Acad. Sci. USA 119, e2110274119 (2022).
Gao, R., van den Brink, R. L., Pfeffer, T. & Voytek, B. Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture. eLife 9, e61277 (2020).
Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).
Mendoza-Halliday, D., Xu, H., Azevedo, F. A. C. & Desimone, R. Dissociable neuronal substrates of visual feature attention and working memory. Neuron 112, 850–863.e6 (2024).
Reverberi, C., Görgen, K. & Haynes, J.-D. Compositionality of rule representations in human prefrontal cortex. Cereb. Cortex 22, 1237–1246 (2012).
Messinger, A., Lebedev, M. A., Kralik, J. D. & Wise, S. P. Multitasking of attention and memory functions in the primate prefrontal cortex. J. Neurosci. 29, 5640–5653 (2009).
Leavitt, M. L., Mendoza-Halliday, D. & Martinez-Trujillo, J. C. Sustained activity encoding working memories: not fully distributed. Trends Neurosci. 40, 328–346 (2017).
Sun, Y., Dang, W., Jaffe, R. G. & Constantinidis, C. Local organization of spatial and shape information during working memory in the primate prefrontal cortex. Preprint at bioRxiv https://doi.org/10.1101/2023.08.26.554962 (2023).
Xu, R., Bichot, N. P., Takahashi, A. & Desimone, R. The cortical connectome of primate lateral prefrontal cortex. Neuron 110, 312–327.e7 (2022).
Chatham, C. H., Frank, M. J. & Badre, D. Corticostriatal output gating during selection from working memory. Neuron 81, 930–942 (2014).
Fiebelkorn, I. C., Pinsk, M. A. & Kastner, S. The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention. Nat. Commun. 10, 215 (2019).
Pasupathy, A. & Miller, E. K. Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433, 873–876 (2005).
Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350, 497–533 (1994).
Lavenex, P., Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J. Comp. Neurol. 447, 394–420 (2002).
Barbas, H. & Blatt, G. J. Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5, 511–533 (1995).
Anderson, M. C., Bunce, J. G. & Barbas, H. Prefrontal–hippocampal pathways underlying inhibitory control over memory. Neurobiol. Learn. Mem. 134, 145–161 (2016).
Saunders, R. C., Mishkin, M. & Aggleton, J. P. Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques. Exp. Brain Res. 167, 1–16 (2005).
Yeterian, E. H., Pandya, D. N., Tomaiuolo, F. & Petrides, M. The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48, 58–81 (2012).
Goldman-Rakic, P. S., Selemon, L. D. & Schwartz, M. L. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12, 719–743 (1984).
Pilly, P. K., Howard, M. D. & Bhattacharyya, R. Modeling contextual modulation of memory associations in the hippocampus. Front. Hum. Neurosci. 12, 442 (2018).
Rapan, L. J. et al. Cytoarchitectonic, receptor distribution and functional connectivity analyses of the macaque frontal lobe. eLife https://doi.org/10.7554/eLife.82850 (2023).
Cools, R. & Arnsten, A. F. T. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 47, 309–328 (2022).
Ott, T. & Nieder, A. Dopamine and cognitive control in prefrontal cortex. Trends Cogn. Sci. 23, 213–234 (2019).
Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V. & Arnsten, A. F. T. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat. Neurosci. 10, 376–384 (2007).
Puig, M. V. & Miller, E. K. The role of prefrontal dopamine D1 receptors in the neural mechanisms of associative learning. Neuron 74, 874–886 (2012).
Yeo, B. T. et al. Functional specialization and flexibility in human association cortex. Cereb. Cortex 25, 3654–3672 (2015).
Walters, J. et al. Predicting brain activation maps for arbitrary tasks with cognitive encoding models. NeuroImage 263, 119610 (2022).
White, I. M. & Wise, S. P. Rule-dependent neuronal activity in the prefrontal cortex. Exp. Brain Res. 126, 315–335 (1999).
Wallis, J. D., Anderson, K. & Miller, E. K. Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953–956 (2001).
Nee, D. E. & D’Esposito, M. The hierarchical organization of the lateral prefrontal cortex. eLife 5, e12112 (2016).
Sarma, A., Masse, N. Y., Wang, X.-J. & Freedman, D. J. Task-specific versus generalized mnemonic representations in parietal and prefrontal cortices. Nat. Neurosci. 19, 143–149 (2016).
Shima, K., Isoda, M., Mushiake, H. & Tanji, J. Categorization of behavioural sequences in the prefrontal cortex. Nature 445, 315–318 (2007).
Nieder, A., Freedman, D. J. & Miller, E. K. Representation of the quantity of visual items in the primate prefrontal cortex. Science 297, 1708–1711 (2002).
Kim, J. N. & Shadlen, M. N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185 (1999).
Leon, M. I. & Shadlen, M. N. Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 24, 415–425 (1999).
Sigala, N., Kusunoki, M., Nimmo-Smith, I., Gaffan, D. & Duncan, J. Hierarchical coding for sequential task events in the monkey prefrontal cortex. Proc. Natl Acad. Sci. USA 105, 11969–11974 (2008).
Berdyyeva, T. K. & Olson, C. R. Rank signals in four areas of macaque frontal cortex during selection of actions and objects in serial order. J. Neurophysiol. 104, 141–159 (2010).
Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).
Xie, Y. et al. Geometry of sequence working memory in macaque prefrontal cortex. Science 375, 632–639 (2022).
Stokes, M. G. et al. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78, 364–375 (2013).
Li, D., Constantinidis, C. & Murray, J. D. Trial-to-trial variability of spiking delay activity in prefrontal cortex constrains burst-coding models of working memory. J. Neurosci. 41, 8928–8945 (2021).
Kikumoto, A., Bhandari, A., Shibata, K. & Badre, D. A transient high-dimensional geometry affords stable conjunctive subspaces for efficient action selection. Preprint at bioRxiv https://doi.org/10.1101/2023.06.09.544428 (2023).
Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).
Wojcik, M. J. et al. Learning shapes neural geometry in the prefrontal cortex. Preprint at bioRxiv https://doi.org/10.1101/2023.04.24.538054 (2023).
Buschkuehl, M., Hernandez-Garcia, L., Jaeggi, S. M., Bernard, J. A. & Jonides, J. Neural effects of short-term training on working memory. Cogn. Affect. Behav. Neurosci. 14, 147–160 (2014).
Ren, J., Konrad, B. N., Wagner, I. C. & Dresler, M. Mnemonic training contextualizes working memory with long-term memory representations: commentary on Miller et al. (2022). Eur. J. Neurosci. https://doi.org/10.1111/ejn.15981 (2023).
Chiang, F.-K., Wallis, J. D. & Rich, E. L. Cognitive strategies shift information from single neurons to populations in prefrontal cortex. Neuron 110, 709–721.e4 (2022). This paper demonstrates the recruitment of a larger population of prefrontal cortex neurons selective for stimulus and task variables when non-human primates learn and use chunking strategies in a self-ordered WM task.
Riley, M. R., Qi, X. L., Zhou, X. & Constantinidis, C. Anterior-posterior gradient of plasticity in primate prefrontal cortex. Nat. Commun. 9, 3790 (2018). By recording before and after extensive training on a spatial WM task in multiple PFC areas, this work highlights the nature of neural changes associated with learning and reveals anterior PFC areas as having the greatest plasticity in neuronal firing during working memory.
Whittington, J. C. R., Dorrell, W., Ganguli, S. & Behrens, T. E. J. Disentangling with biological constraints: a theory of functional cell types. Preprint at https://arxiv.org/abs/2210.01768 (2022).
Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang, X. J. Task representations in neural networks trained to perform many cognitive tasks. Nat. Neurosci. 22, 297–306 (2019).
Musslick, S. & Cohen, J. D. Rationalizing constraints on the capacity for cognitive control. Trends Cogn. Sci. 25, 757–775 (2021).
Zhou, S., Seay, M., Taxidis, J., Golshani, P. & Buonomano, D. V. Multiplexing working memory and time in the trajectories of neural networks. Nat. Hum. Behav. 7, 1170–1184 (2023).
Barbas, H., Wang, J., Joyce, M. K. P. & García-Cabezas, M. Á. Pathway mechanism for excitatory and inhibitory control in working memory. J. Neurophysiol. 120, 2659–2678 (2018).
Olesen, P. J., Westerberg, H. & Klingberg, T. Increased prefrontal and parietal activity after training of working memory. Nat. Neurosci. 7, 75–79 (2004).
Jolles, D. D., Grol, M. J., Van Buchem, M. A., Rombouts, S. A. R. B. & Crone, E. A. Practice effects in the brain: changes in cerebral activation after working memory practice depend on task demands. NeuroImage 52, 658–668 (2010).
Schneiders, J. A., Opitz, B., Krick, C. M. & Mecklinger, A. Separating intra-modal and across-modal training effects in visual working memory: an fMRI investigation. Cereb. Cortex 21, 2555–2564 (2011).
Takeuchi, H. et al. Effects of working memory training on functional connectivity and cerebral blood flow during rest. Cortex 49, 2106–2125 (2013).
Kühn, S. et al. The dynamics of change in striatal activity following updating training. Hum. Brain Mapp. 34, 1530–1541 (2013).
Qi, X.-L. & Constantinidis, C. Correlated discharges in the primate prefrontal cortex before and after working memory training. Eur. J. Neurosci. 36, 3538–3548 (2012).
Katsuki, F. et al. Differences in intrinsic functional organization between dorsolateral prefrontal and posterior parietal cortex. Cereb. Cortex 24, 2334–2349 (2014).
Meyers, E. M., Qi, X.-L. & Constantinidis, C. Incorporation of new information into prefrontal cortical activity after learning working memory tasks. Proc. Natl Acad. Sci. USA 109, 4651–4656 (2012).
Stroud, J. P., Watanabe, K., Suzuki, T., Stokes, M. G. & Lengyel, M. Optimal information loading into working memory explains dynamic coding in the prefrontal cortex. Proc. Natl Acad. Sci. USA 120, e2307991120 (2023).
Soo, W. W. M., Goudar, V. & Wang, X.-J. Training biologically plausible recurrent neural networks on cognitive tasks with long-term dependencies. Preprint at bioRxiv https://doi.org/10.1101/2023.10.10.561588 (2023).
Kim, R. & Sejnowski, T. J. Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks. Nat. Neurosci. 24, 129–139 (2021). This paper shows that the analysis of electrophysiological recordings combined with computational modelling of working memory networks indicates that neurons/units with long timescales of activity contribute heavily to working memory task performance after training, and this is sculpted by inhibitory–inhibitory connections.
Murray, J. D., Jaramillo, J. & Wang, X. J. Working memory and decision-making in a frontoparietal circuit model. J. Neurosci. 37, 12167–12186 (2017).
Mejías, J. F. & Wang, X.-J. Mechanisms of distributed working memory in a large-scale network of macaque neocortex. eLife 11, e72136 (2022).
Feng, M., Bandyopadhyay, A. & Mejias, J. F. Emergence of distributed working memory in a human brain network model. Preprint at bioRxiv https://doi.org/10.1101/2023.01.26.525779 (2023).
Froudist-Walsh, S. et al. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron 109, 3500–3520.e13 (2021).
Manea, A. M. G., Zilverstand, A., Ugurbil, K., Heilbronner, S. R. & Zimmermann, J. Intrinsic timescales as an organizational principle of neural processing across the whole rhesus macaque brain. eLife 11, e75540 (2022).
Wasmuht, D. F., Spaak, E., Buschman, T. J., Miller, E. K. & Stokes, M. G. Intrinsic neuronal dynamics predict distinct functional roles during working memory. Nat. Commun. 9, 3499 (2018).
Trepka, E., Spitmaan, M., Qi, X.-L., Constantinidis, C. & Soltani, A. Training-dependent gradients of timescales of neural dynamics in the primate prefrontal cortex and their contributions to working memory. J. Neurosci. 44, e2442212023 (2024).
Chaudhuri, R., Knoblauch, K., Gariel, M. A., Kennedy, H. & Wang, X. J. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88, 419–431 (2015).
Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).
Masse, N. Y., Yang, G. R., Song, H. F., Wang, X.-J. & Freedman, D. J. Circuit mechanisms for the maintenance and manipulation of information in working memory. Nat. Neurosci. 22, 1159–1167 (2019).
Wang, X.-J. Theory of the multiregional neocortex: large-scale neural dynamics and distributed cognition. Annu. Rev. Neurosci. 45, 533–560 (2022).
Ito, T., Yang, G. R., Laurent, P., Schultz, D. H. & Cole, M. W. Constructing neural network models from brain data reveals representational transformations linked to adaptive behavior. Nat. Commun. 13, 673 (2022).
Doron, G. et al. Perirhinal input to neocortical layer 1 controls learning. Science 370, eaaz3136 (2020). In this paper, the circuit mechanisms of medial temporal lobe-mediated learning are carefully dissected, showing that learning is mediated by top-down signals from perirhinal cortex into layer 1 of neocortex, targeting inhibitory interneurons.
Shin, J. N., Doron, G. & Larkum, M. E. Memories off the top of your head. Science 374, 538–539 (2021).
Schuman, B., Dellal, S., Prönneke, A., Machold, R. & Rudy, B. Neocortical layer 1: an elegant solution to top-down and bottom-up integration. Annu. Rev. Neurosci. 44, 221–252 (2021).
Letzkus, J. J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011).
Williams, L. E. & Holtmaat, A. Higher-order thalamocortical inputs gate synaptic long-term potentiation via disinhibition. Neuron 101, 91–102.e4 (2019).
Leavitt, M. L., Pieper, F., Sachs, A. J. & Martinez-Trujillo, J. C. Correlated variability modifies working memory fidelity in primate prefrontal neuronal ensembles. Proc. Natl Acad. Sci. USA 114, E2494–E2503 (2017).
Domanski, A. P. F. et al. Distinct hippocampal–prefrontal neural assemblies coordinate memory encoding, maintenance, and recall. Curr. Biol. 33, 1220–1236.e4 (2023).
Tang, H. et al. Prefrontal cortical plasticity during learning of cognitive tasks. Nat. Commun. 13, 90 (2022). This paper shows that neuronal population representations in the prefrontal cortex of basic working memory task structures are implemented as building blocks for the efficient learning of newer task components over long-term training.
Sakai, K. & Miyashita, Y. Neural organization for the long-term memory of paired associates. Nature 354, 152–155 (1991).
Ito, T. & Murray, J. D. Multitask representations in the human cortex transform along a sensory-to-motor hierarchy. Nat. Neurosci. 26, 306–315 (2022).
Riley, M. R., Qi, X.-L. & Constantinidis, C. Functional specialization of areas along the anterior–posterior axis of the primate prefrontal cortex. Cereb. Cortex 27, 3683–3697 (2017).
Meyer, T., Qi, X.-L. & Constantinidis, C. Persistent discharges in the prefrontal cortex of monkeys naive to working memory tasks. Cereb. Cortex 17, i70–i76 (2007).
Bichot, N. P., Chenchal Rao, S. & Schall, J. D. Continuous processing in macaque frontal cortex during visual search. Neuropsychologia 39, 972–982 (2001).
Averbeck, B. & O’Doherty, J. P. Reinforcement-learning in fronto-striatal circuits. Neuropsychopharmacology 47, 147–162 (2022).
Soltani, A. & Koechlin, E. Computational models of adaptive behavior and prefrontal cortex. Neuropsychopharmacology 47, 58–71 (2022).
Seidlitz, J. et al. A population MRI brain template and analysis tools for the macaque. NeuroImage 170, 121–131 (2018).
Froudist-Walsh, S. et al. Gradients of neurotransmitter receptor expression in the macaque cortex. Nat. Neurosci. 26, 1281–1294 (2023).
Medalla, M. et al. Comparative features of calretinin, calbindin, and parvalbumin expressing interneurons in mouse and monkey primary visual and frontal cortices. J. Comp. Neurol. 531, 1934–1962 (2023).
Panichello, M. F. & Buschman, T. J. Shared mechanisms underlie the control of working memory and attention. Nature 592, 601–605 (2021).
Bartolo, R. & Averbeck, B. B. Prefrontal cortex predicts state switches during reversal learning. Neuron 106, 1044–1054.e4 (2020).
Asaad, W. F., Rainer, G. & Miller, E. K. Neural activity in the primate prefrontal cortex during associative learning. Neuron 21, 1399–1407 (1998).
Strange, B. A., Henson, R. N., Friston, K. J. & Dolan, R. J. Anterior prefrontal cortex mediates rule learning in humans. Cereb. Cortex 11, 1040–1046 (2001).
Koechlin, E., Ody, C. & Kouneiher, F. The architecture of cognitive control in the human prefrontal cortex. Science 302, 1181–1185 (2003).
Ramnani, N. & Owen, A. M. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat. Rev. Neurosci. 5, 184–194 (2004).
Baird, B., Smallwood, J., Gorgolewski, K. J. & Margulies, D. S. Medial and lateral networks in anterior prefrontal cortex support metacognitive ability for memory and perception. J. Neurosci. 33, 16657–16665 (2013).
Cole, M. W., Ito, T. & Braver, T. S. The behavioral relevance of task information in human prefrontal cortex. Cereb. Cortex 26, 2497–2505 (2016).
Szczepanski, S. M. & Knight, R. T. Insights into human behavior from lesions to the prefrontal cortex. Neuron 83, 1002–1018 (2014).
Muller, N. G. & Knight, R. T. The functional neuroanatomy of working memory: contributions of human brain lesion studies. Neuroscience 139, 51–58 (2006).
Curtis, C. E. & D’Esposito, M. The effects of prefrontal lesions on working memory performance and theory. Cogn. Affect. Behav. Neurosci. 4, 528–539 (2004).
Sallet, J. et al. The organization of dorsal frontal cortex in humans and macaques. J. Neurosci. 33, 12255–12274 (2013).
Mars, R. B. et al. Comparing brains by matching connectivity profiles. Neurosci. Biobehav. Rev. 60, 90–97 (2016).
Balsters, J. H., Zerbi, V., Sallet, J., Wenderoth, N. & Mars, R. B. Primate homologs of mouse cortico-striatal circuits. eLife 9, e53680 (2020).
Neubert, F. X., Mars, R. B., Sallet, J. & Rushworth, M. F. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proc. Natl Acad. Sci. USA 112, E2695–E2704 (2015).
Barrett, R. L. C. et al. Differences in frontal network anatomy across primate species. J. Neurosci. 40, 2094–2107 (2020).
Catani, M. et al. Short frontal lobe connections of the human brain. Cortex 48, 273–291 (2012).
Mackey, W. E., Devinsky, O., Doyle, W. K., Meager, M. R. & Curtis, C. E. Human dorsolateral prefrontal cortex is not necessary for spatial working memory. J. Neurosci. 36, 2847–2856 (2016).
Acknowledgements
Research reported in this paper was supported by the National Institutes of Health under award numbers R01 EY017077 and R01 MH116675. The authors thank C. Suell for technical assistance.
Author information
Authors and Affiliations
Contributions
J.A.M. and C.C. conceived and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Neuroscience thanks Alireza Soltani, Matt Chafee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Cognitive transfer
-
How well learning in a specific cognitive task or condition facilitates any potential benefit on a related cognitive task (‘near transfer’) or unrelated one (‘far transfer’).
- Delayed saccade paradigm
-
A task (here, relating to working memory) requiring the subject to hold a spatial location in mind and make an eye movement to the same (saccade) or opposite (anti-saccade) location after a delay period.
- Memory capacity
-
The number of specific items or associations that can be accurately maintained over a short (working memory) or long (long-term memory) delay. Stark differences are observed in the capacity limits of working memory (~4–7 items depending on the context) compared with long-term memory systems.
- Recurrent networks
-
Circuits whose output is fed back into the network, thus allowing activity to be maintained even after the original stimulus is no longer present.
- Representational dimensionality
-
For the population activity (or activity space) of a group of neurons, the number of axes that can capture most of the variance of the points, often indexed by the number of classifications that can be obtained between points via linear readouts (see ref. 129).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Miller, J.A., Constantinidis, C. Timescales of learning in prefrontal cortex. Nat. Rev. Neurosci. 25, 597–610 (2024). https://doi.org/10.1038/s41583-024-00836-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41583-024-00836-8