Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Is song processing distinct and special in the auditory cortex?

Abstract

Is the singing voice processed distinctively in the human brain? In this Perspective, we discuss what might distinguish song processing from speech processing in light of recent work suggesting that some cortical neuronal populations respond selectively to song and we outline the implications for our understanding of auditory processing. We review the literature regarding the neural and physiological mechanisms of song production and perception and show that this provides evidence for key differences between song and speech processing. We conclude by discussing the significance of the notion that song processing is special in terms of how this might contribute to theories of the neurobiological origins of vocal communication and to our understanding of the neural circuitry underlying sound processing in the human cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of spectra and breathing for song and speech.
Fig. 2: Physiological and neural underpinnings of human vocalizations.
Fig. 3: Cortical auditory processing: the dual-stream model and song selectivity.

Similar content being viewed by others

References

  1. Lindblom, B. & Sundberg, J. In Handbook of Acoustics 669–712 (Springer-Verlag, 2007).

  2. Gerhard, D. Pitch-based acoustic feature analysis for the discrimination of speech and monophonic singing. Can. Acoust. 30, 152–153 (2002).

    Google Scholar 

  3. Albouy, P., Mehr, S. A., Hoyer, R. S., Ginzburg, J. & Zatorre, R. J. Spectro-temporal acoustical markers differentiate speech from song across cultures. Preprint at bioRxiv, https://doi.org/10.1101/2023.01.29.526133 (2023).

  4. Yu, C. Y., Cabildo, A., Grahn, J. A. & Vanden Bosch der Nederlanden, C. M. Perceived rhythmic regularity is greater for song than speech: examining acoustic correlates of rhythmic regularity in speech and song. Front. Psychol. 14, 1167003 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  5. Scott, S. K. The neural control of volitional vocal production — from speech to identity, from social meaning to song. Philos. Trans. R. Soc. B Biol. Sci. 377, 20200395 (2022).

    Article  Google Scholar 

  6. Zuk, J., Loui, P. & Guenther, F. H. Neural control of speaking and singing: The DIVA Model for Singing. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/xqtc9 (2022).

  7. Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA 98, 11818–11823 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zatorre, R. J. Musical pleasure and reward: mechanisms and dysfunction. Ann. N. Y. Acad. Sci. 1337, 202–211 (2015).

    Article  PubMed  Google Scholar 

  9. Tierney, A., Dick, F., Deutsch, D. & Sereno, M. Speech versus song: multiple pitch-sensitive areas revealed by a naturally occurring musical illusion. Cereb. Cortex 23, 249–254 (2013).

    Article  PubMed  Google Scholar 

  10. Scharinger, M., Knoop, C. A., Wagner, V. & Menninghaus, W. Neural processing of poems and songs is based on melodic properties. NeuroImage 257, 119310 (2022).

    Article  PubMed  Google Scholar 

  11. Cohen, A., Levitin, D. & Kleber, B. In The Routledge Companion to Interdisciplinary Studies in Singing (ed. Russo, F. A. et al.) 79–96 (Routledge, 2020).

  12. Peretz, I., Gagnon, L., Hebert, S. & Macoir, J. Singing in the brain: insights from cognitive neuropsychology. Music Percept. 21, 373–390 (2004).

    Article  Google Scholar 

  13. Norman-Haignere, S. V. et al. A neural population selective for song in human auditory cortex. Curr. Biol. 32, 1470–1484.e12 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Trainor, L. J., Clark, E. D., Huntley, A. & Adams, B. A. The acoustic basis of preferences for infant-directed singing. Infant. Behav. Dev. 20, 383–396 (1997).

    Article  Google Scholar 

  15. Trainor, L. J., Austin, C. M. & Desjardins, R. N. Is infant-directed speech prosody a result of the vocal expression of emotion? Psychol. Sci. 11, 188–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Masataka, N. Preference for infant-directed singing in 2-day-old hearing infants of deaf parents. Dev. Psychol. 35, 1001–1005 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Brown, S. & Jordania, J. Universals in the world’s musics. Psychol. Music 41, 229–248 (2013).

    Article  Google Scholar 

  18. Mehr, S. A. et al. Universality and diversity in human song. Science 366, eaax0868 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mithen, S. J. The Singing Neanderthals: The Origins of Music, Language, Mind, and Body (Harvard University Press, 2006).

  20. Brandt, A., Slevc, R. & Gebrian, M. Music and early language acquisition. Front. Psychol. 3, 327 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  21. Fitch, W. T. The Evolution of Language, 466–507 (Cambridge Univ. Press, 2010).

  22. Cross, I. in Music, Mind and Science (ed Suk, W. Y.) 10–39 (Seoul National Univ. Press, 1999).

  23. Haiduk, F. & Fitch, W. T. Understanding design features of music and language: the choric/dialogic distinction. Front. Psychol. 13, 786899 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  24. Cross, I. in Musical Communication (eds Miell, D., MacDonald, R. & Hargreaves, D.) 27–43 (Oxford Univ. Press, 2005).

  25. Savage, P. E. et al. Music as a coevolved system for social bonding. Behav. Brain Sci. 44, e59 (2021).

    Article  Google Scholar 

  26. Mehr, S. A., Singh, M., York, H., Glowacki, L. & Krasnow, M. M. Form and function in human song. Curr. Biol. 28, 356–368.e5 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Unyk, A. M., Trehub, S. E., Trainor, L. J. & Schellenberg, E. G. Lullabies and simplicity: a cross-cultural perspective. Psychol. Music 20, 15–28 (1992).

    Article  Google Scholar 

  28. Trehub, S. E., Unyk, A. M. & Trainor, L. J. Maternal singing in cross-cultural perspective. Infant. Behav. Dev. 16, 285–295 (1993).

    Article  Google Scholar 

  29. Trehub, S. & Trainor, L. Singing to infants: lullabies and play songs. Adv. Infancy Res. 12, 43–77 (1998).

    Google Scholar 

  30. Desain, P. & Honing, H. The quantization of musical time: a connectionist approach. Comput. Music J. 13, 56–66 (1989).

    Article  Google Scholar 

  31. Large, E. W. & Snyder, J. S. Pulse and meter as neural resonance. Ann. N. Y. Acad. Sci. 1169, 46–57 (2009).

    Article  PubMed  Google Scholar 

  32. Peper, C. E., Beek, P. J. & van Wieringen, P. C. W. Multifrequency coordination in bimanual tapping: asymmetrical coupling and signs of supercriticality. J. Exp. Psychol. Hum. Percept. Perform. 21, 1117–1138 (1995).

    Article  Google Scholar 

  33. Bååth, R., Lagerstedt, E. & Gärdenfors, P. An oscillator model of categorical rhythm perception. Proc. Annu. Meet. Cogn. Sci. Soc. 35, 1803–1808 (2013).

    Google Scholar 

  34. Jacoby, N. & McDermott, J. H. Integer ratio priors on musical rhythm revealed cross-culturally by iterated reproduction. Curr. Biol. 27, 359–370 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Jacoby, N. et al. Universal and non-universal features of musical pitch perception revealed by singing. Curr. Biol. 29, 3229–3243.e12 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Patel, A. D. Music, Language, and the Brain (Oxford Univ. Press, 2010).

  37. Peretz, I., Vuvan, D., Lagrois, M.-É. & Armony, J. L. Neural overlap in processing music and speech. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140090 (2015).

    Article  Google Scholar 

  38. Zatorre, R. J., Chen, J. L. & Penhune, V. B. When the brain plays music: auditory–motor interactions in music perception and production. Nat. Rev. Neurosci. 8, 547–558 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Fant, G. Acoustic Theory of Speech Production: With Calculations Based on X-ray Studies of Russian Articulations (Walter de Gruyter, 1971).

  40. Briefer, E. & McElligott, A. G. Indicators of age, body size and sex in goat kid calls revealed using the source–filter theory. Appl. Anim. Behav. Sci. 133, 175–185 (2011).

    Article  Google Scholar 

  41. Titze, I. R. Principles of Voice Production (Prentice Hall, 1994).

  42. Titze, I. R. Nonlinear source–filter coupling in phonation: theory. J. Acoust. Soc. Am. 123, 2733–2749 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  43. Tokuda, I. in Oxford Research Encyclopedia of Linguistics (eds Aronoff, M. et al.) https://doi.org/10.1093/acrefore/9780199384655.013.894 (2021).

  44. Taylor, A. M. & Reby, D. The contribution of source–filter theory to mammal vocal communication research. J. Zool. 280, 221–236 (2010).

    Article  Google Scholar 

  45. Lieberman, P. The Biology and Evolution of Language (Harvard Univ. Press, 1984).

  46. Zatorre, R. J. & Baum, S. R. Musical melody and speech intonation: singing a different tune. PLoS Biol. 10, e1001372 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Ozaki, Y. et al. Globally, songs and instrumental melodies are slower, higher, and use more stable pitches than speech [Stage 2 Registered Report]. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/jr9x7 (2023).

  48. Ozdemir, E., Norton, A. & Schlaug, G. Shared and distinct neural correlates of singing and speaking. NeuroImage 33, 628–635 (2006).

    Article  PubMed  Google Scholar 

  49. Belyk, M. et al. Human larynx motor cortices coordinate respiration for vocal-motor control. NeuroImage 239, 118326 (2021).

    Article  PubMed  Google Scholar 

  50. Wich, S. A. et al. A case of spontaneous acquisition of a human sound by an orangutan. Primates 50, 56–64 (2009).

    Article  PubMed  Google Scholar 

  51. Iwatsubo, T., Kuzuhara, S., Kanemitsu, A., Shimada, H. & Toyokura, Y. Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology 40, 309–309 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Kuypers, H. G. Corticobular connexions to the pons and lower brain-stem in man: an anatomical study. Brain J. Neurol. 81, 364–388 (1958).

    Article  CAS  Google Scholar 

  53. Arriaga, G., Zhou, E. P. & Jarvis, E. D. Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS ONE 7, e46610 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kumar, V., Croxson, P. L. & Simonyan, K. Structural organization of the laryngeal motor cortical network and its implication for evolution of speech production. J. Neurosci. J. Soc. Neurosci. 36, 4170–4181 (2016).

    Article  CAS  Google Scholar 

  55. Rauschecker, J. P. Where did language come from? Precursor mechanisms in nonhuman primates. Curr. Opin. Behav. Sci. 21, 195–204 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  56. Gisladottir, R. S. et al. Sequence variants affecting voice pitch in humans. Sci. Adv. 9, eabq2969 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Blank, S. C., Scott, S. K., Murphy, K., Warburton, E. & Wise, R. J. S. Speech production: Wernicke, Broca and beyond. Brain 125, 1829–1838 (2002).

    Article  PubMed  Google Scholar 

  58. Belyk, M. & Brown, S. The origins of the vocal brain in humans. Neurosci. Biobehav. Rev. 77, 177–193 (2017).

    Article  PubMed  Google Scholar 

  59. Kriegstein, K. V. & Giraud, A.-L. Distinct functional substrates along the right superior temporal sulcus for the processing of voices. NeuroImage 22, 948–955 (2004).

    Article  PubMed  Google Scholar 

  60. Hyde, K. L., Peretz, I. & Zatorre, R. J. Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia 46, 632–639 (2008).

    Article  PubMed  Google Scholar 

  61. Zarate, J. M. The neural control of singing. Front. Hum. Neurosci. 7, 237 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  62. Patterson, R. D., Uppenkamp, S., Johnsrude, I. S. & Griffiths, T. D. The processing of temporal pitch and melody information in auditory cortex. Neuron 36, 767–776 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Kleber, B. et al. Voxel-based morphometry in opera singers: increased gray-matter volume in right somatosensory and auditory cortices. NeuroImage 133, 477–483 (2016).

    Article  PubMed  Google Scholar 

  64. Zamorano, A. M. et al. Singing training predicts increased insula connectivity with speech and respiratory sensorimotor areas at rest. Brain Res. 1813, 148418 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Kleber, B., Veit, R., Birbaumer, N., Gruzelier, J. & Lotze, M. The brain of opera singers: experience-dependent changes in functional activation. Cereb. Cortex 20, 1144–1152 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Dronkers, N. F. A new brain region for coordinating speech articulation. Nature 384, 159–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Wise, R. J., Greene, J., Büchel, C. & Scott, S. K. Brain regions involved in articulation. Lancet 353, 1057–1061 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Kleber, B., Zeitouni, A. G., Friberg, A. & Zatorre, R. J. Experience-dependent modulation of feedback integration during singing: Role of the right anterior insula. J. Neurosci. 33, 6070–6080 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Kleber, B., Friberg, A., Zeitouni, A. & Zatorre, R. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. NeuroImage 147, 97–110 (2017).

    Article  PubMed  Google Scholar 

  70. Riecker, A., Ackermann, H., Wildgruber, D., Dogil, G. & Grodd, W. Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. Neuroreport 11, 1997–2000 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Ackermann, H. & Riecker, A. The contribution of the insula to motor aspects of speech production: a review and a hypothesis. Brain Lang. 89, 320–328 (2004).

    Article  PubMed  Google Scholar 

  72. Oh, A., Duerden, E. G. & Pang, E. W. The role of the insula in speech and language processing. Brain Lang. 135, 96–103 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  73. Finkel, S. et al. Intermittent theta burst stimulation over right somatosensory larynx cortex enhances vocal pitch-regulation in nonsingers. Hum. Brain Mapp. 40, 2174–2187 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  74. McGettigan, C. et al. T’ain’t what you say, it’s the way that you say it — left insula and inferior frontal cortex work in interaction with superior temporal regions to control the performance of vocal impersonations. J. Cogn. Neurosci. 25, 1875–1886 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  75. Jasmin, K. M. et al. Cohesion and joint speech: right hemisphere contributions to synchronized vocal production. J. Neurosci. 36, 4669–4680 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Blank, S. C., Bird, H., Turkheimer, F. & Wise, R. J. S. Speech production after stroke: the role of the right pars opercularis. Ann. Neurol. 54, 310–320 (2003).

    Article  PubMed  Google Scholar 

  77. Scott, S. K. Auditory processing — speech, space and auditory objects. Curr. Opin. Neurobiol. 15, 197–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Rauschecker, J. P. & Scott, S. K. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12, 718–724 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Whitehead, J. C. & Armony, J. L. Singing in the brain: neural representation of music and voice as revealed by fMRI. Hum. Brain Mapp. 39, 4913–4924 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  80. Agnew, Z. K., McGettigan, C. & Scott, S. K. Discriminating between auditory and motor cortical responses to speech and nonspeech mouth sounds. J. Cogn. Neurosci. 23, 4038–4047 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  81. Scott, S. K., Blank, C. C., Rosen, S. & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain J. Neurol. 123, 2400–2406 (2000).

    Article  Google Scholar 

  82. Klein, M. E. & Zatorre, R. J. A role for the right superior temporal sulcus in categorical perception of musical chords. Neuropsychologia 49, 878–887 (2011).

    Article  PubMed  Google Scholar 

  83. Kyong, J. S. et al. Exploring the roles of spectral detail and intonation contour in speech intelligibility: an fMRI study. J. Cogn. Neurosci. 26, 1748–1763 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  84. McGettigan, C. & Scott, S. K. Cortical asymmetries in speech perception: what’s wrong, what’s right and what’s left? Trends Cogn. Sci. 16, 269–276 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  85. McGettigan, C. et al. An application of univariate and multivariate approaches in fMRI to quantifying the hemispheric lateralization of acoustic and linguistic processes. J. Cogn. Neurosci. 24, 636–652 (2012).

    Article  PubMed  Google Scholar 

  86. Recanzone, G. H. & Sutter, M. L. The biological basis of audition. Annu. Rev. Psychol. 59, 119–142 (2008).

    Article  PubMed  Google Scholar 

  87. Lewis, J. W. & Van Essen, D. C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Rauschecker, J. P. In Spatial Processing in Navigation, Imagery and Perception (eds Mast, F. & Jäncke, L.) 389–410 (Springer US, 2007).

  89. Vates, G. E. & Nottebohm, F. Feedback circuitry within a song-learning pathway. Proc. Natl Acad. Sci. USA 92, 5139–5143 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Friederici, A. Language development and the ontogeny of the dorsal pathway. Front. Evol. Neurosci. 4, 3 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  91. Jasmin, K., Lima, C. F. & Scott, S. K. Understanding rostral–caudal auditory cortex contributions to auditory perception. Nat. Rev. Neurosci. 20, 425–434 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Hickok, G., Buchsbaum, B., Humphries, C. & Muftuler, T. Auditory–motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J. Cogn. Neurosci. 15, 673–682 (2003).

    Article  PubMed  Google Scholar 

  93. Pearce, M. T. & Wiggins, G. A. Expectation in melody: the influence of context and learning. Music Percept. 23, 377–405 (2006).

    Article  Google Scholar 

  94. Von Hippel, P. & Huron, D. Why do skips precede reversals? The effect of tessitura on melodic structure. Music Percept. 18, 59–85 (2000).

    Article  Google Scholar 

  95. Russo, F. A. & Cuddy, L. L. A common origin for vocal accuracy and melodic expectancy: vocal constraints. J. Acoust. Soc. Am. 105, 1217–1217 (1999).

    Article  Google Scholar 

  96. Schellenberg, E. G. Simplifying the implication-realization model of melodic expectancy. Music Percept. 14, 295–318 (1997).

    Article  Google Scholar 

  97. Zatorre, R. J. Pitch perception of complex tones and human temporal‐lobe function. J. Acoust. Soc. Am. 84, 566–572 (1988).

    Article  CAS  PubMed  Google Scholar 

  98. Johnsrude, I. S., Penhune, V. B. & Zatorre, R. J. Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123, 155–163 (2000).

    Article  PubMed  Google Scholar 

  99. Meyer, M., Alter, K., Friederici, A. D., Lohmann, G. & von Cramon, D. Y. FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Hum. Brain Mapp. 17, 73–88 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  100. Meyer, M., Steinhauer, K., Alter, K., Friederici, A. D. & von Cramon, D. Y. Brain activity varies with modulation of dynamic pitch variance in sentence melody. Brain Lang. 89, 277–289 (2004).

    Article  PubMed  Google Scholar 

  101. Zatorre, R. J., Evans, A. C. & Meyer, E. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 14, 1908–1919 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Sammler, D., Grosbras, M.-H., Anwander, A., Bestelmeyer, P. E. G. & Belin, P. Dorsal and ventral pathways for prosody. Curr. Biol. 25, 3079–3085 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Jeffries, K. J., Fritz, J. B. & Braun, A. R. Words in melody: an H215 O PET study of brain activation during singing and speaking. NeuroReport 14, 749–754 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Tervaniemi, M. & Hugdahl, K. Lateralization of auditory-cortex functions. Brain Res. Rev. 43, 231–246 (2003).

    Article  PubMed  Google Scholar 

  105. Merrill, J. et al. Perception of words and pitch patterns in song and speech. Front. Psychol. 3, 76 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  106. Sammler, D. & Elmer, S. Advances in the neurocognition of music and language. Brain Sci. 10, 509 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  107. Albouy, P., Benjamin, L., Morillon, B. & Zatorre, R. J. Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science 367, 1043–1047 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Geiser, E., Zaehle, T., Jancke, L. & Meyer, M. The neural correlate of speech rhythm as evidenced by metrical speech processing. J. Cogn. Neurosci. 20, 541–552 (2008).

    Article  PubMed  Google Scholar 

  109. Kasdan, A. V. et al. Identifying a brain network for musical rhythm: a functional neuroimaging meta-analysis and systematic review. Neurosci. Biobehav. Rev. 136, 104588 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  110. Grahn, J. A. & Brett, M. Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 19, 893–906 (2007).

    Article  PubMed  Google Scholar 

  111. Rauschecker, J. P., Tian, B. & Hauser, M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268, 111–114 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Petkov, C. I. et al. A voice region in the monkey brain. Nat. Neurosci. 11, 367–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P. & Pike, B. Voice-selective areas in human auditory cortex. Nature 403, 309–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Pernet, C. R. et al. The human voice areas: spatial organization and inter-individual variability in temporal and extra-temporal cortices. NeuroImage 119, 164–174 (2015).

    Article  PubMed  Google Scholar 

  115. Agus, T. R., Paquette, S., Suied, C., Pressnitzer, D. & Belin, P. Voice selectivity in the temporal voice area despite matched low-level acoustic cues. Sci. Rep. 7, 11526 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  116. Latinus, M., Crabbe, F. & Belin, P. Learning-induced changes in the cerebral processing of voice identity. Cereb. Cortex 21, 2820–2828 (2011).

    Article  PubMed  Google Scholar 

  117. Ethofer, T. et al. Emotional voice areas: anatomic location, functional properties, and structural connections revealed by combined fMRI/DTI. Cereb. Cortex 22, 191–200 (2012).

    Article  PubMed  Google Scholar 

  118. Frühholz, S. & Grandjean, D. Processing of emotional vocalizations in bilateral inferior frontal cortex. Neurosci. Biobehav. Rev. 37, 2847–2855 (2013).

    Article  PubMed  Google Scholar 

  119. Grossmann, T. The development of emotion perception in face and voice during infancy. Restor. Neurol. Neurosci. 28, 219–236 (2010).

    PubMed  Google Scholar 

  120. Angulo-Perkins, A. et al. Music listening engages specific cortical regions within the temporal lobes: differences between musicians and non-musicians. Cortex 59, 126–137 (2014).

    Article  PubMed  Google Scholar 

  121. Fedorenko, E., McDermott, J. H., Norman-Haignere, S. & Kanwisher, N. Sensitivity to musical structure in the human brain. J. Neurophysiol. 108, 3289–3300 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  122. Norman-Haignere, S., Kanwisher, N. G. & McDermott, J. H. Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron 88, 1281–1296 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Norman-Haignere, S. V. & McDermott, J. H. Neural responses to natural and model-matched stimuli reveal distinct computations in primary and nonprimary auditory cortex. PLoS Biol. 16, e2005127 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  125. Norman-Haignere, S., Kanwisher, N., McDermott, J. H. & Conway, B. R. Divergence in the functional organization of human and macaque auditory cortex revealed by fMRI responses to harmonic tones. Nat. Neurosci. 22, 1057–1060 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Vanden Bosch der Nederlanden, C. M., Hannon, E. E. & Snyder, J. S. Finding the music of speech: musical knowledge influences pitch processing in speech. Cognition 143, 135–140 (2015).

    Article  PubMed  Google Scholar 

  127. Shoffstall, A. & Capadona, J. R. In Neuromodulation 2nd edn Ch 28 (eds Krames, E. S., Peckham, P. H. & Rezai, A. R.) 393–413 (Academic Press, 2018).

  128. Fifer, W. P. & Moon, C. M. The role of mother’s voice in the organization of brain function in the newborn. Acta Paediatr. Suppl. 397, 86–93 (1994).

    Article  CAS  PubMed  Google Scholar 

  129. Giordano, V. et al. Accent discrimination abilities during the first days of life: an fNIRS study. Brain Lang. 223, 105039 (2021).

    Article  PubMed  Google Scholar 

  130. Mandel, D. R., Jusczyk, P. W. & Kemler Nelson, D. G. Does sentential prosody help infants organize and remember speech information? Cognition 53, 155–180 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Kosakowski, H. et al. Preliminary evidence for selective cortical responses to music in one-month-old infants. Dev. Sci. 26, e13387 (2023).

    Article  PubMed  Google Scholar 

  132. Karmiloff-Smith, B. A. Beyond modularity: a developmental perspective on cognitive science. Eur. J. Disord. Commun. 29, 95–105 (1994).

    Article  Google Scholar 

  133. Patel, A. D. in The Science-Music Borderlands: Reckoning with the Past and Imagining the Future (eds. Margulis, E. H. et al.) 15–38 (The MIT Press, 2023).

  134. Kraus, N. & Banai, K. Auditory-processing malleability: focus on language and music. Curr. Dir. Psychol. Sci. 16, 105–110 (2007).

    Article  Google Scholar 

  135. Vanden Bosch der Nederlanden, C. M. et al. Developmental changes in the categorization of speech and song. Dev. Sci. 26, e13346 (2023).

    Article  PubMed  Google Scholar 

  136. Dehaene, S. Inside the letterbox: how literacy transforms the human brain. Cerebrum 2013, 7 (2013).

    PubMed Central  PubMed  Google Scholar 

  137. Iuzzini-Seigel, J., Hogan, T. P., Rong, P. & Green, J. R. Longitudinal development of speech motor control: motor and linguistic factors. J. Mot. Learn. Dev. 3, 53–68 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  138. Alcock, K. The development of oral motor control and language. Down Syndr. Res. Pract. 11, 1–8 (2006).

    Article  Google Scholar 

  139. Norman-Haignere, S. V. et al. Multiscale temporal integration organizes hierarchical computation in human auditory cortex. Nat. Hum. Behav. 6, 455–469 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  140. Patel, A. D. & Von Rueden, C. Where they sing solo: accounting for cross-cultural variation in collective music-making in theories of music evolution. Behav. Brain Sci. 44, e85 (2021).

    Article  PubMed  Google Scholar 

  141. Bruckert, L. et al. Vocal attractiveness increases by averaging. Curr. Biol. 20, 116–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Schneider, F. et al. Neuronal figure-ground responses in primate primary auditory cortex. Cell Rep. 35, 109242 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Proctor, D. F. In Comprehensive Physiology 597–604 (John Wiley & Sons, Ltd, 2011).

  144. Kayes, G. In The Oxford Handbook of Singing (eds Welch, G. F., Howard, D. M. & Nix, J.) https://doi.org/10.1093/oxfordhb/9780199660773.013.019 (Oxford Univ. Press, 2019).

  145. Christiner, M. & Reiterer, S. Song and speech: examining the link between singing talent and speech imitation ability. Front. Psychol. 4, 874 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  146. Pfordresher, P. Q., Mantell, J. T. & Pruitt, T. A. Effects of intention in the imitation of sung and spoken pitch. Psychol. Res. 86, 792–807 (2022).

    Article  PubMed  Google Scholar 

  147. Sundberg, J. Formant structure and articulation of spoken and sung vowels. Folia Phoniatr. 22, 28–48 (2009).

    Article  Google Scholar 

  148. Rossi, S. et al. How the brain understands spoken and sung sentences. Brain Sci. 10, 36 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  149. Leanderson, R., Sundberg, J. & Von Euler, C. Breathing muscle activity and subglottal pressure dynamics in singing and speech. J. Voice 1, 258–261 (1987).

    Article  Google Scholar 

  150. Salomoni, S., van den Hoorn, W. & Hodges, P. Breathing and singing: objective characterization of breathing patterns in classical singers. PLoS ONE 11, e0155084 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  151. Hoit, J. D., Jenks, C. L., Watson, P. J. & Cleveland, T. F. Respiratory function during speaking and singing in professional country singers. J. Voice 10, 39–49 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Nishimura, T. The descended larynx and the descending larynx. Anthropol. Sci. 126, 3–8 (2018).

    Article  Google Scholar 

  153. Bosma, J. F. Symposium on Development of the Basicranium (U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, 1976).

  154. Fowler, C. A. & Brown, J. M. Intrinsic fo differences in spoken and sung vowels and their perception by listeners. Percept. Psychophys. 59, 729–738 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Belyk, M. & Brown, S. Perception of affective and linguistic prosody: an ALE meta-analysis of neuroimaging studies. Soc. Cogn. Affect. Neurosci. 9, 1395–1403 (2014).

    Article  PubMed  Google Scholar 

  156. Dichter, B. K., Breshears, J. D., Leonard, M. K. & Chang, E. F. The control of vocal pitch in human laryngeal motor cortex. Cell 174, 21–31.e9 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Jürgens, U. The neural control of vocalization in mammals: a review. J. Voice 23, 1–10 (2009).

    Article  PubMed  Google Scholar 

  158. Callan, D. E. et al. Song and speech: brain regions involved with perception and covert production. NeuroImage 31, 1327–1342 (2006).

    Article  PubMed  Google Scholar 

  159. Warren, J. E., Wise, R. J. S. & Warren, J. D. Sounds do-able: auditory-motor transformations and the posterior temporal plane. Trends Neurosci. 28, 636–643 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Rauschecker, J. P. Ventral and dorsal streams in the evolution of speech and language. Front. Evol. Neurosci. 4, 7 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  161. von Holst, E. & Mittelstaedt, H. Das Reafferenzprinzip. Naturwissenschaften 37, 464–476 (1950).

    Article  Google Scholar 

  162. Bizley, J. K. & Walker, K. M. M. Sensitivity and selectivity of neurons in auditory cortex to the pitch, timbre, and location of sounds. Neuroscientist 16, 453–469 (2010).

    Article  PubMed  Google Scholar 

  163. Theunissen, F. E. & Elie, J. E. Neural processing of natural sounds. Nat. Rev. Neurosci. 15, 355–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Eggerrmont, J. J. in Auditory Temporal Processing and its Disorders (ed. Eggermont, J. J.) 144–164 (Oxford Univ. Press, 2015).

  165. Cartwright, J. H. E., González, D. L. & Piro, O. Pitch perception: a dynamical-systems perspective. Proc. Natl Acad. Sci. USA 98, 4855–4859 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. McPherson, M. J. & McDermott, J. H. Diversity in pitch perception revealed by task dependence. Nat. Hum. Behav. 2, 52–66 (2018).

    Article  PubMed  Google Scholar 

  167. Imaizumi, S. et al. Vocal identification of speaker and emotion activates differerent brain regions. NeuroReport 8, 2809 (1997).

    Article  CAS  PubMed  Google Scholar 

  168. Schirmer, A. & Kotz, S. A. Beyond the right hemisphere: brain mechanisms mediating vocal emotional processing. Trends Cogn. Sci. 10, 24–30 (2006).

    Article  PubMed  Google Scholar 

  169. Morett, L. M. & Chang, L.-Y. Emphasising sound and meaning: pitch gestures enhance Mandarin lexical tone acquisition. Lang. Cogn. Neurosci. 30, 347–353 (2015).

    Article  Google Scholar 

  170. Rosen, S. M., Fourcin, A. J. & Moore, B. C. J. Voice pitch as an aid to lipreading. Nature 291, 150–152 (1981).

    Article  CAS  PubMed  Google Scholar 

  171. Moore, B. C. J. Hearing (Academic Press, 1995).

  172. Uddin, L. Q. Salience Network of the Human Brain 1–4 (Academic Press, 2017).

  173. Warren, J. D. & Griffiths, T. D. Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. J. Neurosci. 23, 5799–5804 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Whitfield, I. C. Auditory cortex and the pitch of complex tones. J. Acoust. Soc. Am. 67, 644–647 (1980).

    Article  CAS  PubMed  Google Scholar 

  175. Kazui, S., Naritomi, H., Sawada, T., Inoue, N. & Okuda, J.-I. Subcortical auditory agnosia. Brain Lang. 38, 476–487 (1990).

    Article  CAS  PubMed  Google Scholar 

  176. Tramo, M. J., Shah, G. D. & Braida, L. D. Functional role of auditory cortex in frequency processing and pitch perception. J. Neurophysiol. 87, 122–139 (2002).

    Article  PubMed  Google Scholar 

  177. Sankaran, N., Thompson, W. F., Carlile, S. & Carlson, T. A. Decoding the dynamic representation of musical pitch from human brain activity. Sci. Rep. 8, 839 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Penagos, H., Melcher, J. R. & Oxenham, A. J. A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. J. Neurosci. 24, 6810–6815 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Warren, J. D., Uppenkamp, S., Patterson, R. D. & Griffiths, T. D. Separating pitch chroma and pitch height in the human brain. Proc. Natl Acad. Sci. USA 100, 10038–10042 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  180. Belin, P., Bestelmeyer, P. E. G., Latinus, M. & Watson, R. Understanding voice perception. Br. J. Psychol. 102, 711–725 (2011).

    Article  PubMed  Google Scholar 

  181. Andics, A., McQueen, J. M. & Petersson, K. M. Mean-based neural coding of voices. NeuroImage 79, 351–360 (2013).

    Article  PubMed  Google Scholar 

  182. Kanber, E., Lavan, N. & McGettigan, C. Highly accurate and robust identity perception from personally familiar voices. J. Exp. Psychol. Gen. 151, 897–911 (2022).

    Article  PubMed  Google Scholar 

  183. Puts, D. A., Gaulin, S. J. C. & Verdolini, K. Dominance and the evolution of sexual dimorphism in human voice pitch. Evol. Hum. Behav. 27, 283–296 (2006).

    Article  Google Scholar 

  184. Honjo, I. & Isshiki, N. Laryngoscopic and voice characteristics of aged persons. Arch. Otolaryngol. 106, 149–150 (1980).

    Article  CAS  PubMed  Google Scholar 

  185. Boulet, M. J. & Oddens, B. J. Female voice changes around and after the menopause — an initial investigation. Maturitas 23, 15–21 (1996).

    Article  CAS  PubMed  Google Scholar 

  186. Abdelli-Beruh, N. B., Wolk, L. & Slavin, D. Prevalence of vocal fry in young adult male American English speakers. J. Voice 28, 185–190 (2014).

    Article  PubMed  Google Scholar 

  187. Dodd, B., Holm, A., Zhu, H. & Crosbie, S. Phonological development: a normative study of British English-speaking children. Clin. Linguist. Phon. 17, 617–643 (2004).

    Article  Google Scholar 

  188. Elardo, R., Bradley, R. & Caldwell, B. M. A longitudinal study of the relation of infants’ home environments to language development at age three. Child Dev. 48, 595–603 (1977).

    Article  Google Scholar 

  189. Bloom, L. et al. Structure and variation in child language. Monogr. Soc. Res. Child Dev. 40, 1–97 (1975).

    Article  Google Scholar 

  190. Fitch, W. T. & Giedd, J. Morphology and development of the human vocal tract: a study using magnetic resonance imaging. J. Acoust. Soc. Am. 106, 1511–1522 (1999).

    Article  CAS  PubMed  Google Scholar 

  191. Latinus, M., McAleer, P., Bestelmeyer, P. E. G. & Belin, P. Norm-based coding of voice identity in human auditory cortex. Curr. Biol. 23, 1075–1080 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Yan, W.-J., Wu, Q., Liang, J., Chen, Y.-H. & Fu, X. How fast are the leaked facial expressions: the duration of micro-expressions. J. Nonverbal Behav. 37, 217–230 (2013).

    Article  Google Scholar 

  193. Conde, T. et al. The time course of emotional authenticity detection in nonverbal vocalizations. Cortex 151, 116–132 (2022).

    Article  PubMed  Google Scholar 

  194. Sauter, D. A., Eisner, F., Calder, A. J. & Scott, S. K. Perceptual cues in nonverbal vocal expressions of emotion. Q. J. Exp. Psychol. 63, 2251–2272 (2010).

    Article  Google Scholar 

  195. Buck, R., Losow, J. I., Murphy, M. M. & Costanzo, P. Social facilitation and inhibition of emotional expression and communication. J. Pers. Soc. Psychol. 63, 962–968 (1992).

    Article  CAS  PubMed  Google Scholar 

  196. Provine, R. R. & Fischer, K. R. Laughing, smiling, and talking: relation to sleeping and social context in humans. Ethology 83, 295–305 (1989).

    Article  Google Scholar 

  197. Hawkins, S., Cross, I. & Ogden, R. In Language, Music and Interaction (eds Orwin, M., Howes, C. & Kempson, R.) 285–329 (College Publications, 2013).

  198. Ogden, R. & Hawkins, S. Entrainment as a basis for co-ordinated actions in speech. In Proc. 18th International Congress of Phonetic Sciences (ed. The Scottish Consortium for ICPhS 2015) 0599 (The University of Glasgow, 2015).

  199. Cross, I. Music and communication in music psychology. Psychol. Music 42, 809–819 (2014).

    Article  Google Scholar 

  200. Garrod, S. & Pickering, M. J. Joint action, interactive alignment, and dialog. Top. Cogn. Sci. 1, 292–304 (2009).

    Article  PubMed  Google Scholar 

  201. Kaukomaa, T., Peräkylä, A. & Ruusuvuori, J. How listeners use facial expression to shift the emotional stance of the speaker’s utterance. Res. Lang. Soc. Interact. 48, 319–341 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the past and present members of the ICN Speech and Communication Laboratory for wonderfully stimulating lab meetings. The first author further thanks UCL for its generous GRS/ORS funding opportunity and I. Cross for his past mentorship and very interesting e-mail discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.K.S. and I.H. researched data for the article, wrote the article, and reviewed and/or edited the manuscript before submission. All authors contributed substantially to discussion of the content.

Corresponding author

Correspondence to Sophie K. Scott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Christina Vanden Bosch der Nederlanden and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, I., Niven, E.C., Griffin, A. et al. Is song processing distinct and special in the auditory cortex?. Nat. Rev. Neurosci. 24, 711–722 (2023). https://doi.org/10.1038/s41583-023-00743-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00743-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing