Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The transition to motherhood: linking hormones, brain and behaviour

An Author Correction to this article was published on 29 September 2023

A Publisher Correction to this article was published on 29 September 2023

This article has been updated

Abstract

We are witnessing a stark increase in scientific interest in the neurobiological processes associated with pregnancy and maternity. Convergent evidence suggests that around the time of labour, first-time mothers experience a specific pattern of neuroanatomical changes that are associated with maternal behaviour. Here we provide an overview of the human neurobiological adaptations of motherhood, focusing on the interplay between pregnancy-related steroid and peptide hormones, and neuroplasticity in the brain. We discuss which brain plasticity mechanisms might underlie the structural changes detected by MRI, which hormonal systems are likely to contribute to such neuroanatomical changes and how these brain mechanisms may be linked to maternal behaviour. This Review offers an overarching framework that can serve as a roadmap for future investigations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in grey matter volume during the transition to motherhood.
Fig. 2: Grey matter and hormonal trajectories across motherhood transition in humans.
Fig. 3: Maternal circuit in rodents.

Similar content being viewed by others

Change history

References

  1. Martínez-García, M., Paternina-Die, M., Desco, M., Vilarroya, O. & Carmona, S. Characterizing the brain structural adaptations across the motherhood transition. Front. Glob. Women’s Health 2, 742775 (2021).

    Article  Google Scholar 

  2. Luders, E., Kurth, F. & Sundström Poromaa, I. The neuroanatomy of pregnancy and postpartum. NeuroImage 263, 119646 (2022).

    Article  PubMed  Google Scholar 

  3. García-Segura, L. M. Hormones and Brain Plasticity, https://doi.org/10.1093/acprof:oso/9780195326611.003.0002 (Oxford Univ. Press, 2009).

  4. Been, L. E., Sheppard, P. A. S., Galea, L. A. M. & Glasper, E. R. Hormones and neuroplasticity: a lifetime of adaptive responses. Neurosci. Biobehav. Rev. 132, 679–690 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Numan, M. The Parental Brain: Mechanisms, Development, and Evolution (Oxford Univ. Press, 2020).

  6. Hoekzema, E. et al. Pregnancy leads to long-lasting changes in human brain structure. Nat. Neurosci. 20, 287–296 (2017). This longitudinal study presents solid evidence of enduring reductions in cortical grey matter volume in first-time mothers, from preconception to 2 months postpartum, in regions related to social cognition.

    Article  CAS  PubMed  Google Scholar 

  7. Hoekzema, E. et al. Mapping the effects of pregnancy on resting state brain activity, white matter microstructure, neural metabolite concentrations and grey matter architecture. Nat. Commun. 13, 6931 (2022). This longitudinal study explores a comprehensive set of functional and structural brain features in first-time mothers from preconception to 3 months postpartum. It finds that third-trimester oestradiol levels correlate with cortical grey matter volume reductions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carmona, S. et al. Pregnancy and adolescence entail similar neuroanatomical adaptations: a comparative analysis of cerebral morphometric changes. Hum. Brain Mapp. 40, 2143–2152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hoekzema, E. et al. Becoming a mother entails anatomical changes in the ventral striatum of the human brain that facilitate its responsiveness to offspring cues. Psychoneuroendocrinology 112, 104507 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Martínez-García, M. et al. Do pregnancy-induced brain changes reverse? The brain of a mother six years after parturition. Brain Sci. 11, 168 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim, P. et al. The plasticity of human maternal brain: longitudinal changes in brain anatomy during the early postpartum period. Behav. Neurosci. 124, 695–700 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lisofsky, N., Gallinat, J., Lindenberger, U. & Kühn, S. Postpartal neural plasticity of the maternal brain: early renormalization of pregnancy-related decreases? Neurosignals 27, 12–24 (2019).

    Article  PubMed  Google Scholar 

  13. Luders, E. et al. From baby brain to mommy brain: widespread gray matter gain after giving birth. Cortex 126, 334–342 (2020).

    Article  PubMed  Google Scholar 

  14. Chechko, N. et al. The expectant brain–pregnancy leads to changes in brain morphology in the early postpartum period. Cereb. Cortex 32, 4025–4038 (2021).

    Article  PubMed Central  Google Scholar 

  15. Liang, L. et al. Metabolic dynamics and prediction of gestational age and time to delivery in pregnant women. Cell 181, 1680–1692.e15 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jung, C. et al. A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J. Clin. Endocrinol. Metab. 96, 1533–1540 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Strauss, J. & Barbieri, R. Yen & Jaffe’s reproductive endocrinology — 8th edition. Physiol. Pathophysiol. Clin. Mgmt. https://doi.org/10.1016/C2015-0-05642-8 (2019).

  18. Romero, R. et al. The maternal plasma proteome changes as a function of gestational age in normal pregnancy: a longitudinal study. Am. J. Obstet. Gynecol. 217, 67.e1–67.e21 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Hu, Y., Ding, Y., Yang, M. & Xiang, Z. Serum prolactin levels across pregnancy and the establishment of reference intervals. Clin. Chem. Lab. Med. 56, 838–842 (2018).

    Article  PubMed  Google Scholar 

  20. Uvnäs-Moberg, K. et al. Maternal plasma levels of oxytocin during physiological childbirth — a systematic review with implications for uterine contractions and central actions of oxytocin. BMC Pregnancy Childbirth 19, 285 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Uvnäs-Moberg, K., Widström, A.-M., Werner, S., Matthiesen, A.-S. & Winberg, J. Oxytocin and prolactin levels in breast-feeding women. Correlation with milk yield and duration of breast-feeding. Acta Obstet. Gynecol. Scand. 69, 301–306 (1990).

    Article  PubMed  Google Scholar 

  22. Taylor, C. M., Pritschet, L. & Jacobs, E. G. The scientific body of knowledge — whose body does it serve? A spotlight on oral contraceptives and women’s health factors in neuroimaging. Front. Neuroendocrinol. 60, 100874 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Terkel, J. & Rosenblatt, J. S. Humoral factors underlying maternal behavior at parturition: cross transfusion between freely moving rats. J. Comp. Physiol. Psychol. 80, 365–371 (1972).

    Article  CAS  PubMed  Google Scholar 

  24. Bridges, R. S. A quantitative analysis of the roles of dosage, sequence, and duration of estradiol and progesterone exposure in the regulation of maternal behavior in the rat. Endocrinology 114, 930–940 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Moltz, H., Lubin, M., Leon, M. & Numan, M. Hormonal induction of maternal behavior in the ovariectomized nulliparous rat. Physiol. Behav. 5, 1373–1377 (1970).

    Article  CAS  PubMed  Google Scholar 

  26. Ribeiro, A. C. et al. siRNA silencing of estrogen receptor-α expression specifically in medial preoptic area neurons abolishes maternal care in female mice. Proc. Natl Acad. Sci. USA 109, 16324–16329 (2012). This study investigates how reduced oestrogen receptor α expression in the preoptic region affects the expression of specific behaviours, including maternal care.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown, R. S. E. et al. Prolactin action in the medial preoptic area is necessary for postpartum maternal nursing behavior. Proc. Natl Acad. Sci. USA 114, 10779–10784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ladyman, S. R., Carter, K. M., Gillett, M. L., Aung, Z. K. & Grattan, D. R. A reduction in voluntary physical activity in early pregnancy in mice is mediated by prolactin. eLife 10, e62260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fahrbach, S. E., Morrell, J. I. & Pfaff, D. W. Possible role for endogenous oxytocin in estrogen-facilitated maternal behavior in rats. Neuroendocrinology 40, 526–532 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Pedersen, C. A., Ascher, J. A., Monroe, Y. L. & Prange, A. J. J. Oxytocin induces maternal behavior in virgin female rats. Science 216, 648–650 (1982).

    Article  CAS  PubMed  Google Scholar 

  31. Rees, S. L., Panesar, S., Steiner, M. & Fleming, A. S. The effects of adrenalectomy and corticosterone replacement on maternal behavior in the postpartum rat. Horm. Behav. 46, 411–419 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Feldman, R., Gordon, I. & Zagoory-Sharon, O. The cross-generation transmission of oxytocin in humans. Horm. Behav. 58, 669–676 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Whitley, J. et al. Oxytocin during breastfeeding and maternal mood symptoms. Psychoneuroendocrinology 113, 104581 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Feldman, R., Weller, A., Zagoory-Sharon, O. & Levine, A. Evidence for a neuroendocrinological foundation of human affiliation: plasma oxytocin levels across pregnancy and the postpartum period predict mother-infant bonding. Psychol. Sci. 18, 965–970 (2007). This longitudinal study links oxytocin levels during pregnancy and the postpartum period to the emergence of behaviours and mental representations typical of human maternal bonding.

    Article  PubMed  Google Scholar 

  35. Glynn, L. M., Davis, E. P., Sandman, C. A. & Goldberg, W. A. Gestational hormone profiles predict human maternal behavior at 1-year postpartum. Horm. Behav. 85, 19–25 (2016). This longitudinal study explores the influence of specific gestational profiles of oestradiol and progesterone on quality of maternal care at 1-year postpartum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fleming, A. S., Ruble, D., Krieger, H. & Wong, P. Y. Hormonal and experiential correlates of maternal responsiveness during pregnancy and the puerperium in human mothers. Horm. Behav. 31, 145–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Finegood, E. D. et al. Psychobiological influences on maternal sensitivity in the context of adversity. Dev. Psychol. 52, 1073–1087 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hahn-Holbrook, J., Little, E. E. & Abbott, M. Mothers are more sensitive to infant cues after breastfeeding compared to bottle-feeding with human milk. Horm. Behav. 136, 105047 (2021).

    Article  PubMed  Google Scholar 

  39. Kohl, J. et al. Functional circuit architecture underlying parental behaviour. Nature 556, 326–331 (2018). This study investigates how galanin-expressing neurons in the medial preoptic area (MPOAGal) of the hypothalamus coordinate motor, motivational, hormonal and social aspects of parenting in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knobloch, H. S. et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Mitre, M. et al. A distributed network for social cognition enriched for oxytocin receptors. J. Neurosci. 36, 2517–2535 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stoop, R. Neuromodulation by oxytocin and vasopressin. Neuron 76, 142–159 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Georgescu, T., Ladyman, S. R., Brown, R. S. E. & Grattan, D. R. Acute effects of prolactin on hypothalamic prolactin receptor expressing neurones in the mouse. J. Neuroendocrinol. 32, e12908 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Wilkenfeld, S. R., Lin, C. & Frigo, D. E. Communication between genomic and non-genomic signaling events coordinate steroid hormone actions. Steroids 133, 2–7 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Mitre, M., Minder, J., Morina, E. X., Chao, M. V. & Froemke, R. C. Oxytocin modulation of neural circuits. Curr. Top. Behav. Neurosci. 35, 31–53 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brunton, P. J. & Russell, J. A. Endocrine induced changes in brain function during pregnancy. Brain Res. 1364, 198–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Galea, L. A. M., Leuner, B. & Slattery, D. A. Hippocampal plasticity during the peripartum period: influence of sex steroids, stress and ageing. J. Neuroendocrinol. 26, 641–648 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pawluski, J. L., Hoekzema, E., Leuner, B. & Lonstein, J. S. Less can be more: fine tuning the maternal brain. Neurosci. Biobehav. Rev. 133, 104475 (2022). This paper summarizes the structural and functional brain changes in humans and rodents during pregnancy and postpartum period, highlighting whenless is morein maternal brain plasticity.

    Article  PubMed  Google Scholar 

  49. Leuner, B., Glasper, E. R. & Gould, E. Parenting and plasticity. Trends Neurosci. 33, 465–473 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feldman, R. The adaptive human parental brain: implications for children’s social development. Trends Neurosci. 38, 387–399 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Paul, S. et al. Neural pathways of maternal responding: systematic review and meta-analysis. Arch. Women’s Ment. Health 22, 179–187 (2019).

    Article  Google Scholar 

  52. Rigo, P. et al. Specific maternal brain responses to their own child’s face: an fMRI meta-analysis. Dev. Rev. 51, 58–69 (2019).

    Article  PubMed  Google Scholar 

  53. Bjertrup, A. J., Friis, N. K. & Miskowiak, K. W. The maternal brain: neural responses to infants in mothers with and without mood disorder. Neurosci. Biobehav. Rev. 107, 196–207 (2019).

    Article  PubMed  Google Scholar 

  54. Kim, P., Strathearn, L. & Swain, J. E. The maternal brain and its plasticity in humans. Horm. Behav. 77, 113–123 (2016).

    Article  PubMed  Google Scholar 

  55. Boccia, M. L., Petrusz, P., Suzuki, K., Marson, L. & Pedersen, C. A. Immunohistochemical localization of oxytocin receptors in human brain. Neuroscience 253, 155–164 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Jurek, B. & Neumann, I. D. The oxytocin receptor: from intracellular signaling to behavior. Physiol. Rev. 98, 1805–1908 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Lai, Z., Roos, P., Olsson, Y., Larsson, C. & Nyberg, F. Characterization of prolactin receptors in human choroid plexus. Neuroendocrinology 56, 225–233 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Osterlund, M. K., Grandien, K., Keller, E. & Hurd, Y. L. The human brain has distinct regional expression patterns of estrogen receptor alpha mRNA isoforms derived from alternative promoters. J. Neurochem. 75, 1390–1397 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Osterlund, M. K., Gustafsson, J. A., Keller, E. & Hurd, Y. L. Estrogen receptor beta (ERbeta) messenger ribonucleic acid (mRNA) expression within the human forebrain: distinct distribution pattern to ERalpha mRNA. J. Clin. Endocrinol. Metab. 85, 3840–3846 (2000).

    CAS  PubMed  Google Scholar 

  60. Osterlund, M. K., Keller, E. & Hurd, Y. L. The human forebrain has discrete estrogen receptor alpha messenger RNA expression: high levels in the amygdaloid complex. Neuroscience 95, 333–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Bixo, M., Andersson, A., Winblad, B., Purdy, R. H. & Bäckström, T. Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 764, 173–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Duarte-Guterman, P., Leuner, B. & Galea, L. A. M. The long and short term effects of motherhood on the brain. Front. Neuroendocrinol. 53, 100740 (2019). This study reviews the short-term (pregnancy and the postpartum period) and long-term (beyond the postpartum period and into middle age) effects of pregnancy and motherhood on maternal neuroplasticity and general brain health and disease.

    Article  PubMed  Google Scholar 

  63. Leuner, B. & Sabihi, S. The birth of new neurons in the maternal brain: hormonal regulation and functional implications. Front. Neuroendocrinol. 41, 99–113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shingo, T. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299, 117–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Moreno-Jiménez, E. P., Terreros-Roncal, J., Flor-García, M., Rábano, A. & Llorens-Martín, M. Evidences for adult hippocampal neurogenesis in humans. J. Neurosci. 41, 2541–2553 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Eid, R. S. et al. Early and late effects of maternal experience on hippocampal neurogenesis, microglia, and the circulating cytokine milieu. Neurobiol. Aging 78, 1–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Pawluski, J. L. et al. Effect of sertraline on central serotonin and hippocampal plasticity in pregnant and non-pregnant rats. Neuropharmacology 166, 107950 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Pawluski, J. L. & Galea, L. A. M. Reproductive experience alters hippocampal neurogenesis during the postpartum period in the dam. Neuroscience 149, 53–67 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Leuner, B., Mirescu, C., Noiman, L. & Gould, E. Maternal experience inhibits the production of immature neurons in the hippocampus during the postpartum period through elevations in adrenal steroids. Hippocampus 17, 434–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Darnaudéry, M. et al. Early motherhood in rats is associated with a modification of hippocampal function. Psychoneuroendocrinology 32, 803–812 (2007).

    Article  PubMed  Google Scholar 

  71. Hillerer, K. M., Neumann, I. D., Couillard-Despres, S., Aigner, L. & Slattery, D. A. Lactation-induced reduction in hippocampal neurogenesis is reversed by repeated stress exposure. Hippocampus 24, 673–683 (2014).

    Article  PubMed  Google Scholar 

  72. Workman, J. L. et al. Parity modifies the effects of fluoxetine and corticosterone on behavior, stress reactivity, and hippocampal neurogenesis. Neuropharmacology 105, 443–453 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Workman, J. L., Raineki, C., Weinberg, J. & Galea, L. A. M. Alcohol and pregnancy: effects on maternal care, HPA axis function, and hippocampal neurogenesis in adult females. Psychoneuroendocrinology 57, 37–50 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wan, L. et al. Reproduction-associated hormones and adult hippocampal neurogenesis. Neural Plast. 2021, 3651735 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hodges, T. E., Puri, T. A., Blankers, S. A., Qiu, W. & Galea, L. A. M. Steroid hormones and hippocampal neurogenesis in the adult mammalian brain. Vitam. Horm. 118, 129–170 (2022).

    Article  PubMed  Google Scholar 

  76. Pawluski, J. L., Barakauskas, V. E. & Galea, L. A. M. Pregnancy decreases oestrogen receptor α expression and pyknosis, but not cell proliferation or survival, in the hippocampus. J. Neuroendocrinol. 22, 248–257 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Kinsley, C. H. et al. Motherhood and the hormones of pregnancy modify concentrations of hippocampal neuronal dendritic spines. Horm. Behav. 49, 131–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, J.-R. et al. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats. Exp. Anim. 66, 61–74 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Pawluski, J. L. et al. Pregnancy or stress decrease complexity of CA3 pyramidal neurons in the hippocampus of adult female rats. Neuroscience 227, 201–210 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Keyser-Marcus, L. et al. Alterations of medial preoptic area neurons following pregnancy and pregnancy-like steroidal treatment in the rat. Brain Res. Bull. 55, 737–745 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Salmaso, N., Quinlan, M. G., Brake, W. G. & Woodside, B. Changes in dendritic spine density on layer 2/3 pyramidal cells within the cingulate cortex of late pregnant and postpartum rats. Horm. Behav. 60, 65–71 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Haim, A., Sherer, M. & Leuner, B. Gestational stress induces persistent depressive-like behavior and structural modifications within the postpartum nucleus accumbens. Eur. J. Neurosci. 40, 3766–3773 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hillerer, K. M. et al. Gating of the neuroendocrine stress responses by stressor salience in early lactating female rats is independent of infralimbic cortex activation and plasticity. Stress. Amst. Neth. 21, 217–228 (2018).

    Google Scholar 

  84. Opala, E. A. et al. Experience of adversity during a first lactation modifies prefrontal cortex morphology in primiparous female rats: lack of long term effects on a subsequent lactation. Neuroscience 417, 95–106 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Shams, S. et al. Dendritic morphology in the striatum and hypothalamus differentially exhibits experience-dependent changes in response to maternal care and early social isolation. Behav. Brain Res. 233, 79–89 (2012).

    Article  PubMed  Google Scholar 

  86. Stern, J. E. & Armstrong, W. E. Reorganization of the dendritic trees of oxytocin and vasopressin neurons of the rat supraoptic nucleus during lactation. J. Neurosci. 18, 841–853 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leuner, B. & Gould, E. Dendritic growth in medial prefrontal cortex and cognitive flexibility are enhanced during the postpartum period. J. Neurosci. 30, 13499–13503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pawluski, J. L. & Galea, L. A. M. Hippocampal morphology is differentially affected by reproductive experience in the mother. J. Neurobiol. 66, 71–81 (2006).

    Article  PubMed  Google Scholar 

  89. Uriarte, N., Ferreño, M., Méndez, D. & Nogueira, J. Reorganization of perineuronal nets in the medial preoptic area during the reproductive cycle in female rats. Sci. Rep. 10, 5479 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Colonna, M. & Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Benarroch, E. E. Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 81, 1079–1088 (2013).

    Article  PubMed  Google Scholar 

  92. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Walker, F. R. et al. Dynamic structural remodelling of microglia in health and disease: a review of the models, the signals and the mechanisms. Brain Behav. Immun. 37, 1–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Yirmiya, R. & Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 25, 181–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Haim, A. et al. A survey of neuroimmune changes in pregnant and postpartum female rats. Brain Behav. Immun. 59, 67–78 (2017). This study shows a significant reduction in microglial density during late pregnancy and the early-to-mid postpartum period in dam rats, pointing to a shift in the maternal neuroimmune environment during the peripartum period.

    Article  CAS  PubMed  Google Scholar 

  96. Sierra, A., Gottfried-Blackmore, A., Milner, T. A., McEwen, B. S. & Bulloch, K. Steroid hormone receptor expression and function in microglia. Glia 56, 659–674 (2008).

    Article  PubMed  Google Scholar 

  97. Wong, A. M. et al. Progesterone influence on neurite outgrowth involves microglia. Endocrinology 150, 324–332 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Karelina, K. et al. Oxytocin mediates social neuroprotection after cerebral ischemia. Stroke 42, 3606–3611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu, S.-Y. et al. Estrogen ameliorates microglial activation by inhibiting the Kir2.1 inward-rectifier K+ channel. Sci. Rep. 6, 22864 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Diaz-Jimenez, D., Kolb, J. P. & Cidlowski, J. A. Glucocorticoids as regulators of macrophage-mediated tissue homeostasis. Front. Immunol. 12, 669891 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yuan, L. et al. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J. Neuroinflammation 13, 77 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lei, B. et al. Anti-inflammatory effects of progesterone in lipopolysaccharide-stimulated BV-2 microglia. PLoS ONE 9, e103969 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Schaufelberger, S. A. et al. 2-Methoxyestradiol, an endogenous 17β-estradiol metabolite, inhibits microglial proliferation and activation via an estrogen receptor-independent mechanism. Am. J. Physiol. Endocrinol. Metab. 310, E313–E322 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Nakatani, Y., Amano, T., Tsuji, M. & Takeda, H. Corticosterone suppresses the proliferation of BV2 microglia cells via glucocorticoid, but not mineralocorticoid receptor. Life Sci. 91, 761–770 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Carrillo-de Sauvage, M. Á. et al. Potent and multiple regulatory actions of microglial glucocorticoid receptors during CNS inflammation. Cell Death Differ. 20, 1546–1557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wake, H., Moorhouse, A. J., Miyamoto, A. & Nabekura, J. Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci. 36, 209–217 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Sherer, M. L., Posillico, C. K. & Schwarz, J. M. An examination of changes in maternal neuroimmune function during pregnancy and the postpartum period. Brain Behav. Immun. 66, 201–209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kalakh, S. & Mouihate, A. Enhanced remyelination during late pregnancy: involvement of the GABAergic system. Sci. Rep. 9, 7728 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Haddady, S., Low, H. P., Billings-Gagliardi, S., Riskind, P. N. & Schwartz, W. J. Pregnancy modulates precursor cell proliferation in a murine model of focal demyelination. Neuroscience 167, 656–664 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Maheu, M. E., Akbari, E. M. & Fleming, A. S. Callosal oligodendrocyte number in postpartum Sprague-Dawley rats. Brain Res. 1267, 18–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Gregg, C. et al. White matter plasticity and enhanced remyelination in the maternal CNS. J. Neurosci. 27, 1812–1823 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Salmaso, N., Popeski, N., Peronace, L. A. & Woodside, B. Differential effects of reproductive and hormonal state on basic fibroblast growth factor and glial fibrillary acid protein immunoreactivity in the hypothalamus and cingulate cortex of female rats. Neuroscience 134, 1431–1440 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Salmaso, N. & Woodside, B. Upregulation of astrocytic basic fibroblast growth factor in the cingulate cortex of lactating rats: time course and role of suckling stimulation. Horm. Behav. 50, 448–453 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Salmaso, N. & Woodside, B. Fluctuations in astrocytic basic fibroblast growth factor in the cingulate cortex of cycling, ovariectomized and postpartum animals. Neuroscience 154, 932–939 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Salmaso, N., Nadeau, J. & Woodside, B. Steroid hormones and maternal experience interact to induce glial plasticity in the cingulate cortex. Eur. J. Neurosci. 29, 786–794 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Theodosis, D. T., Montagnese, C., Rodriguez, F., Vincent, J. D. & Poulain, D. A. Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophyseal system. Nature 322, 738–740 (1986).

    Article  CAS  PubMed  Google Scholar 

  117. Theodosis, D. T., Trailin, A. & Poulain, D. A. Remodeling of astrocytes, a prerequisite for synapse turnover in the adult brain? Insights from the oxytocin system of the hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1175–R1182 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Lerch, J. P. et al. Studying neuroanatomy using MRI. Nat. Neurosci. 20, 314–326 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Chan, R. W. et al. Structural and functional brain remodeling during pregnancy with diffusion tensor MRI and resting-state functional MRI. PLoS ONE 10, e0144328 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Barrière, D. A. et al. Brain orchestration of pregnancy and maternal behavior in mice: a longitudinal morphometric study. NeuroImage 230, 117776 (2021). This longitudinal neuroimaging study in female mice finds transient hypertrophies in key regions of maternal behaviour between pre-gestation and weaning.

    Article  PubMed  Google Scholar 

  121. Kempermann, G. et al. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23, 25–30 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Huang, Y. et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat. Neurosci. 21, 530–540 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Askew, K. et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 18, 391–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nelander, M. et al. Cerebral osmolytes and plasma osmolality in pregnancy and preeclampsia: a proton magnetic resonance spectroscopy study. Am. J. Hypertens. 31, 847–853 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Nelander, M. et al. Assessment of cerebral perfusion and edema in preeclampsia with intravoxel incoherent motion MRI. Acta Obstet. Gynecol. Scand. 97, 1212–1218 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Aghaeepour, N. et al. A proteomic clock of human pregnancy. Am. J. Obstet. Gynecol. 218, 347.e1–347.e14 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Zhu, B. T., Han, G.-Z., Shim, J.-Y., Wen, Y. & Jiang, X.-R. Quantitative structure–activity relationship of various endogenous estrogen metabolites for human estrogen receptor α and β subtypes: insights into the structural determinants favoring a differential subtype binding. Endocrinology 147, 4132–4150 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Napso, T., Yong, H. E. J., Lopez-Tello, J. & Sferruzzi-Perri, A. N. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front. Physiol. 9, 1091 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Dye, C. N., Franceschelli, D., Leuner, B. & Lenz, K. M. Microglia depletion facilitates the display of maternal behavior and alters activation of the maternal brain network in nulliparous female rats. Neuropsychopharmacology https://doi.org/10.1038/s41386-023-01624-1 (2023).

  130. Badimon, A. et al. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Orchard, E. R., Rutherford, H. J. V., Holmes, A. J. & Jamadar, S. D. Matrescence: lifetime impact of motherhood on cognition and the brain. Trends Cogn. Sci. 27, 302–316 (2023). This study reviews maternal neurocognition across the lifespan and proposes that the increased cognitive load during the peripartum period results in increased cognitive reserve in late-life.

    Article  PubMed  Google Scholar 

  132. McCormack, C., Callaghan, B. L. & Pawluski, J. L. It’s time to rebrand ‘mommy brain’. JAMA Neurol. 80, 335–336 (2023). This viewpoint explores the concept of ‘mommy brain’ and argues that it needs to change to embrace the wide range of brain adaptations that accompany motherhood.

    Article  PubMed  Google Scholar 

  133. Tronick, E., Als, H., Adamson, L., Wise, S. & Brazelton, T. B. The infant’s response to entrapment between contradictory messages in face-to-face interaction. J. Am. Acad. Child Psychiatry 17, 1–13 (1978).

    Article  CAS  PubMed  Google Scholar 

  134. Ainsworth, M. D. S., Blehar, M. C., Waters, E. & Wall, S. Patterns of Attachment: A Psychological Study of the Strange Situation Vol. xviii, 391 (Lawrence Erlbaum, 1978).

  135. Feldman, R. & Eidelman, A. I. Maternal postpartum behavior and the emergence of infant–mother and infant–father synchrony in preterm and full-term infants: the role of neonatal vagal tone. Dev. Psychobiol. 49, 290–302 (2007).

    Article  PubMed  Google Scholar 

  136. Furuta, M. & Bridges, R. S. Gestation-induced cell proliferation in the rat brain. Brain Res. Dev. Brain Res. 156, 61–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Pawluski, J. L. et al. Effects of stress early in gestation on hippocampal neurogenesis and glucocorticoid receptor density in pregnant rats. Neuroscience 290, 379–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Pawluski, J. L., van den Hove, D. L. A., Rayen, I., Prickaerts, J. & Steinbusch, H. W. M. Stress and the pregnant female: impact on hippocampal cell proliferation, but not affective-like behaviors. Horm. Behav. 59, 572–580 (2011).

    Article  PubMed  Google Scholar 

  139. Banasr, M., Hery, M., Brezun, J. M. & Daszuta, A. Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrus. Eur. J. Neurosci. 14, 1417–1424 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Holschbach, M. A. & Lonstein, J. S. Motherhood and infant contact regulate neuroplasticity in the serotonergic midbrain dorsal raphe. Psychoneuroendocrinology 76, 97–106 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Oatridge, A. et al. Change in brain size during and after pregnancy: study in healthy women and women with preeclampsia. Am. J. Neuroradiol. 23, 19–26 (2002).

    PubMed  PubMed Central  Google Scholar 

  142. Soldin, O. P. et al. Steroid hormone levels in pregnancy and 1 year postpartum using isotope dilution tandem mass spectrometry. Fertil. Steril. 84, 701–710 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Abbassi-Ghanavati, M., Greer, L. G. & Cunningham, F. G. Pregnancy and laboratory studies: a reference table for clinicians. Obstet. Gynecol. 114, 1326–1331 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Carr, B. R., Parker, C. R., Madden, J. D., MacDonald, P. C. & Porter, J. C. Maternal plasma adrenocorticotropin and cortisol relationships throughout human pregnancy. Am. J. Obstet. Gynecol. 139, 416–422 (1981).

    Article  CAS  PubMed  Google Scholar 

  145. Schock, H. et al. Hormone concentrations throughout uncomplicated pregnancies: a longitudinal study. BMC Pregnancy Childbirth 16, 146 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Noel, G. L., Suh, H. K. & Frantz, A. G. Prolactin release during nursing and breast stimulation in postpartum and nonpostpartum subjects. J. Clin. Endocrinol. Metab. 38, 413–423 (1974).

    Article  CAS  PubMed  Google Scholar 

  147. Uvnäs Moberg, K. et al. Maternal plasma levels of oxytocin during breastfeeding — a systematic review. PLoS ONE 15, e0235806 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Pereira, M., Smiley, K. O. & Lonstein, J. S. in Patterns of Parental Behavior (ed. González-Mariscal, G.) vol. 27, 1–53 (Springer International, 2022).

  149. Condon, J. T. & Corkindale, C. J. The assessment of parent-to-infant attachment: development of a self-report questionnaire instrument. J. Reprod. Infant. Psychol. 16, 57–76 (1998).

    Article  Google Scholar 

  150. Brockington, I. F., Fraser, C. & Wilson, D. The postpartum bonding questionnaire: a validation. Arch. Women’s Ment. Health 9, 233–242 (2006).

    Article  CAS  Google Scholar 

  151. Csapo, A. I., Pulkkinen, M. O., Ruttner, B., Sauvage, J. P. & Wiest, W. G. The significance of the human corpus luteum in pregnancy maintenance. I. Preliminary studies. Am. J. Obstet. Gynecol. 112, 1061–1067 (1972).

    Article  CAS  PubMed  Google Scholar 

  152. Csapo, A. I., Pulkkinen, M. O. & Wiest, W. G. Effects of luteectomy and progesterone replacement therapy in early pregnant patients. Am. J. Obstet. Gynecol. 115, 759–765 (1973).

    Article  CAS  PubMed  Google Scholar 

  153. Järvelä, I. Y., Ruokonen, A. & Tekay, A. Effect of rising hCG levels on the human corpus luteum during early pregnancy. Hum. Reprod. Oxf. Engl. 23, 2775–2781 (2008).

    Article  Google Scholar 

  154. Ku, C. W. et al. Gestational age-specific normative values and determinants of serum progesterone through the first trimester of pregnancy. Sci. Rep. 11, 4161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Devroey, P. et al. Placental production of estradiol and progesterone after oocyte donation in patients with primary ovarian failure. Am. J. Obstet. Gynecol. 162, 66–70 (1990).

    Article  CAS  PubMed  Google Scholar 

  156. Ishida, M. et al. Estrogen actions on lactotroph proliferation are independent of a paracrine interaction with other pituitary cell types: a study using lactotroph-enriched cells. Endocrinology 148, 3131–3139 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Sasaki, A., Shinkawa, O. & Yoshinaga, K. Placental corticotropin-releasing hormone may be a stimulator of maternal pituitary adrenocorticotropic hormone secretion in humans. J. Clin. Invest. 84, 1997–2001 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Power, M. L. & Schulkin, J. Functions of corticotropin-releasing hormone in anthropoid primates: from brain to placenta. Am. J. Hum. Biol. 18, 431–447 (2006).

    Article  PubMed  Google Scholar 

  159. Csapo, A. I. & Pinto-Dantas, C. A. The effect of progesterone on the human uterus. Proc. Natl Acad. Sci. USA 54, 1069–1076 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Nadeem, L. et al. Molecular evidence of functional progesterone withdrawal in human myometrium. Nat. Commun. 7, 11565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fuchs, A. R., Fuchs, F., Husslein, P., Soloff, M. S. & Fernström, M. J. Oxytocin receptors and human parturition: a dual role for oxytocin in the initiation of labor. Science 215, 1396–1398 (1982).

    Article  CAS  PubMed  Google Scholar 

  162. Fuchs, A.-R., Fuchs, F., Husslein, P. & Soloff, M. S. Oxytocin receptors in the human uterus during pregnancy and parturition. Am. J. Obstet. Gynecol. 150, 734–741 (1984).

    Article  CAS  PubMed  Google Scholar 

  163. Uvnäs-Moberg, K., Handlin, L. & Petersson, M. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation. Front. Psychol. 5, 1529 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Banks, W. A. Brain meets body: the blood–brain barrier as an endocrine interface. Endocrinology 153, 4111–4119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pardridge, W. M. & Mietus, L. J. Transport of steroid hormones through the rat blood–brain barrier. primary role of albumin-bound hormone. J. Clin. Invest. 64, 145–154 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Baulieu, E. E. Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23, 963–987 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Paul, S. M. & Purdy, R. H. Neuroactive steroids. FASEB J. 6, 2311–2322 (1992).

    Article  CAS  PubMed  Google Scholar 

  168. Papadopoulos, V., Guarneri, P., Kreuger, K. E., Guidotti, A. & Costa, E. Pregnenolone biosynthesis in C6-2B glioma cell mitochondria: regulation by a mitochondrial diazepam binding inhibitor receptor. Proc. Natl Acad. Sci. USA 89, 5113–5117 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Walsh, R. J., Posner, B. I., Kopriwa, B. M. & Brawer, J. R. Prolactin binding sites in the rat brain. Science 201, 1041–1043 (1978).

    Article  CAS  PubMed  Google Scholar 

  170. Brown, R. S. E. et al. Prolactin transport into mouse brain is independent of prolactin receptor. FASEB J. 30, 1002–1010 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Dölen, G., Darvishzadeh, A., Huang, K. W. & Malenka, R. C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Veening, J. G., de Jong, T. & Barendregt, H. P. Oxytocin-messages via the cerebrospinal fluid: behavioral effects; a review. Physiol. Behav. 101, 193–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Neumann, I. D. & Landgraf, R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci. 35, 649–T659 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Yamamoto, Y. et al. Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice. Commun. Biol. 2, 1–13 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 883069), ‘la Caixa’ Foundation under the project code LCF/PR/HR19/52160001, Instituto de Salud Carlos III project PI22/01365 and co-funded by European Regional Development Fund. M.M.-G. was funded by Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, Predoctorales de Formación en Investigación en Salud (PFIS) (contract FI18/00255) and S.C. was funded by a Miguel Servet Type II research contract (CPII21/00016). M.M.-G. and S.C. were co-funded by European Social Fund ‘Investing in your future’. A.S. was supported by the Ministerio de Ciencia e Innovación (PRE2019–091422). B.L. was supported by grants from the National Institute of Mental Health (MH117482) and the National Science Foundation (2114381).

Author information

Authors and Affiliations

Authors

Contributions

O.V., C.S.-B., M.M.-G., A.S., O.J.P., S.C. and O.K. researched data for the article. O.V., C.S.-B., M.M.-G., C.P., M.P.-P. and S.C. made substantial contributions to discussion of content. The article was written by O.V., C.S.-B., M.M.-G., C.P., A.S., O.J.P., S.C. and O.K. O.V., C.S.-B., M.M.-G., C.P., M.P.-P., S.C and B.L. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Oscar Vilarroya or Susana Carmona.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks R. Brown, E. Hoekzema and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Astrocytes

Most abundant glial cells that participate in the maintenance of ionic and chemical homeostasis of the synaptic cleft, are involved in the response to injury and affect neuronal development and plasticity.

Corpus luteum

A transient endocrine gland that forms in an ovary by residual follicular wall cells following ovulation.

Corticosterone

Main glucocorticoid in several species including rodents. In humans, the main glucocorticoid is cortisol. Thus, corticosterone effects in rodents are commonly associated with cortisol effects in humans.

Dendrites

Branched extensions of neurons that serve as the entry site of synaptic inputs into neurons. They can be pruned, lengthened and branched out as necessary to refine synaptic function.

Dendritic spine

Small membranous protrusion from the dendrite of a neuron that receives a synaptic input from axons, constantly forming and disappearing in response to neuronal activity.

Microglia

Macrophage-like glial cells that are involved in immune responses, as well as in surveying the development and remodelling of the nervous system.

Neurogenesis

Multistage process consisting of neural stem cell proliferation, differentiation into neuronal cell types, migration to target regions, maturation and integration within specific neural circuits.

Nulliparous

A woman who has never given birth.

Oligodendrocytes

Glial cells that produce the myelin sheath that insulates neuronal axons, enhancing the speed of the signal conduction.

Parturition

Action of giving birth to offspring; childbirth.

Peripartum

The period shortly before, during and immediately after giving birth.

Postpartum period

Period starting after parturition and lasting up to 6 months.

Pregnancy hormones

Hormones that significantly fluctuate during pregnancy.

Weeks of gestation

The time between the beginning of the last menstrual period and birth.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Servin-Barthet, C., Martínez-García, M., Pretus, C. et al. The transition to motherhood: linking hormones, brain and behaviour. Nat. Rev. Neurosci. 24, 605–619 (2023). https://doi.org/10.1038/s41583-023-00733-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00733-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing