Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter released at GABAergic synapses, mediating fast-acting phasic inhibition. Emerging lines of evidence unequivocally indicate that a small amount of extracellular GABA — GABA tone — exists in the brain and induces a tonic GABA current that controls neuronal activity on a slow timescale relative to that of phasic inhibition. Surprisingly, studies indicate that glial cells that synthesize GABA, such as astrocytes, release GABA through non-vesicular mechanisms, such as channel-mediated release, and thereby act as the source of GABA tone in the brain. In this Review, we first provide an overview of major advances in our understanding of the cell-specific molecular and cellular mechanisms of GABA synthesis, release and clearance that regulate GABA tone in various brain regions. We next examine the diverse ways in which the tonic GABA current regulates synaptic transmission and synaptic plasticity through extrasynaptic GABAA-receptor-mediated mechanisms. Last, we discuss the physiological mechanisms through which tonic inhibition modulates cognitive function on a slow timescale. In this Review, we emphasize that the cognitive functions of tonic GABA current extend beyond mere inhibition, laying a foundation for future research on the physiological and pathophysiological roles of GABA tone regulation in normal and abnormal psychiatric conditions.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Roberts, E. & Frankel, S. γ-Aminobutyric acid in brain: its formation from glutamic acid. J. Biol. Chem. 187, 55–63 (1950).
Kaneda, M., Farrant, M. & Cull-Candy, S. G. Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J. Physiol. 485, 419–435 (1995).
Otis, T. S., Staley, K. J. & Mody, I. Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res. 545, 142–150 (1991).
Nusser, Z., Roberts, J. D., Baude, A., Richards, J. G. & Somogyi, P. Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method. J. Neurosci. 15, 2948–2960 (1995).
Brown, D. A., Adams, P. R., Higgins, A. J. & Marsh, S. Distribution of GABA-receptors and GABA-carriers in the mammalian nervous system. J. Physiol. 75, 667–671 (1979).
Ruiz, A., Campanac, E., Scott, R. S., Rusakov, D. A. & Kullmann, D. M. Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses. Nat. Neurosci. 13, 431–438 (2010).
Lee, S. et al. Channel-mediated tonic GABA release from glia. Science 330, 790–796 (2010).
Hepsomali, P., Groeger, J. A., Nishihira, J. & Scholey, A. Effects of oral γ-aminobutyric acid (GABA) administration on stress and sleep in humans: a systematic review. Front. Neurosci. 14, 923 (2020).
Esclapez, M., Tillakaratne, N. J., Kaufman, D. L., Tobin, A. J. & Houser, C. R. Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J. Neurosci. 14, 1834–1855 (1994).
Kaufman, D. L., Houser, C. R. & Tobin, A. J. Two forms of the γ-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J. Neurochem. 56, 720–723 (1991).
Asada, H. et al. Cleft palate and decreased brain γ-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc. Natl Acad. Sci. USA 94, 6496–6499 (1997).
Chattopadhyaya, B. et al. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54, 889–903 (2007).
Engel, D. et al. Plasticity of rat central inhibitory synapses through GABA metabolism. J. Physiol. 535, 473–482 (2001).
Walls, A. B. et al. GAD65 is essential for synthesis of GABA destined for tonic inhibition regulating epileptiform activity. J. Neurochem. 115, 1398–1408 (2010).
Mathews, G. C. & Diamond, J. S. Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength. J. Neurosci. 23, 2040–2048 (2003).
Dicken, M. S., Hughes, A. R. & Hentges, S. T. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus. Eur. J. Neurosci. 42, 2644–2653 (2015).
Serrano-Regal, M. P. et al. Oligodendrocyte differentiation and myelination is potentiated via GABAB receptor activation. Neuroscience 439, 163–180 (2020).
Bhandage, A. K., Kanatani, S. & Barragan, A. Toxoplasma-induced hypermigration of primary cortical microglia implicates GABAergic signaling. Front. Cell. Infect. Microbiol. 9, 73 (2019).
Tochitani, S. & Kondo, S. Immunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the meninges and the choroid plexus: implications for non-neuronal sources for GABA in the developing mouse brain. PLoS One 8, e56901 (2013).
Wang, D. D., Krueger, D. D. & Bordey, A. GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J. Physiol. 550, 785–800 (2003).
Lee, M., Schwab, C. & McGeer, P. L. Astrocytes are GABAergic cells that modulate microglial activity. Glia 59, 152–165 (2011).
Zhang, X. et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat. Commun. 12, 5740 (2021).
Seiler, N., Schmidt-Glenewinkel, T. & Sarhan, S. On the formation of γ-aminobutyric acid from putrescine in brain. J. Biochem. 86, 277–278 (1979).
Seiler, N., al-Therib, M. J. & Kataoka, K. Formation of GABA from putrescine in the brain of fish (Salmo irideus Gibb.). J. Neurochem. 20, 699–708 (1973).
Seiler, N. On the role of GABA in vertebrate polyamine metabolism. Physiol. Chem. Phys. 12, 411–429 (1980).
Jo, S. et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat. Med. 20, 886–896 (2014).
Levitt, P., Pintar, J. E. & Breakefield, X. O. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc. Natl Acad. Sci. USA 79, 6385–6389 (1982).
Yoon, B. E. et al. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J. Physiol. 592, 4951–4968 (2014).
Lee, J. M. et al. Generation of astrocyte-specific MAOB conditional knockout mouse with minimal tonic GABA inhibition. Exp. Neurobiol. 31, 158–172 (2022).
Yoon, B. E. et al. The amount of astrocytic GABA positively correlates with the degree of tonic inhibition in hippocampal CA1 and cerebellum. Mol. Brain 4, 42 (2011).
Dot, J., Lluch, M., Blanco, I. & Rodriguez-Alvarez, J. Polyamine uptake in cultured astrocytes: characterization and modulation by protein kinases. J. Neurochem. 75, 1917–1926 (2000).
Laschet, J., Grisar, T., Bureau, M. & Guillaume, D. Characteristics of putrescine uptake and subsequent GABA formation in primary cultured astrocytes from normal C57BL/6J and epileptic DBA/2J mouse brain cortices. Neuroscience 48, 151–157 (1992).
Ju, Y. H. et al. Astrocytic urea cycle detoxifies Aβ-derived ammonia while impairing memory in Alzheimer’s disease. Cell Metab. 34, 1104–1120 e1108 (2022).
Mallajosyula, J. K. et al. MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One 3, e1616 (2008).
Woo, J. et al. Control of motor coordination by astrocytic tonic GABA release through modulation of excitation/inhibition balance in cerebellum. Proc. Natl Acad. Sci. USA 115, 5004–5009 (2018).
An, H., Heo, J. Y., Lee, C. J. & Nam, M. H. The pathological role of astrocytic MAOB in Parkinsonism revealed by genetic ablation and over-expression of MAOB. Exp. Neurobiol. 30, 113–119 (2021).
Chun, H., Lim, J., Park, K. D. & Lee, C. J. Inhibition of monoamine oxidase B prevents reactive astrogliosis and scar formation in stab wound injury model. Glia 70, 354–367 (2022).
Nam, M. H. et al. Excessive astrocytic GABA causes cortical hypometabolism and impedes functional recovery after subcortical stroke. Cell Rep. 32, 107861 (2020).
Heo, J. Y. et al. Aberrant tonic inhibition of dopaminergic neuronal activity causes motor symptoms in animal models of Parkinson’s disease. Curr. Biol. 30, 276–291 e279 (2020).
Kim, J. I. et al. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science 350, 102–106 (2015).
Melani, R. & Tritsch, N. X. Inhibitory co-transmission from midbrain dopamine neurons relies on presynaptic GABA uptake. Cell Rep. 39, 110716 (2022).
Kwak, H. et al. Astrocytes control sensory acuity via tonic inhibition in the thalamus. Neuron 108, 691–706.e610 (2020).
Egashira, Y. et al. Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading. Proc. Natl Acad. Sci. USA 113, 10702–10707 (2016).
Rossi, D. J. & Hamann, M. Spillover-mediated transmission at inhibitory synapses promoted by high affinity α6 subunit GABAA receptors and glomerular geometry. Neuron 20, 783–795 (1998).
Kullmann, D. M. Spillover and synaptic cross talk mediated by glutamate and GABA in the mammalian brain. Prog. Brain Res. 125, 339–351 (2000).
Kardos, J. et al. Molecular plasticity of the nucleus accumbens revisited — astrocytic waves shall rise. Mol. Neurobiol. 56, 7950–7965 (2019).
Glykys, J. & Mody, I. The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J. Physiol. 582, 1163–1178 (2007).
Liu, Q. et al. A photoactivatable botulinum neurotoxin for inducible control of neurotransmission. Neuron 101, 863–875.e866 (2019).
Won, J. et al. Opto-vTrap, an optogenetic trap for reversible inhibition of vesicular release, synaptic transmission, and behavior. Neuron 110, 423–435.e424 (2022).
Wang, Y. F., Sun, M. Y., Hou, Q. & Hamilton, K. A. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge. Eur. J. Neurosci. 37, 1260–1269 (2013).
Woo, D. H. et al. TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151, 25–40 (2012).
Oh, S. J. et al. Protease activated receptor 1-induced glutamate release in cultured astrocytes is mediated by Bestrophin-1 channel but not by vesicular exocytosis. Mol. Brain 5, 38 (2012).
Woo, D. H., Hur, Y. N., Jang, M. W., Justin Lee, C. & Park, M. Inhibitors of synaptic vesicle exocytosis reduce surface expression of postsynaptic glutamate receptors. Anim. Cell Syst. 24, 341–348 (2020).
Barakat, L. & Bordey, A. GAT-1 and reversible GABA transport in Bergmann glia in slices. J. Neurophysiol. 88, 1407–1419 (2002).
Oh, S. J. & Lee, C. J. Distribution and function of the Bestrophin-1 (Best1) channel in the brain. Exp. Neurobiol. 26, 113–121 (2017).
Scimemi, A. Structure, function, and plasticity of GABA transporters. Front. Cell Neurosci. 8, 161 (2014).
Attwell, D., Barbour, B. & Szatkowski, M. Nonvesicular release of neurotransmitter. Neuron 11, 401–407 (1993).
Richerson, G. B. & Wu, Y. Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J. Neurophysiol. 90, 1363–1374 (2003).
Wu, Y., Wang, W., Diez-Sampedro, A. & Richerson, G. B. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56, 851–865 (2007).
Savtchenko, L., Megalogeni, M., Rusakov, D. A., Walker, M. C. & Pavlov, I. Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity. Nat. Commun. 6, 6597 (2015).
Eskandari, S., Willford, S. L. & Anderson, C. M. Revised ion/substrate coupling stoichiometry of GABA transporters. Adv. Neurobiol. 16, 85–116 (2017).
Clarkson, A. N., Huang, B. S., Macisaac, S. E., Mody, I. & Carmichael, S. T. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468, 305–309 (2010).
Tonsfeldt, K. J. et al. Sex differences in GABAA signaling in the periaqueductal gray induced by persistent inflammation. J. Neurosci. 36, 1669–1681 (2016).
Kersante, F. et al. A functional role for both γ-aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J. Physiol. 591, 2429–2441 (2013).
Patel, B., Bright, D. P., Mortensen, M., Frolund, B. & Smart, T. G. Context-dependent modulation of GABAAR-mediated tonic currents. J. Neurosci. 36, 607–621 (2016).
Sa, M. et al. Unaltered tonic inhibition in the arcuate nucleus of diet-induced obese mice. Exp. Neurobiol. 31, 147–157 (2022).
Yang, J. et al. Ventral tegmental area astrocytes modulate cocaine reward by tonically releasing GABA. Neuron 111, 1104–1117 (2023).
Koh, W. et al. Astrocytes render memory flexible by releasing d-serine and regulating NMDA receptor tone in the hippocampus. Biol. Psychiat. 91, 740–752 (2022).
Owji, A. P. et al. Bestrophin-2 and glutamine synthetase form a complex for glutamate release. Nature 611, 180–187 (2022).
Lee, J. M., Gadhe, C. G., Kang, H., Pae, A. N. & Lee, C. J. Glutamate permeability of chicken Best1. Exp. Neurobiol. 31, 277–288 (2022).
Pandit, S. et al. Bestrophin1-mediated tonic GABA release from reactive astrocytes prevents the development of seizure-prone network in kainate-injected hippocampi. Glia 68, 1065–1080 (2020).
Cheng, Y. T. et al. Social deprivation induces astrocytic TRPA1-GABA suppression of hippocampal circuits. Neuron 111, 1301–1315 e1305 (2023).
Vargas-Parada, A. et al. γ-Aminobutyric acid (GABA) from satellite glial cells tonically depresses the excitability of primary afferent fibers. Neurosci. Res. 170, 50–58 (2021).
Platel, J. C., Lacar, B. & Bordey, A. GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis. J. Mol. Histol. 38, 602–610 (2007).
Syeda, R. et al. LRRC8 proteins form volume-regulated anion channels that sense ionic strength. Cell 164, 499–511 (2016).
Lutter, D., Ullrich, F., Lueck, J. C., Kempa, S. & Jentsch, T. J. Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels. J. Cell Sci. 130, 1122–1133 (2017).
Cook, J. R. et al. LRRC8A is dispensable for a variety of microglial functions and response to acute stroke. Glia 70, 1068–1083 (2022).
Akita, T. & Okada, Y. Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience 275, 211–231 (2014).
Jin, X. T., Pare, J. F. & Smith, Y. Differential localization and function of GABA transporters, GAT-1 and GAT-3, in the rat globus pallidus. Eur. J. Neurosci. 33, 1504–1518 (2011).
Melone, M., Ciappelloni, S. & Conti, F. A quantitative analysis of cellular and synaptic localization of GAT-1 and GAT-3 in rat neocortex. Brain Struct. Funct. 220, 885–897 (2015).
Jensen, K., Chiu, C. S., Sokolova, I., Lester, H. A. & Mody, I. GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J. Neurophysiol. 90, 2690–2701 (2003).
Semyanov, A., Walker, M. C. & Kullmann, D. M. GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat. Neurosci. 6, 484–490 (2003).
Pandit, S., Lee, G. S. & Park, J. B. Developmental changes in GABA(A) tonic inhibition are compromised by multiple mechanisms in preadolescent dentate gyrus granule cells. Korean J. Physiol. Pharmacol. 21, 695–702 (2017).
Keros, S. & Hablitz, J. J. Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. J. Neurophysiol. 94, 2073–2085 (2005).
Chiu, C. S. et al. GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J. Neurosci. 25, 3234–3245 (2005).
Kirmse, K., Dvorzhak, A., Kirischuk, S. & Grantyn, R. GABA transporter 1 tunes GABAergic synaptic transmission at output neurons of the mouse neostriatum. J. Physiol. 586, 5665–5678 (2008).
Moldavan, M., Cravetchi, O. & Allen, C. N. GABA transporters regulate tonic and synaptic GABAA receptor-mediated currents in the suprachiasmatic nucleus neurons. J. Neurophysiol. 118, 3092–3106 (2017).
Fattorini, G. et al. Microglial expression of GAT-1 in the cerebral cortex. Glia 68, 646–655 (2020).
Fattorini, G. et al. GAT-1 mediated GABA uptake in rat oligodendrocytes. Glia 65, 514–522 (2017).
Tritsch, N. X., Oh, W. J., Gu, C. & Sabatini, B. L. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. eLlife 3, e01936 (2014).
van Bemmelen, F. J., Schouten, M. J., Fekkes, D. & Bruinvels, J. Succinic semialdehyde as a substrate for the formation of γ-aminobutyric acid. J. Neurochem. 45, 1471–1474 (1985).
Shelp, B. J., Bown, A. W. & McLean, M. D. Metabolism and functions of γ-aminobutyric acid. Trends Plant. Sci. 4, 446–452 (1999).
Wu, Y., Wang, W. & Richerson, G. B. GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. J. Neurosci. 21, 2630–2639 (2001).
Wu, Y., Wang, W. & Richerson, G. B. Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J. Neurophysiol. 89, 2021–2034 (2003).
Drasbek, K. R., Vardya, I., Delenclos, M., Gibson, K. M. & Jensen, K. SSADH deficiency leads to elevated extracellular GABA levels and increased GABAergic neurotransmission in the mouse cerebral cortex. J. Inherit. Metab. Dis. 31, 662–668 (2008).
Errington, A. C., Gibson, K. M., Crunelli, V. & Cope, D. W. Aberrant GABAA receptor-mediated inhibition in cortico-thalamic networks of succinic semialdehyde dehydrogenase deficient mice. PLoS One 6, e19021 (2011).
Lee, H. H. C., Pearl, P. L. & Rotenberg, A. Enzyme replacement therapy for succinic semialdehyde dehydrogenase deficiency: relevance in γ-aminobutyric acid plasticity. J. Child. Neurol. 36, 1200–1209 (2021).
Schulte, J. T., Wierenga, C. J. & Bruining, H. Chloride transporters and GABA polarity in developmental, neurological and psychiatric conditions. Neurosci. Biobehav. Rev. 90, 260–271 (2018).
Bormann, J., Hamill, O. P. & Sakmann, B. Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. 385, 243–286 (1987).
Kilb, W. When are depolarizing GABAergic responses excitatory? Front. Mol. Neurosci. 14, 747835 (2021).
Maguire, J. L., Stell, B. M., Rafizadeh, M. & Mody, I. Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat. Neurosci. 8, 797–804 (2005).
Maguire, J. & Mody, I. GABAAR plasticity during pregnancy: relevance to postpartum depression. Neuron 59, 207–213 (2008).
Maguire, J., Ferando, I., Simonsen, C. & Mody, I. Excitability changes related to GABAA receptor plasticity during pregnancy. J. Neurosci. 29, 9592–9601 (2009).
Olsen, R. W. & Sieghart, W. International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 60, 243–260 (2008).
Olsen, R. W. & Sieghart, W. GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56, 141–148 (2009).
Mody, I. Distinguishing between GABAA receptors responsible for tonic and phasic conductances. Neurochem. Res. 26, 907–913 (2001).
Cope, D. W., Hughes, S. W. & Crunelli, V. GABAA receptor-mediated tonic inhibition in thalamic neurons. J. Neurosci. 25, 11553–11563 (2005).
Ade, K. K., Janssen, M. J., Ortinski, P. I. & Vicini, S. Differential tonic GABA conductances in striatal medium spiny neurons. J. Neurosci. 28, 1185–1197 (2008).
Hamann, M., Rossi, D. J. & Attwell, D. Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33, 625–633 (2002).
Caraiscos, V. B. et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. Proc. Natl Acad. Sci. USA 101, 3662–3667 (2004).
Zurek, A. A. et al. Sustained increase in α5GABAA receptor function impairs memory after anesthesia. J. Clin. Invest. 124, 5437–5441 (2014).
Brickley, S. G. & Mody, I. Extrasynaptic GABAA receptors: their function in the CNS and implications for disease. Neuron 73, 23–34 (2012).
Yamada, J., Furukawa, T., Ueno, S., Yamamoto, S. & Fukuda, A. Molecular basis for the GABAA receptor-mediated tonic inhibition in rat somatosensory cortex. Cereb. Cortex 17, 1782–1787 (2007).
Wei, W. Z., Zhang, N. H., Peng, Z. C., Houser, C. R. & Mody, I. Perisynaptic localization of delta subunit-containing GABAA receptors and their activation by GABA spillover in the mouse dentate gyrus. J. Neurosci. 23, 10650–10661 (2003).
Xiao, C., Zhou, C., Li, K. & Ye, J. H. Presynaptic GABAA receptors facilitate GABAergic transmission to dopaminergic neurons in the ventral tegmental area of young rats. J. Physiol. 580, 731–743 (2007).
Wang, L., Kloc, M., Maher, E., Erisir, A. & Maffei, A. Presynaptic GABAA receptors modulate thalamocortical inputs in layer 4 of rat V1. Cereb. Cortex 29, 921–936 (2019).
Dembitskaya, Y., Wu, Y. W. & Semyanov, A. Tonic GABAA conductance favors spike-timing-dependent over θ-burst-induced long-term potentiation in the hippocampus. J. Neurosci. 40, 4266–4276 (2020).
Kramer, P. F., Twedell, E. L., Shin, J. H., Zhang, R. & Khaliq, Z. M. Axonal mechanisms mediating γ-aminobutyric acid receptor type A (GABAA) inhibition of striatal dopamine release. eLlife 9, e55729 (2020).
Stell, B. M. & Mody, I. Receptors with different affinities mediate phasic and tonic GABAA conductances in hippocampal neurons. J. Neurosci. 22, RC223 (2002).
Lee, V. & Maguire, J. The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front. Neural Circ. 8, 3 (2014).
Newberry, N. R. & Nicoll, R. A. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308, 450–452 (1984).
Sodickson, D. L. & Bean, B. P. Neurotransmitter activation of inwardly rectifying potassium current in dissociated hippocampal CA3 neurons: interactions among multiple receptors. J. Neurosci. 18, 8153–8162 (1998).
Cope, D. W. et al. Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat. Med. 15, 1392–1398 (2009).
Cho, F. S. et al. Enhancing GAT-3 in thalamic astrocytes promotes resilience to brain injury in rodents. Sci. Transl. Med. 14, eabj4310 (2022).
Ha, G. E. et al. The Ca2+-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nat. Commun. 7, 13791 (2016).
Herbison, A. E. & Moenter, S. M. Depolarising and hyperpolarising actions of GABAA receptor activation on gonadotrophin-releasing hormone neurones: towards an emerging consensus. J. Neuroendocrinol. 23, 557–569 (2011).
Berglund, K., Wen, L., Dunbar, R. L., Feng, G. & Augustine, G. J. Optogenetic visualization of presynaptic tonic inhibition of cerebellar parallel fibers. J. Neurosci. 36, 5709–5723 (2016).
Untiet, V. et al. Astrocytic chloride is brain state dependent and modulates inhibitory neurotransmission in mice. Nat. Commun. 14, 1871 (2023).
Fatt, P. & Katz, B. The effect of inhibitory nerve impulses on a crustacean muscle fibre. J. Physiol. 121, 374–389 (1953).
Mitchell, S. J. & Silver, R. A. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 433–445 (2003).
Prescott, S. A. & De Koninck, Y. Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc. Natl Acad. Sci. USA 100, 2076–2081 (2003).
Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).
Song, I., Savtchenko, L. & Semyanov, A. Tonic excitation or inhibition is set by GABAA conductance in hippocampal interneurons. Nat. Commun. 2, 376 (2011).
Wlodarczyk, A. I. et al. Tonic GABAA conductance decreases membrane time constant and increases EPSP-spike precision in hippocampal pyramidal neurons. Front. Neural Circ. 7, 205 (2013).
Tang, Z. Q., Dinh, E. H., Shi, W. & Lu, Y. Ambient GABA-activated tonic inhibition sharpens auditory coincidence detection via a depolarizing shunting mechanism. J. Neurosci. 31, 6121–6131 (2011).
Sylantyev, S., Savtchenko, L. P., O’Neill, N. & Rusakov, D. A. Extracellular GABA waves regulate coincidence detection in excitatory circuits. J. Physiol. 598, 4047–4062 (2020).
Bryson, A. et al. GABA-mediated tonic inhibition differentially modulates gain in functional subtypes of cortical interneurons. Proc. Natl Acad. Sci. USA 117, 3192–3202 (2020).
Yarishkin, O., Lee, J., Jo, S., Hwang, E. M. & Lee, C. J. Disinhibitory action of astrocytic GABA at the perforant path to dentate gyrus granule neuron synapse reverses to inhibitory in Alzheimer’s disease model. Exp. Neurobiol. 24, 211–218 (2015).
Magnin, E. et al. Input-specific synaptic location and function of the α5 GABAA receptor subunit in the mouse CA1 hippocampal neurons. J. Neurosci. 39, 788–801 (2019).
Johnston, G. A. Advantages of an antagonist: bicuculline and other GABA antagonists. Br. J. Pharmacol. 169, 328–336 (2013).
Groen, M. R. et al. Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons. J. Neurophysiol. 112, 287–299 (2014).
Pofantis, H. & Papatheodoropoulos, C. The α5GABAA receptor modulates the induction of long-term potentiation at ventral but not dorsal CA1 hippocampal synapses. Synapse 68, 394–401 (2014).
Wu, Z., Guo, Z., Gearing, M. & Chen, G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s [corrected] disease model. Nat. Commun. 5, 4159 (2014).
Won, W. et al. Inhibiting peripheral and central MAO-B ameliorates joint inflammation and cognitive impairment in rheumatoid arthritis. Exp. Mol. Med. 54, 1188–1200 (2022).
Paydar, A. et al. Extrasynaptic GABAA receptors in mediodorsal thalamic nucleus modulate fear extinction learning. Mol. Brain 7, 39 (2014).
Engin, E. et al. Tonic inhibitory control of dentate gyrus granule cells by alpha5-containing GABAA receptors reduces memory interference. J. Neurosci. 35, 13698–13712 (2015).
Lee, V., MacKenzie, G., Hooper, A. & Maguire, J. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory. Hippocampus 26, 1276–1290 (2016).
Hirata, A., Aguilar, J. & Castro-Alamancos, M. A. Noradrenergic activation amplifies bottom-up and top-down signal-to-noise ratios in sensory thalamus. J. Neurosci. 26, 4426–4436 (2006).
Duguid, I., Branco, T., London, M., Chadderton, P. & Hausser, M. Tonic inhibition enhances fidelity of sensory information transmission in the cerebellar cortex. J. Neurosci. 32, 11132–11143 (2012).
Roy, S. A. & Alloway, K. D. Coincidence detection or temporal integration? What the neurons in somatosensory cortex are doing. J. Neurosci. 21, 2462–2473 (2001).
Wang, Q., Webber, R. M. & Stanley, G. B. Thalamic synchrony and the adaptive gating of information flow to cortex. Nat. Neurosci. 13, 1534–1541 (2010).
Sherman, S. M. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 24, 122–126 (2001).
Moldavan, M., Cravetchi, O. & Allen, C. N. Diurnal properties of tonic and synaptic GABAA receptor-mediated currents in suprachiasmatic nucleus neurons. J. Neurophysiol. 126, 637–652 (2021).
Kwon, J., Jang, M. W. & Lee, C. J. Retina-attached slice recording reveals light-triggered tonic GABA signaling in suprachiasmatic nucleus. Mol. Brain 14, 171 (2021).
Choi, H. J. et al. Excitatory actions of GABA in the suprachiasmatic nucleus. J. Neurosci. 28, 5450–5459 (2008).
DeWoskin, D. et al. Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proc. Natl Acad. Sci. USA 112, E3911–E3919 (2015).
Ono, D., Honma, K. I., Yanagawa, Y., Yamanaka, A. & Honma, S. GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice. Commun. Biol. 2, 232 (2019).
Llinas, R. R. & Steriade, M. Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 95, 3297–3308 (2006).
Weyand, T. G., Boudreaux, M. & Guido, W. Burst and tonic response modes in thalamic neurons during sleep and wakefulness. J. Neurophysiol. 85, 1107–1118 (2001).
Winsky-Sommerer, R., Vyazovskiy, V. V., Homanics, G. E. & Tobler, I. The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABAAδ-subunit-containing receptors. Eur. J. Neurosci. 25, 1893–1899 (2007).
Vyazovskiy, V. V., Kopp, C., Bosch, G. & Tobler, I. The GABAA receptor agonist THIP alters the EEG in waking and sleep of mice. Neuropharmacology 48, 617–626 (2005).
Lancel, M. & Faulhaber, J. The GABAA agonist THIP (gaboxadol) increases non-REM sleep and enhances delta activity in the rat. Neuroreport 7, 2241–2245 (1996).
Kim, Y. S., Woo, J., Lee, C. J. & Yoon, B. E. Decreased glial GABA and tonic inhibition in cerebellum of mouse model for attention-deficit/hyperactivity disorder (ADHD). Exp. Neurobiol. 26, 206–212 (2017).
Handforth, A., Kadam, P. A., Kosoyan, H. P. & Eslami, P. Suppression of harmaline tremor by activation of an extrasynaptic GABAA receptor: implications for essential tremor. Tremor Other Hyperkinet. Mov. 8, 546 (2018).
Huang, Y.-H. et al. Cerebellar α6GABAA receptors as a therapeutic target for essential tremor: proof-of-concept study with ethanol and pyrazoloquinolinones. Neurotherapeutics 20, 399–418 (2023).
Maguire, E. P. et al. Tonic inhibition of accumbal spiny neurons by extrasynaptic α4βδ GABAA receptors modulates the actions of psychostimulants. J. Neurosci. 34, 823–838 (2014).
Yu, X. et al. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99, 1170–1187.e1179 (2018).
Cepeda, C. et al. Multiple sources of striatal inhibition are differentially affected in Huntington’s disease mouse models. J. Neurosci. 33, 7393–7406 (2013).
Wojtowicz, A. M., Dvorzhak, A., Semtner, M. & Grantyn, R. Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3. Front. Neural Circ. 7, 188 (2013).
Rosas-Arellano, A. et al. Huntington’s disease leads to decrease of GABAA tonic subunits in the D2 neostriatal pathway and their relocalization into the synaptic cleft. Neurobiol. Dis. 110, 142–153 (2018).
Gafford, G. M. et al. Cell-type specific deletion of GABAAα1 in corticotropin-releasing factor-containing neurons enhances anxiety and disrupts fear extinction. Proc. Natl Acad. Sci. USA 109, 16330–16335 (2012).
Botta, P. et al. Regulating anxiety with extrasynaptic inhibition. Nat. Neurosci. 18, 1493–1500 (2015).
Marowsky, A., Rudolph, U., Fritschy, J. M. & Arand, M. Tonic inhibition in principal cells of the amygdala: a central role for α3 subunit-containing GABAA receptors. J. Neurosci. 32, 8611–8619 (2012).
Sanders, S. K. & Shekhar, A. Regulation of anxiety by GABAA receptors in the rat amygdala. Pharmacol. Biochem. Behav. 52, 701–706 (1995).
Zhang, W. H. et al. δ subunit-containing GABAA receptor prevents overgeneralization of fear in adult mice. Learn. Mem. 24, 381–384 (2017).
Liu, Z. P. et al. δ subunit-containing γ-aminobutyric acid A receptor disinhibits lateral amygdala and facilitates fear expression in mice. Biol. Psychiat. 81, 990–1002 (2017).
de Miguel, E. et al. Conditioned aversion and neuroplasticity induced by a superagonist of extrasynaptic GABAA receptors: correlation with activation of the oval BNST neurons and CRF mechanisms. Front. Mol. Neurosci. 12, 130 (2019).
Rudolph, S. et al. Cerebellum-specific deletion of the GABAA receptor δ subunit leads to sex-specific disruption of behavior. Cell Rep. 33, 108338 (2020).
Myers, D. A., Gibson, M., Schulkin, J. & Greenwood Van-Meerveld, B. Corticosterone implants to the amygdala and type 1 CRH receptor regulation: effects on behavior and colonic sensitivity. Behav. Brain Res. 161, 39–44 (2005).
Pan, H. Q. et al. Chronic stress oppositely regulates tonic inhibition in Thy1-expressing and non-expressing neurons in amygdala. Front. Neurosci. 14, 299 (2020).
Carter, B. S., Meng, F. & Thompson, R. C. Glucocorticoid treatment of astrocytes results in temporally dynamic transcriptome regulation and astrocyte-enriched mRNA changes in vitro. Physiol. Genom. 44, 1188–1200 (2012).
Carter, B. S., Hamilton, D. E. & Thompson, R. C. Acute and chronic glucocorticoid treatments regulate astrocyte-enriched mRNAs in multiple brain regions in vivo. Front. Neurosci. 7, 139 (2013).
Olsen, R. W., Hanchar, H. J., Meera, P. & Wallner, M. GABAA receptor subtypes: the “one glass of wine” receptors. Alcohol 41, 201–209 (2007).
Engin, E., Benham, R. S. & Rudolph, U. An emerging circuit pharmacology of GABAA receptors. Trends Pharmacol. Sci. 39, 710–732 (2018).
Fritz, B. M. & Boehm, S. L. II Site-specific microinjection of Gaboxadol into the infralimbic cortex modulates ethanol intake in male C57BL/6J mice. Behav. Brain Res. 273, 8–15 (2014).
Rewal, M. et al. α4-containing GABAA receptors in the nucleus accumbens mediate moderate intake of alcohol. J. Neurosci. 29, 543–549 (2009).
Rewal, M. et al. α4 subunit-containing GABAA receptors in the accumbens shell contribute to the reinforcing effects of alcohol. Addict. Biol. 17, 309–321 (2012).
Melon, L. C., Nolan, Z. T., Colar, D., Moore, E. M. & Boehm, S. L. II Activation of extrasynaptic δ-GABAA receptors globally or within the posterior-VTA has estrous-dependent effects on consumption of alcohol and estrous-independent effects on locomotion. Horm. Behav. 95, 65–75 (2017).
Juarez, B. et al. Midbrain circuit regulation of individual alcohol drinking behaviors in mice. Nat. Commun. 8, 2220 (2017).
Tossell, K., Dodhia, R. A., Galet, B., Tkachuk, O. & Ungless, M. A. Tonic GABAergic inhibition, via GABAA receptors containing αβE subunits, regulates excitability of ventral tegmental area dopamine neurons. Eur. J. Neurosci. 53, 1722–1737 (2021).
Field, M. et al. Tonic GABAA receptor-mediated currents of human cortical GABAergic interneurons vary amongst cell types. J. Neurosci. 41, 9702–9719 (2021).
Jung, J. Y., Lee, S. E., Hwang, E. M. & Lee, C. J. Neuronal expression and cell-type-specific gene-silencing of Best1 in thalamic reticular nucleus neurons using pSico-Red system. Exp. Neurobiol. 25, 120–129 (2016).
Bourdelais, A. J. & Kalivas, P. W. Modulation of extracellular γ-aminobutyric acid in the ventral pallidum using in vivo microdialysis. J. Neurochem. 58, 2311–2320 (1992).
Marvin, J. S. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16, 763–770 (2019).
Lodovichi, C., Ratto, G. M., Trevelyan, A. J. & Arosio, D. Genetically encoded sensors for chloride concentration. J. Neurosci. Methods 368, 109455 (2022).
Cavelier, P., Hamann, M., Rossi, D., Mobbs, P. & Attwell, D. Tonic excitation and inhibition of neurons: ambient transmitter sources and computational consequences. Prog. Biophys. Mol. Biol. 87, 3–16 (2005).
Martin, D. L. & Rimvall, K. Regulation of γ-aminobutyric acid synthesis in the brain. J. Neurochem. 60, 395–407 (1993).
Lim, J., Bhalla, M., Park, M. G., Koh, W. & Lee, C. J. Putrescine acetyltransferase (PAT/SAT1) dependent GABA synthesis in astrocytes. Preprint at bioRxiv https://doi.org/10.1101/2023.05.15.540086 (2023).
Bhalla, M. et al. Molecular identification of ALDH1A1 and SIRT2 in the astrocytic putrescine-to-GABA metabolic pathway. Preprint at bioRxiv https://doi.org/10.1101/2023.01.11.523573 (2023).
Marchitti, S. A., Brocker, C., Stagos, D. & Vasiliou, V. Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert. Opin. Drug Metab. Toxicol. 4, 697–720 (2008).
Baxter, P. S. & Hardingham, G. E. Adaptive regulation of the brain’s antioxidant defences by neurons and astrocytes. Free Radic. Biol. Med. 100, 147–152 (2016).
Acknowledgements
This study was supported by the Center for Cognition and Sociality (grant IBS-R001-D2 to C.J.L.) and a Young Scientist Fellowship (grant IBS-R001-Y1 to W.K.) from the Institute for Basic Science, South Korea, by the National Research Foundation (grant NRF-2021R1A2C3007164 and grant NRF-2022M3E5E8016325 to E.C. and grant NRF-2021R1C1C2007673 to H.K.) funded by the Ministry of ICT and Science (MSIT) of the Korean government, and by the Samsung Science and Technology Foundation (grant SSTF-BA2201-12 to E.C.).
Author information
Authors and Affiliations
Contributions
W.K. and H.K. researched data for the article and wrote the article. All authors made substantial contributions to the discussion of content and reviewed/edited the article before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Neuroscience thanks Carmignoto Piergiorgio, who co-reviewed with Gabriele Losi; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Koh, W., Kwak, H., Cheong, E. et al. GABA tone regulation and its cognitive functions in the brain. Nat. Rev. Neurosci. 24, 523–539 (2023). https://doi.org/10.1038/s41583-023-00724-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41583-023-00724-7