Abstract
Artificial neural networks (ANNs) inspired by biology are beginning to be widely used to model behavioural and neural data, an approach we call ‘neuroconnectionism’. ANNs have been not only lauded as the current best models of information processing in the brain but also criticized for failing to account for basic cognitive functions. In this Perspective article, we propose that arguing about the successes and failures of a restricted set of current ANNs is the wrong approach to assess the promise of neuroconnectionism for brain science. Instead, we take inspiration from the philosophy of science, and in particular from Lakatos, who showed that the core of a scientific research programme is often not directly falsifiable but should be assessed by its capacity to generate novel insights. Following this view, we present neuroconnectionism as a general research programme centred around ANNs as a computational language for expressing falsifiable theories about brain computation. We describe the core of the programme, the underlying computational framework and its tools for testing specific neuroscientific hypotheses and deriving novel understanding. Taking a longitudinal view, we review past and present neuroconnectionist projects and their responses to challenges and argue that the research programme is highly progressive, generating new and otherwise unreachable insights into the workings of the brain.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Churchland, P. S. & Sejnowski, T. J. Blending computational and experimental neuroscience. Nat. Rev. Neurosci. 17, 667–668 (2016).
Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience needs behaviour: correcting a reductionist bias. Neuron 93, 480–490 (2017).
Kanwisher, N. & Yovel, G. The fusiform face area: a cortical region specialized for the perception of faces. Philos. Trans. R. Soc. B Biol. Sci. 361, 2109–2128 (2006).
Sergent, J., Ohta, S. & Macdonald, B. Functional neuroanatomy of face and object processing: a positron emission tomography study. Brain 115, 15–36 (1992).
Tong, F., Nakayama, K., Vaughan, J. T. & Kanwisher, N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).
Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B. & Tootell, R. B. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 6, 989–995 (2003).
Rust, N. C. & Movshon, J. A. In praise of artifice. Nat. Neurosci. 8, 1647–1650 (2005).
Vinken, K., Konkle, T. & Livingstone, M. The neural code for ‘face cells’ is not face specific. Preprint at bioRxiv https://doi.org/10.1101/2022.03.06.483186 (2022).
McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015).
Schrimpf, M. et al. Brain-score: which artificial neural network for object recognition is most brain-like? Preprint at bioRxiv https://doi.org/10.1101/407007 (2020).
Cichy, R. M. et al. The Algonauts Project: a platform for communication between the sciences of biological and artificial intelligence. Preprint at arXiv https://doi.org/10.48550/arXiv.1905.05675 (2019).
Allen, E. J. et al. A massive 7 T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nat. Neurosci. 25, 116–126 (2022).
Willeke, K. F. et al. The sensorium competition on predicting large-scale mouse primary visual cortex activity. Preprint at arXiv https://doi.org/10.48550/arXiv.2206.08666 (2022).
RichardWebster, B., DiFalco, A., Caldesi, E. & Scheirer, W. J. Perceptual-score: a psychophysical measure for assessing the biological plausibility of visual recognition models. Preprint at arXiv https://doi.org/10.48550/arXiv.2210.08632 (2022).
Schlangen, D. Targeting the benchmark: on methodology in current natural language processing research. Preprint at arXiv https://doi.org/10.48550/arXiv.2007.04792 (2020).
Rumelhart, D. E., McClelland, J. L. & Group, P. R. Parallel Distributed Processing Vol. 1 (IEEE, 1988).
Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A. & Oliva, A. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Sci. Rep. 6, 27755 (2016).
Fukushima, K. & Miyake, S. Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. in Competition and Cooperation in Neural Nets 267–285 (Springer, 1982).
Guclu, U. & van Gerven, M. A. J. Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35, 10005–10014 (2015).
Khaligh-Razavi, S.-M. & Kriegeskorte, N. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput. Biol. 10, e1003915 (2014).
Kietzmann, T. C. et al. Recurrence is required to capture the representational dynamics of the human visual system. Proc. Natl Acad. Sci. USA 116, 21854–21863 (2019).
Seeliger, K. et al. Convolutional neural network-based encoding and decoding of visual object recognition in space and time. NeuroImage 180, 253–266 (2018).
Yamins, D. L. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014).
Kell, A. J., Yamins, D. L., Shook, E. N., Norman-Haignere, S. V. & McDermott, J. H. A task-optimized neural network replicates human auditory behaviour, predicts brain responses, and reveals a cortical processing hierarchy. Neuron 98, 630–644.e16 (2018).
Saddler, M. R., Gonzalez, R. & McDermott, J. H. Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception. Nat. Commun. 12, 7278 (2021).
Cadena, S. A. et al. Diverse task-driven modeling of macaque V4 reveals functional specialization towards semantic tasks. Preprint at bioRxiv https://doi.org/10.1101/2022.05.18.492503 (2022).
Jackson, R. L., Rogers, T. T. & Lambon Ralph, M. A. Reverse-engineering the cortical architecture for controlled semantic cognition. Nat. Hum. Behav. 5, 774–786 (2021).
Saxe, A. M., McClelland, J. L. & Ganguli, S. A mathematical theory of semantic development in deep neural networks. Proc. Natl Acad. Sci. USA 116, 11537–11546 (2019).
Doerig, A. et al. Semantic scene descriptions as an objective of human vision. Preprint at arXiv https://doi.org/10.48550/arXiv.2209.11737 (2022).
Caucheteux, C. & King, J.-R. Brains and algorithms partially converge in natural language processing. Commun. Biol. 5, 134 (2022).
Schrimpf, M. et al. The neural architecture of language: integrative modeling converges on predictive processing. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2105646118 (2021).
Hannagan, T., Agrawal, A., Cohen, L. & Dehaene, S. Emergence of a compositional neural code for written words: recycling of a convolutional neural network for reading. Proc. Natl Acad. Sci. USA 118, e2104779118 (2021).
Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J. & Kurth-Nelson, Z. Deep reinforcement learning and its neuroscientific implications. Neuron 107, 603–616 (2020).
Dabney, W. et al. A distributional code for value in dopamine-based reinforcement learning. Nature 577, 671–675 (2020).
Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).
Quax, S. & van Gerven, M. Emergent mechanisms of evidence integration in recurrent neural networks. PLoS ONE 13, e0205676 (2018).
Lindsay, G. W. & Miller, K. D. How biological attention mechanisms improve task performance in a large-scale visual system model. eLife 7, e38105 (2018).
Orhan, A. E. & Ma, W. J. A diverse range of factors affect the nature of neural representations underlying short-term memory. Nat. Neurosci. 22, 275–283 (2019).
Cross, L., Cockburn, J., Yue, Y. & O’Doherty, J. P. Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments. Neuron 109, 724–738.e7 (2021).
Feulner, B. et al. Small, correlated changes in synaptic connectivity may facilitate rapid motor learning. Nat. Commun. 13, 5163 (2022).
Merel, J., Botvinick, M. & Wayne, G. Hierarchical motor control in mammals and machines. Nat. Commun. 10, 5489 (2019).
Michaels, J. A., Schaffelhofer, S., Agudelo-Toro, A. & Scherberger, H. A goal-driven modular neural network predicts parietofrontal neural dynamics during grasping. Proc. Natl Acad. Sci. USA 117, 32124–32135 (2020).
Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A neural network that finds a naturalistic solution for the production of muscle activity. Nat. Neurosci. 18, 1025–1033 (2015).
Bao, P., She, L., McGill, M. & Tsao, D. Y. A map of object space in primate inferotemporal cortex. Nature 583, 103–108 (2020).
Blauch, N. M., Behrmann, M. & Plaut, D. C. A connectivity-constrained computational account of topographic organization in primate high-level visual cortex. Proc. Natl Acad. Sci. USA 119, e2112566119 (2022).
Dobs, K., Martinez, J., Kell, A. J. E. & Kanwisher, N. Brain-like functional specialization emerges spontaneously in deep neural networks. Sci. Adv. 8, eabl8913 (2022).
Doerig, A., Krahmer, B. & Kietzmann, T. Emergence of topographic organization in a non-convolutional deep neural network (Neuromatch 40). Perception 51, 74–75 (2022).
Higgins, I. et al. Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons. Nat. Commun. 12, 6456(2021).
Lee, H. et al. Topographic deep artificial neural networks reproduce the hallmarks of the primate inferior temporal cortex face processing network. Preprint at bioRxiv https://doi.org/10.1101/2020.07.09.185116 (2020).
Kietzmann, T. C., McClure, P. & Kriegeskorte, N. Deep neural networks in computational neuroscience. Neuroscience https://doi.org/10.1093/acrefore/9780190264086.013.46 (2019).
Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1, 417–446 (2015).
Lindsay, G. W. Convolutional neural networks as a model of the visual system: past, present, and future. J. Cogn. Neurosci. 33, 2017–2031 (2021).
Marblestone, A. H., Wayne, G. & Kording, K. P. Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10, 94 (2016).
Richards, B. A. et al. A deep learning framework for neuroscience. Nat. Neurosci. 22, 1761–1770 (2019).
Saxe, A., Nelli, S. & Summerfield, C. If deep learning is the answer, what is the question? Nat. Rev. Neurosci. 22, 55–67 (2020).
Van Gerven, M. Computational foundations of natural intelligence. Front. Comput. Neurosci. 11, 112 (2017).
Bowers, J. S. et al. Deep problems with neural network models of human vision. Behav. Brain Sci. https://doi.org/10.1017/S0140525X22002813 (2022).
Leek, E. C., Leonardis, A. & Heinke, D. Deep neural networks and image classification in biological vision. Vis. Res. 197, 108058 (2022).
Marcus, G. Deep learning: a critical appraisal. Preprint at arXiv https://doi.org/10.48550/arXiv.1801.00631 (2018).
Serre, T. Deep learning: the good, the bad, and the ugly. Annu. Rev. Vis. Sci. 5, 399–426 (2019).
Cao, R. & Yamins, D. Explanatory models in neuroscience: part 1 — taking mechanistic abstraction seriously. Preprint at arXiv https://doi.org/10.48550/arXiv.2104.01490 (2021).
Cichy, R. M. & Kaiser, D. Deep neural networks as scientific models. Trends Cogn. Sci. 23, 305–317 (2019).
Storrs, K. R. & Kriegeskorte, N. Deep learning for cognitive neuroscience. Preprint at arXiv https://doi.org/10.48550/arXiv.1903.01458 (2019).
Barrett, D. G., Morcos, A. S. & Macke, J. H. Analyzing biological and artificial neural networks: challenges with opportunities for synergy? Curr. Opin. Neurobiol. 55, 55–64 (2019).
Zador, A. M. A critique of pure learning and what artificial neural networks can learn from animal brains. Nat. Commun. 10, 3770 (2019).
Yang, G. R. & Wang, X.-J. Artificial neural networks for neuroscientists: a primer. Neuron 107, 1048–1070 (2020).
Wichmann, F. A. & Geirhos, R. Are deep neural networks adequate behavioural models of human visual perception? Annu. Rev. Vis. Sci. https://doi.org/10.1146/annurev-vision-120522-031739 (2023).
Pulvermüller, F., Tomasello, R., Henningsen-Schomers, M. R. & Wennekers, T. Biological constraints on neural network models of cognitive function. Nat. Rev. Neurosci. 22, 488–502 (2021).
Lakatos, I. Falsification and the methodology of scientific research programmes. in Can Theories Be Refuted? 205–259 (Springer, 1976).
Anderson, J. R., Matessa, M. & Lebiere, C. ACT-R: a theory of higher level cognition and its relation to visual attention. Hum. Comput. Interact. 12, 439–462 (1997).
Wittgenstein, L. Philosophical Investigations (John Wiley & Sons, 2009).
Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. in Advances in Neural Information Processing Systems 1097–1105 (ACM, 2012).
Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. Preprint at arXiv https://doi.org/10.48550/arXiv.1409.1556 (2014).
Nonaka, S., Majima, K., Aoki, S. C. & Kamitani, Y. Brain hierarchy score: which deep neural networks are hierarchically brain-like? iScience 24, 103013 (2021).
Heilbron, M., Armeni, K., Schoffelen, J.-M., Hagoort, P. & De Lange, F. P. A. hierarchy of linguistic predictions during natural language comprehension. Proc. Natl Acad. Sci. USA 119, e2201968119 (2022).
Ponce, C. R. et al. Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences. Cell 177, 999–1009.e10 (2019).
Tuli, S., Dasgupta, I., Grant, E. & Griffiths, T. L. Are convolutional neural networks or transformers more like human vision? Preprint at arXiv https://doi.org/10.48550/arXiv.2105.07197 (2021).
Markram, H. The human brain project. Sci. Am. 306, 50–55 (2012).
Nandi, A. et al. Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types. Cell Rep. 40, 111176 (2022).
Wolfram, S. Cellular automata as models of complexity. Nature 311, 419–424 (1984).
Siegelmann, H. T. & Sontag, E. D. On the computational power of neural nets. J. Comput. Syst. Sci. 50, 132–150 (1995).
Ali, A., Ahmad, N., de Groot, E., van Gerven, M. A. J. & Kietzmann, T. C. Predictive coding is a consequence of energy efficiency in recurrent neural networks. Patterns 3, 100639 (2022).
Jaeger, H. The ‘echo state’ approach to analysing and training recurrent neural networks — with an erratum note. Bonn. Ger. Ger. Natl Res. Cent. Inf. Technol. GMD Tech. Rep. 148, 13 (2001).
Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560 (2002).
LeCun, Y. et al. Handwritten digit recognition with a back-propagation network. in Advances in Neural Information Processing Systems 396–404 (NIPS, 1990).
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
Doerig, A., Schmittwilken, L., Sayim, B., Manassi, M. & Herzog, M. H. Capsule networks as recurrent models of grouping and segmentation. PLoS Comput. Biol. 16, e1008017 (2020).
Güçlü, U. & Van Gerven, M. A. Modeling the dynamics of human brain activity with recurrent neural networks. Front. Comput. Neurosci. 11, 7 (2017).
Kar, K. & DiCarlo, J. J. Fast recurrent processing via ventrolateral prefrontal cortex is needed by the primate ventral stream for robust core visual object recognition. Neuron 109, 164–176.e5 (2021).
Lindsay, G. W., Mrsic-Flogel, T. D. & Sahani, M. Bio-inspired neural networks implement different recurrent visual processing strategies than task-trained ones do. Preprint at bioRxiv https://doi.org/10.1101/2022.03.07.483196 (2022).
Linsley, D., Kim, J. & Serre, T. Sample-efficient image segmentation through recurrence. Preprint at arXiv https://doi.org/10.48550/arXiv.1811.11356 (2018).
Nayebi, A. et al. Goal-driven recurrent neural network models of the ventral visual stream. Preprint at bioRxiv https://doi.org/10.1101/2021.02.17.431717 (2021).
Thorat, S., Aldegheri, G. & Kietzmann, T. C. Category-orthogonal object features guide information processing in recurrent neural networks trained for object categorization. Preprint at arXiv https://doi.org/10.48550/arXiv.2111.07898 (2021).
Bertalmío, M. et al. Evidence for the intrinsically nonlinear nature of receptive fields in vision. Sci. Rep. 10, 16277 (2020).
Quax, S. C., D’Asaro, M. & van Gerven, M. A. Adaptive time scales in recurrent neural networks. Sci. Rep. 10, 11360 (2020).
Voelker, A., Kajić, I. & Eliasmith, C. Legendre memory units: continuous-time representation in recurrent neural networks. in Advances in Neural Information Processing Systems Vol. 32 (NeurIPS, 2019).
Bohte, S. M. The evidence for neural information processing with precise spike-times: a survey. Nat. Comput. 3, 195–206 (2004).
Gerstner, W. & Kistler, W. M. Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge Univ. Press, 2002).
Sörensen, L. K., Zambrano, D., Slagter, H. A., Bohté, S. M. & Scholte, H. S. Leveraging spiking deep neural networks to understand the neural mechanisms underlying selective attention. J. Cogn. Neurosci. 34, 655–674 (2022).
Zenke, F. & Ganguli, S. Superspike: supervised learning in multilayer spiking neural networks. Neural Comput. 30, 1514–1541 (2018).
Stimberg, M., Brette, R. & Goodman, D. F. Brian 2, an intuitive and efficient neural simulator. eLife 8, e47314 (2019).
Guerguiev, J., Lillicrap, T. P. & Richards, B. A. Towards deep learning with segregated dendrites. eLife 6, e22901 (2017).
Sacramento, J., Ponte Costa, R., Bengio, Y. & Senn, W. Dendritic cortical microcircuits approximate the backpropagation algorithm. in Advances in Neural Information Processing Systems Vol. 31 (NeurIPS, 2018).
Antolík, J., Hofer, S. B., Bednar, J. A. & Mrsic-Flogel, T. D. Model constrained by visual hierarchy improves prediction of neural responses to natural scenes. PLoS Comput. Biol. 12, e1004927 (2016).
Cadena, S. A. et al. Deep convolutional models improve predictions of macaque V1 responses to natural images. PLoS Comput. Biol. 15, e1006897 (2019).
Ecker, A. S. et al. A rotation-equivariant convolutional neural network model of primary visual cortex. Preprint at arXiv https://doi.org/10.48550/arXiv.1809.10504 (2018).
Kindel, W. F., Christensen, E. D. & Zylberberg, J. Using deep learning to probe the neural code for images in primary visual cortex. J. Vis. 19, 29–29 (2019).
Klindt, D., Ecker, A. S., Euler, T. & Bethge, M. Neural system identification for large populations separating ‘what’ and ‘where’. in Advances in Neural Information Processing Systems Vol. 30 (NIPS, 2017).
Seeliger, K. et al. End-to-end neural system identification with neural information flow. PLoS Comput. Biol. 17, e1008558 (2021).
St-Yves, G. & Naselaris, T. The feature-weighted receptive field: an interpretable encoding model for complex feature spaces. NeuroImage 180, 188–202 (2018).
Tripp, B. Approximating the architecture of visual cortex in a convolutional network. Neural Comput. 31, 1551–1591 (2019).
Bellec, P. & Boyle, J. Bridging the gap between perception and action: the case for neuroimaging. Preprint at PsyarXiv https://doi.org/10.31234/osf.io/3epws (2019).
Hebart, M. N. et al. THINGS: a database of 1,854 object concepts and more than 26,000 naturalistic object images. PLoS ONE 14, e0223792 (2019).
Naselaris, T., Allen, E. & Kay, K. Extensive sampling for complete models of individual brains. Curr. Opin. Behav. Sci. 40, 45–51 (2021).
Seeliger, K., Sommers, R. P., Güçlü, U., Bosch, S. E. & Van Gerven, M. A. J. A large single-participant fMRI dataset for probing brain responses to naturalistic stimuli in space and time. Preprint at bioRxiv https://doi.org/10.1101/687681 (2019).
Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021).
Mehrer, J., Spoerer, C. J., Jones, E. C., Kriegeskorte, N. & Kietzmann, T. C. An ecologically motivated image dataset for deep learning yields better models of human vision. Proc. Natl Acad. Sci. USA 118, e2011417118 (2021).
Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. in International Conference on Machine Learning 1597–1607 (PMLR, 2020).
Konkle, T. & Alvarez, G. A. A self-supervised domain-general learning framework for human ventral stream representation. Preprint at Nat. Commun. 13, 491 (2020).
Choksi, B. et al. Predify: augmenting deep neural networks with brain-inspired predictive coding dynamics. Adv. Neural Inf. Process. Syst. 34, 14069–14083 (2021).
Lotter, W., Kreiman, G. & Cox, D. A neural network trained for prediction mimics diverse features of biological neurons and perception. Nat. Mach. Intell. 2, 210–219 (2020).
Soulos, P. & Isik, L. Disentangled face representations in deep generative models and the human brain. in NeurIPS 2020 Workshop SVRHM (NeurIPS, 2020).
Storrs, K. R., Anderson, B. L. & Fleming, R. W. Unsupervised learning predicts human perception and misperception of gloss. Nat. Hum. Behav. 5, 1402–1417 (2021).
Franzius, M., Sprekeler, H. & Wiskott, L. Slowness and sparseness lead to place, head-direction, and spatial-view cells. PLoS Comput. Biol. 3, e166 (2007).
Franzius, M., Wilbert, N. & Wiskott, L. Invariant object recognition with slow feature analysis. in International Conference on Artificial Neural Networks 961–970 (Springer, 2008).
Kayser, C., Einhäuser, W., Dümmer, O., König, P. & Körding, K. Extracting slow subspaces from natural videos leads to complex cells. in Artificial Neural Networks — ICANN 2001 Vol. 2130 (eds Dorffner, G., Bischof, H. & Hornik, K.) 1075–1080 (Springer, 2001).
Wiskott, L. & Sejnowski, T. J. Slow feature analysis: unsupervised learning of invariances. Neural Comput. 14, 715–770 (2002).
Wyss, R., König, P. & Verschure, P. F. J. A model of the ventral visual system based on temporal stability and local memory. PLoS Biol. 4, e120 (2006).
Lindsay, G. W., Merel, J., Mrsic-Flogel, T. & Sahani, M. Divergent representations of ethological visual inputs emerge from supervised, unsupervised, and reinforcement learning. Preprint at arXiv https://doi.org/10.48550/arXiv.2112.02027 (2021).
Dwivedi, K., Bonner, M. F., Cichy, R. M. & Roig, G. Unveiling functions of the visual cortex using task-specific deep neural networks. PLoS Comput. Biol. 17, e1009267 (2021).
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
Ahmad, N., Schrader, E. & van Gerven, M. Constrained parameter inference as a principle for learning. Preprint at arXiv https://doi.org/10.48550/arXiv.2203.13203 (2022).
Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).
Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synaptic feedback weights support error backpropagation for deep learning. Nat. Commun. 7, 13276 (2016).
Pozzi, I., Bohte, S. & Roelfsema, P. Attention-gated brain propagation: how the brain can implement reward-based error backpropagation. Adv. Neural Inf. Process. Syst. 33, 2516–2526 (2020).
Richards, B. A. & Lillicrap, T. P. Dendritic solutions to the credit assignment problem. Curr. Opin. Neurobiol. 54, 28–36 (2019).
Hebb, D. O. The Organization of Behaviour: A Neuropsychological Theory (Psychology Press, 2005).
Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79 (1999).
Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982).
Saxe, A. M., McClelland, J. L. & Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Preprint at arXiv https://doi.org/10.48550/arXiv.1312.6120 (2013).
Benjamin, A. S., Zhang, L.-Q., Qiu, C., Stocker, A. & Kording, K. P. Efficient neural codes naturally emerge through gradient descent learning. Nat. Commun. 13, 7972 (2022).
Munakata, Y. & Pfaffly, J. Hebbian learning and development. Dev. Sci. 7, 141–148 (2004).
Berrios, W. & Deza, A. Joint rotational invariance and adversarial training of a dual-stream transformer yields state of the art brain-score for area V4. Preprint at https://doi.org/10.48550/arXiv.2203.06649 (2022).
St-Yves, G., Allen, E. J., Wu, Y., Kay, K. & Naselaris, T. Brain-optimized neural networks learn non-hierarchical models of representation in human visual cortex. Preprint at bioRxiv https://doi.org/10.1101/2022.01.21.477293 (2022).
Hasenstaub, A., Otte, S., Callaway, E. & Sejnowski, T. J. Metabolic cost as a unifying principle governing neuronal biophysics. Proc. Natl Acad. Sci. USA 107, 12329–12334 (2010).
Stone, J. V. Principles of Neural Information Theory: Computational Neuroscience and Metabolic Efficiency (Tutorial Introductions) (Tutorial Introductions, 2018).
Wang, Z., Wei, X.-X., Stocker, A. A. & Lee, D. D. Efficient neural codes under metabolic constraints. in Advances in Neural Information Processing Systems Vol. 29 (NIPS, 2016).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).
Dosovitskiy, A. et al. An image is worth 16 × 16 words: transformers for image recognition at scale. Preprint at arXiv https://doi.org/10.48550/arXiv.2010.11929 (2020).
Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).
Mnih, V. et al. Playing Atari with deep reinforcement learning. Preprint at arXiv https://doi.org/10.48550/arXiv.1312.5602 (2013).
Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575, 350–354 (2019).
Spoerer, C. J., Kietzmann, T. C., Mehrer, J., Charest, I. & Kriegeskorte, N. Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision. PLoS Comput. Biol. 16, e1008215 (2020).
Geirhos, R. et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. in International Conference on Learning Representations (ICLR, 2018).
Geirhos, R. et al. Generalisation in humans and deep neural networks. Advances in Neural Information Processing Systems Vol. 31 (NIPS, 2018).
Singer, J. J., Seeliger, K., Kietzmann, T. C. & Hebart, M. N. From photos to sketches-how humans and deep neural networks process objects across different levels of visual abstraction. J. Vis. 22, 4 (2022).
Doerig, A., Bornet, A., Choung, O. H. & Herzog, M. H. Crowding reveals fundamental differences in local vs. global processing in humans and machines. Vis. Res. 167, 39–45 (2020).
Funke, C. M. et al. Comparing the ability of humans and DNNs to recognise closed contours in cluttered images. in 18th Annual Meeting of the Vision Sciences Society (VSS 2018) 213 (VSS, 2018).
Jacob, G., Pramod, R. T., Katti, H. & Arun, S. P. Qualitative similarities and differences in visual object representations between brains and deep networks. Nat. Commun. 12, 1872 (2021).
Kim, J., Linsley, D., Thakkar, K. & Serre, T. Disentangling neural mechanisms for perceptual grouping. Preprint at arXiv https://doi.org/10.48550/arXiv.1906.01558 (2019).
Loke, J. et al. A critical test of deep convolutional neural networks’ ability to capture recurrent processing in the brain using visual masking. J. Cogn. Neurosci. 34, 2390–2405 (2022).
RichardWebster, B., Anthony, S. & Scheirer, W. Psyphy: a psychophysics driven evaluation framework for visual recognition. In IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 41 (IEEE, 2018).
Sörensen, L. K., Bohté, S. M., De Jong, D., Slagter, H. A. & Scholte, H. S. Mechanisms of human dynamic object recognition revealed by sequential deep neural networks. Preprint at bioRxiv https://doi.org/10.1101/2022.04.06.487259 (2022).
Firestone, C. Performance vs. competence in human–machine comparisons. Proc. Natl Acad. Sci. USA 117, 26562–26571 (2020).
Lonnqvist, B., Bornet, A., Doerig, A. & Herzog, M. H. A comparative biology approach to DNN modeling of vision: a focus on differences, not similarities. J. Vis. 21, 17–17 (2021).
Ma, W. J. & Peters, B. A neural network walks into a lab: towards using deep nets as models for human behaviour. Preprint at arXiv https://doi.org/10.48550/arXiv.2005.02181 (2020).
Neri, P. Deep networks may capture biological behaviour for shallow, but not deep, empirical characterizations. Neural Netw. 152, 244–266 (2022).
Kriegeskorte, N., Mur, M. & Bandettini, P. A. Representational similarity analysis-connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).
Kriegeskorte, N. & Wei, X.-X. Neural tuning and representational geometry. Nat. Rev. Neurosci. 22, 703–718 (2021).
Kaniuth, P. & Hebart, M. N. Feature-reweighted representational similarity analysis: a method for improving the fit between computational models, brains, and behaviour. NeuroImage 257, 119294 (2022).
Storrs, K. R., Kietzmann, T. C., Walther, A., Mehrer, J. & Kriegeskorte, N. Diverse deep neural networks all predict human inferior temporal cortex well, after training and fitting. J. Cogn. Neurosci. 33, 2044–2064 (2021).
Kornblith, S., Norouzi, M., Lee, H. & Hinton, G. Similarity of neural network representations revisited. in International Conference on Machine Learning 3519–3529 (PMLR, 2019).
Kriegeskorte, N. & Diedrichsen, J. Peeling the onion of brain representations. Annu. Rev. Neurosci. 42, 407–432 (2019).
Naselaris, T., Kay, K. N., Nishimoto, S. & Gallant, J. L. Encoding and decoding in fMRI. NeuroImage 56, 400–410 (2011).
van Gerven, M. A. J. A primer on encoding models in sensory neuroscience. J. Math. Psychol. 76, 172–183 (2017).
Sexton, N. J. & Love, B. C. Reassessing hierarchical correspondences between brain and deep networks through direct interface. Sci. Adv. 8, eabm2219 (2022).
Bashivan, P., Kar, K. & DiCarlo, J. J. Neural population control via deep image synthesis. Science 364, aav9436 (2019).
Gu, Z. et al. NeuroGen: activation optimized image synthesis for discovery neuroscience. NeuroImage 247, 118812 (2022).
Ratan Murty, N. A., Bashivan, P., Abate, A., DiCarlo, J. J. & Kanwisher, N. Computational models of category-selective brain regions enable high-throughput tests of selectivity. Nat. Commun. 12, 5540 (2021).
Mehrer, J., Spoerer, C. J., Kriegeskorte, N. & Kietzmann, T. C. Individual differences among deep neural network models. Nat. Commun. 11, 5725 (2020).
Doshi, F. R. & Konkle, T. Visual object topographic motifs emerge from self-organization of a unified representational space. Preprint at bioRxiv https://doi.org/10.1101/2022.09.06.506403 (2022).
Geadah, V., Horoi, S., Kerg, G., Wolf, G. & Lajoie, G. Goal-driven optimization of single-neuron properties in artificial networks reveals regularization role of neural diversity and adaptation. Preprint at bioRxiv https://doi.org/10.1101/2022.04.29.489963 (2022).
Elsayed, G., Ramachandran, P., Shlens, J. & Kornblith, S. Revisiting spatial invariance with low-rank local connectivity. in International Conference on Machine Learning 2868–2879 (PMLR, 2020).
Zaadnoordijk, L., Besold, T. R. & Cusack, R. Lessons from infant learning for unsupervised machine learning. Nat. Mach. Intell. 4, 510–520 (2022).
Rane, S. et al. Predicting word learning in children from the performance of computer vision systems. Preprint at arXiv https://doi.org/10.48550/arXiv.2207.09847 (2022).
Cadena, S. A. et al. How well do deep neural networks trained on object recognition characterize the mouse visual system? In Neuro-AI Workshop at the Neural Information Processing Conference (NeurIPS, 2019).
Cao, R. & Yamins, D. Explanatory models in neuroscience: part 2 — constraint-based intelligibility. Preprint at arXiv https://doi.org/10.48550/arXiv.2104.01489 (2021).
Kanwisher, N., Khosla, M. & Dobs, K. Using artificial neural networks to ask ‘why’ questions of minds and brains. Trends Neurosci. 46, 240–254 (2023).
Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).
Cichy, R. M., Khosla, A., Pantazis, D. & Oliva, A. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. NeuroImage 153, 346–358 (2017).
Eickenberg, M., Gramfort, A., Varoquaux, G. & Thirion, B. Seeing it all: convolutional network layers map the function of the human visual system. NeuroImage 152, 184–194 (2017).
Averbeck, B. B. Pruning recurrent neural networks replicates adolescent changes in working memory and reinforcement learning. Proc. Natl Acad. Sci. USA 119, e2121331119 (2022).
Rust, N. C. & Jannuzi, B. G. Identifying objects and remembering images: insights from deep neural networks. Curr. Dir. Psychol. Sci. 31, 09637214221083663 (2022).
Tanaka, H. et al. From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction. Adv. Neural Inf. Process. Syst. https://papers.nips.cc/paper_files/paper/2019/hash/eeaebbffb5d29ff62799637fc51adb7b-Abstract.html (2019).
Berner, J., Grohs, P., Kutyniok, G. & Petersen, P. The modern mathematics of deep learning. in Mathematical Aspects of Deep Learning (eds Grohs, P. & Kutyniok, G.) 1–111 (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781009025096.002.
Olshausen, B. A. & Field, D. J. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vis. Res. 37, 3311–3325 (1997).
Nakkiran, P. et al. Deep double descent: where bigger models and more data hurt. J. Stat. Mech. Theory Exp. 2021, 124003 (2021).
Jacot, A., Gabriel, F. & Hongler, C. Neural tangent kernel: convergence and generalization in neural networks. in Advances in Neural Information Processing Systems Vol. 31 (NIPS, 2018).
Simsek, B. et al. Geometry of the loss landscape in overparameterized neural networks: symmetries and invariances. in International Conference on Machine Learning 9722–9732 (PMLR, 2021).
Minh, D., Wang, H. X., Li, Y. F. & Nguyen, T. N. Explainable artificial intelligence: a comprehensive review. Artif. Intell. Rev. 55, 3503–3568 (2022).
Kar, K., Kornblith, S. & Fedorenko, E. Interpretability of artificial neural network models in artificial intelligence versus neuroscience. Nat. Mach. Intell. 4, 1065–1067 (2022).
Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional networks: visualising image classification models and saliency maps. Preprint at arXiv https://doi.org/10.48550/arXiv.1312.6034 (2013).
Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks. in European Conference on Computer Vision 818–833 (Springer, 2014).
Ribeiro, M. T., Singh, S. & Guestrin, C. ‘Why should I trust you?’ Explaining the predictions of any classifier. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1135–1144 (ACM, 2016).
Fong, R. C. & Vedaldi, A. Interpretable explanations of black boxes by meaningful perturbation. in Proceedings of the IEEE International Conference on Computer Vision 3429–3437 (IEEE, 2017).
Olah, C., Mordvintsev, A. & Schubert, L. Feature visualization. Distill 2, e7 (2017).
Hendricks, L. A. et al. Generating visual explanations. in European Conference on Computer Vision 3–19 (Springer, 2016).
Herzog, M. H. & Manassi, M. Uncorking the bottleneck of crowding: a fresh look at object recognition. Curr. Opin. Behav. Sci. 1, 86–93 (2015).
Doerig, A. et al. Beyond Bouma’s window: how to explain global aspects of crowding? PLOS Comput. Biol. 15, e1006580 (2019).
Herzog, M. H., Sayim, B., Chicherov, V. & Manassi, M. Crowding, grouping, and object recognition: a matter of appearance. J. Vis. 15, 5–5 (2015).
Sabour, S., Frosst, N. & Hinton, G. E. Dynamic routing between capsules. in Advances in Neural Information Processing Systems 3856–3866 (NIPS, 2017).
Bornet, A., Doerig, A., Herzog, M. H., Francis, G. & Van der Burg, E. Shrinking Bouma’s window: how to model crowding in dense displays. PLoS Comput. Biol. 17, e1009187 (2021).
Choung, O.-H., Bornet, A., Doerig, A. & Herzog, M. H. Dissecting (un) crowding. J. Vis. 21, 10 (2021).
Spoerer, C. J., McClure, P. & Kriegeskorte, N. Recurrent convolutional neural networks: a better model of biological object recognition. Front. Psychol. 8, 1551 (2017).
Kar, K., Kubilius, J., Schmidt, K., Issa, E. B. & DiCarlo, J. J. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behaviour. Nat. Neurosci. 22, 974 (2019).
van Bergen, R. S. & Kriegeskorte, N. Going in circles is the way forward: the role of recurrence in visual inference. Curr. Opin. Neurobiol. 65, 176–193 (2020).
Kreiman, G. & Serre, T. Beyond the feedforward sweep: feedback computations in the visual cortex. Primates 9, 16 (2019).
Nayebi, A. et al. Recurrent connections in the primate ventral visual stream mediate a trade-off between task performance and network size during core object recognition. Neural Comput. 34, 1652–1675 (2022).
Sullivan, J., Mei, M., Perfors, A., Wojcik, E. & Frank, M. C. SAYCam: a large, longitudinal audiovisual dataset recorded from the infant’s perspective. Open. Mind 5, 20–29 (2021).
Clay, V., König, P., Kühnberger, K.-U. & Pipa, G. Learning sparse and meaningful representations through embodiment. Neural Netw. 134, 23–41 (2021).
Gan, C. et al. The threeDworld transport challenge: a visually guided task-and-motion planning benchmark for physically realistic embodied AI. Preprint at arXiv https://doi.org/10.48550/arXiv.2103.14025 (2021).
Chen, Y. et al. COCO-Search18 fixation dataset for predicting goal-directed attention control. Sci. Rep. 11, 8776 (2021).
Zhuang, C. et al. Unsupervised neural network models of the ventral visual stream. Proc. Natl Acad. Sci. USA 118, e2014196118 (2021).
Konkle, T. & Alvarez, G. A. A self-supervised domain-general learning framework for human ventral stream representation. Nat. Commun. 13, 491 (2022).
Bakhtiari, S., Mineault, P., Lillicrap, T., Pack, C. & Richards, B. The functional specialization of visual cortex emerges from training parallel pathways with self-supervised predictive learning. in Advances in Neural Information Processing Systems Vol. 34 (NIPS, 2021).
Nayebi, A. et al. Mouse visual cortex as a limited resource system that self-learns an ecologically-general representation. Preprint at bioRxiv https://doi.org/10.1101/2021.06.16.448730 (2022).
Mineault, P., Bakhtiari, S., Richards, B. & Pack, C. Your head is there to move you around: goal-driven models of the primate dorsal pathway. in Advances in Neural Information Processing Systems Vol. 34 (NIPS, 2021).
Stringer, S. M., Rolls, E. T. & Trappenberg, T. P. Self-organizing continuous attractor network models of hippocampal spatial view cells. Neurobiol. Learn. Mem. 83, 79–92 (2005).
Tsodyks, M. Attractor neural network models of spatial maps in hippocampus. Hippocampus 9, 481–489 (1999).
Uria, B. et al. The spatial memory pipeline: a model of egocentric to allocentric understanding in mammalian brains. Preprint at bioRxiv https://doi.org/10.1101/2020.11.11.378141 (2020).
Whittington, J. C. et al. The Tolman–Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. Cell 183, 1249–1263.e23 (2020).
Whittington, J. C., Warren, J. & Behrens, T. E. Relating transformers to models and neural representations of the hippocampal formation. Preprint at arXiv https://doi.org/10.48550/arXiv.2112.04035 (2021).
Acunzo, D. J., Low, D. M. & Fairhall, S. L. Deep neural networks reveal topic-level representations of sentences in medial prefrontal cortex, lateral anterior temporal lobe, precuneus, and angular gyrus. NeuroImage 251, 119005 (2022).
Riveland, R. & Pouget, A. A neural model of task compositionality with natural language instructions. Preprint at bioRxiv https://doi.org/10.1101/2022.02.22.481293 (2022).
Xu, P., Zhu, X. & Clifton, D. A. Multimodal learning with transformers: a survey. Preprint at arXiv https://doi.org/10.48550/arXiv.2206.06488 (2022).
Ivanova, A. A. et al. Beyond linear regression: mapping models in cognitive neuroscience should align with research goals. Preprint at arXiv https://doi.org/10.48550/arXiv.2208.10668 (2022).
Peterson, J. C., Abbott, J. T. & Griffiths, T. L. Evaluating (and improving) the correspondence between deep neural networks and human representations. Cogn. Sci. 42, 2648–2669 (2018).
Golan, T., Raju, P. C. & Kriegeskorte, N. Controversial stimuli: pitting neural networks against each other as models of human cognition. Proc. Natl Acad. Sci. USA 117, 29330–29337 (2020).
Geirhos, R., Meding, K. & Wichmann, F. A. Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency. Adv. Neural Inf. Process. Syst. 33, 13890–13902 (2020).
Biscione, V. & Bowers, J. S. Do DNNs trained on natural images acquire Gestalt properties? Preprint at arXiv https://doi.org/10.48550/arXiv.2203.07302 (2022).
Feather, J., Durango, A., Gonzalez, R. & McDermott, J. Metamers of neural networks reveal divergence from human perceptual systems. Advances in Neural Information Processing Systems Vol. 32 (NIPS, 2019).
Mastrogiuseppe, F. & Ostojic, S. Linking connectivity, dynamics, and computations in low-rank recurrent neural networks. Neuron 99, 609–623.e29 (2018).
Dujmović, M., Bowers, J., Adolfi, F. & Malhotra, G. The pitfalls of measuring representational similarity using representational similarity analysis. Preprint at bioRxiv https://doi.org/10.1101/2022.04.05.487135 (2022).
Elmoznino, E. & Bonner, M. F. High-performing neural network models of visual cortex benefit from high latent dimensionality. Preprint at bioRxiv https://doi.org/10.1101/2022.07.13.499969 (2022).
Schaeffer, R., Khona, M. & Fiete, I. R. No free lunch from deep learning in neuroscience: a case study through models of the entorhinal-hippocampal circuit. in ICML 2022 2nd AI for Science Workshop (ICML, 2022).
Crick, F. The recent excitement about neural networks. Nature 337, 129–132 (1989).
Szegedy, C. et al. Intriguing properties of neural networks. in 2nd International Conference on Learning Representations, ICLR 2014 (ICLR, 2014).
Moosavi-Dezfooli, S.-M., Fawzi, A. & Frossard, P. Deepfool: a simple and accurate method to fool deep neural networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2574–2582 (IEEE, 2016).
Nguyen, A., Yosinski, J. & Clune, J. Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 427–436 (IEEE, 2015).
Baker, N., Lu, H., Erlikhman, G. & Kellman, P. J. Deep convolutional networks do not classify based on global object shape. PLoS Comput. Biol. 14, e1006613 (2018).
Heinke, D., Wachman, P., van Zoest, W. & Leek, E. C. A failure to learn object shape geometry: implications for convolutional neural networks as plausible models of biological vision. Vis. Res. 189, 81–92 (2021).
Goodfellow, I. J., Shlens, J. & Szegedy, C. Explaining and harnessing adversarial examples. Preprint at arXiv https://doi.org/10.48550/arXiv.1412.6572 (2014).
Bai, T., Luo, J., Zhao, J., Wen, B. & Wang, Q. Recent advances in adversarial training for adversarial robustness. Preprint at arXiv https://doi.org/10.48550/arXiv.2102.01356 (2021).
Dapello, J. et al. Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations. Adv. Neural Inf. Process. Syst. 33, 13073–13087 (2020).
Malhotra, G., Evans, B. D. & Bowers, J. S. Hiding a plane with a pixel: examining shape-bias in CNNs and the benefit of building in biological constraints. Vis. Res. 174, 57–68 (2020).
Machiraju, H., Choung, O.-H., Herzog, M. H. & Frossard, P. Empirical advocacy of bio-inspired models for robust image recognition. Preprint at arXiv https://doi.org/10.48550/arXiv.2205.09037 (2022).
Ilyas, A. et al. Adversarial examples are not bugs, they are features. Preprint at arXiv https://doi.org/10.48550/arXiv.1905.02175 (2019).
Geirhos, R. et al. Shortcut learning in deep neural networks. Nat. Mach. Intell. 2, 665–673 (2020).
Elsayed, G. et al. Adversarial examples that fool both computer vision and time-limited humans. in Advances in Neural Information Processing Systems 3910–3920 (NIPS, 2018).
Guo, C. et al. Adversarially trained neural representations are already as robust as biological neural representations. in International Conference on Machine Learning 8072–8081 (PMLR, 2022).
Zhou, Z. & Firestone, C. Humans can decipher adversarial images. Nat. Commun. 10, 1334 (2019).
Hermann, K., Chen, T. & Kornblith, S. The origins and prevalence of texture bias in convolutional neural networks. Adv. Neural Inf. Process. Syst. 33, 19000–19015 (2020).
Evans, B. D., Malhotra, G. & Bowers, J. S. Biological convolutions improve DNN robustness to noise and generalisation. Neural Netw. 148, 96–110 (2022).
Geirhos, R. et al. Partial success in closing the gap between human and machine vision. in Advances in Neural Information Processing Systems Vol. 34 (NIPS, 2021).
Jagadeesh, A. V. & Gardner, J. L. Texture-like representation of objects in human visual cortex. Proc. Natl Acad. Sci. USA 119, e2115302119 (2022).
Fodor, J. A. & Pylyshyn, Z. W. Connectionism and cognitive architecture: a critical analysis. Cognition 28, 3–71 (1988).
Jackendoff, R. Précis of foundations of language: brain, meaning, grammar, evolution. Behav. Brain Sci. 26, 651–665 (2003).
Marcus, G. F. The Algebraic Mind: Integrating Connectionism and Cognitive Science (MIT Press, 2003).
Quilty-Dunn, J., Porot, N. & Mandelbaum, E. The best game in town: the re-emergence of the language of thought hypothesis across the cognitive sciences. Behav. Brain Sci. https://doi.org/10.1017/S0140525X22002849 (2022).
Chomsky, N. Language and Mind (Cambridge Univ. Press, 2006).
Frankland, S. M. & Greene, J. D. Concepts and compositionality: in search of the brain’s language of thought. Annu. Rev. Psychol. 71, 273–303 (2020).
Pinker, S. & Prince, A. On language and connectionism: analysis of a parallel distributed processing model of language acquisition. Cognition 28, 73–193 (1988).
Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989).
Santoro, A., Lampinen, A., Mathewson, K., Lillicrap, T. & Raposo, D. Symbolic behaviour in artificial intelligence. Preprint at arXiv https://doi.org/10.48550/arXiv.2102.03406 (2021).
Mul, M., Bouchacourt, D. & Bruni, E. Mastering emergent language: learning to guide in simulated navigation. Preprint at arXiv https://doi.org/10.48550/arXiv.1908.05135 (2019).
ChatGPT: optimizing language models for dialogue. OpenAI https://openai.com/blog/chatgpt/ (2022).
Shahriar, S. & Hayawi, K. Let’s have a chat! A conversation with ChatGPT: technology, applications, and limitations. Preprint at arXiv https://doi.org/10.48550/arXiv.2302.13817 (2023).
OpenAI. GPT-4 technical report. Preprint at arXiv https://doi.org/10.48550/arXiv.2303.08774 (2023).
Hinton, G. How to represent part-whole hierarchies in a neural network. Preprint at arXiv https://doi.org/10.48550/arXiv.2102.12627 (2021).
Higgins, I. et al. beta-vae: learning basic visual concepts with a constrained variational framework. International Conference on Learning Representations https://openreview.net/forum?id=Sy2fzU9gl (2017).
Higgins, I. et al. Towards a definition of disentangled representations. Preprint at arXiv https://doi.org/10.48550/arXiv.1812.02230 (2018).
Eslami, S. A. et al. Neural scene representation and rendering. Science 360, 1204–1210 (2018).
Graves, A., Wayne, G. & Danihelka, I. Neural turing machines. Preprint at arXiv https://doi.org/10.48550/arXiv.1410.5401 (2014).
Garnelo, M., Arulkumaran, K. & Shanahan, M. Towards deep symbolic reinforcement learning. Preprint at arXiv https://doi.org/10.48550/arXiv.1609.05518 (2016).
Holyoak, K. J. The proper treatment of symbols. in Cognitive Dynamics: Conceptual and Representational Change in Humans and Machines Vol. 229 (Psychology Press, 2000).
Smolensky, P., McCoy, R. T., Fernandez, R., Goldrick, M. & Gao, J. Neurocompositional computing: from the central paradox of cognition to a new generation of AI systems. Preprint at arXiv https://doi.org/10.48550/arXiv.2205.01128 (2022).
Hummel, J. E. Getting symbols out of a neural architecture. Connect. Sci. 23, 109–118 (2011).
Smolensky, P. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif. Intell. 46, 159–216 (1990).
Eliasmith, C. How to Build a Brain: A Neural Architecture for Biological Cognition (Oxford Univ. Press, 2013).
Flesch, T., Juechems, K., Dumbalska, T., Saxe, A. & Summerfield, C. Orthogonal representations for robust context-dependent task performance in brains and neural networks. Neuron 110, 1258–1270 (2022).
Molano-Mazon, M. et al. NeuroGym: an open resource for developing and sharing neuroscience tasks. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/aqc9n (2022).
Koulakov, A., Shuvaev, S., Lachi, D. & Zador, A. Encoding innate ability through a genomic bottleneck. Preprint at bioRxiv https://doi.org/10.1101/2021.03.16.435261 (2022).
Heinke, D. Computational modelling in behavioural neuroscience: methodologies and approaches (minutes of discussions at the workshop in Birmingham, UK, in May 2007). in Computational Modelling in Behavioural Neuroscience 346–352 (Psychology Press, 2009).
Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).
Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999).
Wen, H. et al. Neural encoding and decoding with deep learning for dynamic natural vision. Cereb. Cortex 28, 4136–4160 (2018).
Popper, K. The Logic of Scientific Discovery (Routledge, 2005).
Duhem, P. M. M. The Aim and Structure of Physical Theory Vol. 13 (Princeton Univ. Press, 1991).
Duhem, P. Physical theory and experiment. in Can Theories Be Refuted? 1–40 (Springer, 1976).
Gillies, D. Philosophy of science in the twentieth century: four central themes. Br. J. Philos. Sci. 45, 1066–1069 (1994).
Quine, W. v. O. Two dogmas of empiricism. in Can theories Be refuted? 41–64 (Springer, 1976).
Kuhn, T. S. The Structure of Scientific Revolutions (Univ. Chicago Press, 2012).
Acknowledgements
The authors acknowledge support by the SNF grant 203018 (A.D.), the ERC stg grant 101039524 TIME (T.C.K.) and the Max Planck Research Group grant of Martin N. Hebart (K.S.).
Author information
Authors and Affiliations
Contributions
A.D., R.P.S., K.S. and T.C.K. initiated the project and wrote the first draft of the article. A.D., R.P.S., K.S., B.R., J.I., G.W.L., T.K., M.A.J.v.G. and T.C.K. contributed significantly to subsequent versions of this manuscript. All authors researched data for the article and contributed substantially to the conceptualization of the research programme.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Neuroscience thanks Gemma Roig, who co-reviewed with Martina Vilas; Benjamin Cowley; Dietmar Heinke; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Doerig, A., Sommers, R.P., Seeliger, K. et al. The neuroconnectionist research programme. Nat Rev Neurosci 24, 431–450 (2023). https://doi.org/10.1038/s41583-023-00705-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41583-023-00705-w
This article is cited by
-
What comparing deep neural networks can teach us about human vision
Nature Machine Intelligence (2024)
-
Memorability shapes perceived time (and vice versa)
Nature Human Behaviour (2024)
-
Biophysical neural adaptation mechanisms enable artificial neural networks to capture dynamic retinal computation
Nature Communications (2024)
-
Anchor objects drive realism while diagnostic objects drive categorization in GAN generated scenes
Communications Psychology (2024)
-
Exploring, expounding & ersatzing: a three-level account of deep learning models in cognitive neuroscience
Synthese (2024)