Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The impact of the human thalamus on brain-wide information processing

Abstract

The thalamus is a small, bilateral structure in the diencephalon that integrates signals from many areas of the CNS. This critical anatomical position allows the thalamus to influence whole-brain activity and adaptive behaviour. However, traditional research paradigms have struggled to attribute specific functions to the thalamus, and it has remained understudied in the human neuroimaging literature. Recent advances in analytical techniques and increased accessibility to large, high-quality data sets have brought forth a series of studies and findings that (re-)establish the thalamus as a core region of interest in human cognitive neuroscience, a field that otherwise remains cortico-centric. In this Perspective, we argue that using whole-brain neuroimaging approaches to investigate the thalamus and its interaction with the rest of the brain is key for understanding systems-level control of information processing. To this end, we highlight the role of the thalamus in shaping a range of functional signatures, including evoked activity, interregional connectivity, network topology and neuronal variability, both at rest and during the performance of cognitive tasks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The functional neuroanatomy of the thalamus.
Fig. 2: Functional parcellation, connector hub properties and variability profile of the thalamus.
Fig. 3: Arousal shapes thalamic activity and thalamocortical dynamics.
Fig. 4: The functional repertoire of the thalamus serves decision-making under parametric uncertainty.

Similar content being viewed by others

References

  1. Luo, T. Z. & Maunsell, J. H. R. Attention can be subdivided into neurobiological components corresponding to distinct behavioral effects. Proc. Natl Acad. Sci. USA 116, 26187–26194 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Buschman, T. J. & Miller, E. K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Krienen, F. M., Yeo, B. T. T. & Buckner, R. L. Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Phil. Trans. R. Soc. B 369, 20130526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shine, J. M. et al. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92, 544–554 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X. & Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sporns, O. & Betzel, R. F. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016).

    Article  PubMed  Google Scholar 

  8. Park, H.-J. & Friston, K. Structural and functional brain networks: from connections to cognition. Science 342, 1238411 (2013).

    Article  PubMed  Google Scholar 

  9. Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Müller, E. J., Munn, B. R. & Shine, J. M. Diffuse neural coupling mediates complex network dynamics through the formation of quasi-critical brain states. Nat. Commun. 11, 6337 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shine, J. M., Aburn, M. J., Breakspear, M. & Poldrack, R. A. The modulation of neural gain facilitates a transition between functional segregation and integration in the brain. eLife 7, e31130 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Janacsek, K. et al. Subcortical cognition: the fruit below the rind. Annu. Rev. Neurosci. 45, 361–386 (2022).

    Article  PubMed  Google Scholar 

  13. Parvizi, J. Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn. Sci. 13, 354–359 (2009).

    Article  PubMed  Google Scholar 

  14. Shine, J. M. The thalamus integrates the macrosystems of the brain to facilitate complex, adaptive brain network dynamics. Prog. Neurobiol. 199, 101951 (2021).

    Article  PubMed  Google Scholar 

  15. McCormick, D. A. Cholinergic and noradrenergic modulation of thalamocortical processing. Trends Neurosci. 12, 215–221 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Varela, C. Thalamic neuromodulation and its implications for executive networks. Front. Neural Circuits 8, 69 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Merker, B. Consciousness without a cerebral cortex: a challenge for neuroscience and medicine. Behav. Brain Sci. 30, 63–81 (2007).

    Article  PubMed  Google Scholar 

  18. Basso, M. A. & May, P. J. Circuits for action and cognition: a view from the superior colliculus. Annu. Rev. Vis. Sci. 3, 197–226 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shine, J. M. Adaptively navigating affordance landscapes: how interactions between the superior colliculus and thalamus coordinate complex, adaptive behaviour. Neurosci. Biobehav. Rev. 143, 104921 (2022).

    Article  PubMed  Google Scholar 

  20. Houk, J. C. & Wise, S. P. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb. Cortex 5, 95–110 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Clascá, F., Rubio-Garrido, P. & Jabaudon, D. Unveiling the diversity of thalamocortical neuron subtypes. Eur. J. Neurosci. 35, 1524–1532 (2012).

    Article  PubMed  Google Scholar 

  22. Jones, E. G. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 24, 595–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Halassa, M. M. & Sherman, S. M. Thalamocortical circuit motifs: a general framework. Neuron 103, 762–770 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Halassa, M. M. & Acsády, L. Thalamic inhibition: diverse sources, diverse scales. Trends Neurosci. 39, 680–693 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sherman, S. M. The thalamus is more than just a relay. Curr. Opin. Neurobiol. 17, 417–422 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmitt, L. I. & Halassa, M. M. Interrogating the mouse thalamus to correct human neurodevelopmental disorders. Mol. Psychiatry 22, 183–191 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Phillips, J. W. et al. A repeated molecular architecture across thalamic pathways. Nat. Neurosci. 22, 1925–1935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. García-Cabezas, M. A., Rico, B., Sánchez-González, M. A. & Cavada, C. Distribution of the dopamine innervation in the macaque and human thalamus. Neuroimage 34, 965–984 (2007).

    Article  PubMed  Google Scholar 

  29. Arcelli, P., Frassoni, C., Regondi, M. C., Biasi, S. D. & Spreafico, R. GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res. Bull. 42, 27–37 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Garcia-Cabezas, M. A., Martinez-Sanchez, P., Sanchez-Gonzalez, M. A., Garzon, M. & Cavada, C. Dopamine innervation in the thalamus: monkey versus rat. Cereb. Cortex 19, 424–434 (2009).

    Article  PubMed  Google Scholar 

  31. Graff-Radford, N. R., Eslinger, P. J., Damasio, A. R. & Yamada, T. Nonhemorrhagic infarction of the thalamus: behavioral, anatomic, and physiologic correlates. Neurology 34, 14–14 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Von Cramon, D. Y., Hebel, N. & Schuri, U. A contribution to the anatomical basis of thalamic amnesia. Brain 108, 993–1008 (1985).

    Article  Google Scholar 

  33. Hwang, K., Bruss, J., Tranel, D. & Boes, A. D. Network localization of executive function deficits in patients with focal thalamic lesions. J. Cogn. Neurosci. 32, 2303–2319 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Snow, J. C., Allen, H. A., Rafal, R. D. & Humphreys, G. W. Impaired attentional selection following lesions to human pulvinar: evidence for homology between human and monkey. Proc. Natl Acad. Sci. USA 106, 4054–4059 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Steriade, M., McCormick, D. & Sejnowski, T. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. McCormick, D. A., McGinley, M. J. & Salkoff, D. B. Brain state dependent activity in the cortex and thalamus. Curr. Opin. Neurobiol. 31, 133–140 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Kastner, S. et al. Functional imaging of the human lateral geniculate nucleus and pulvinar. J. Neurophysiol. 91, 438–448 (2004).

    Article  PubMed  Google Scholar 

  38. Chen, W., Zhu, X.-H., Thulborn, K. R. & Ugurbil, K. Retinotopic mapping of lateral geniculate nucleus in humans using functional magnetic resonance imaging. Proc. Natl Acad. Sci. USA 96, 2430–2434 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Choi, E. Y., Yeo, B. T. T. & Buckner, R. L. The organization of the human striatum estimated by intrinsic functional connectivity. J. Neurophysiol. 108, 2242–2263 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sherman, S. M. & Guillery, R. W. The role of the thalamus in the flow of information to the cortex. Phil. Trans. R. Soc. Lond. B 357, 1695–1708 (2002).

    Article  Google Scholar 

  41. Kastner, S., Fiebelkorn, I. C. & Eradath, M. K. Dynamic pulvino-cortical interactions in the primate attention network. Curr. Opin. Neurobiol. 65, 10–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Usrey, W. & Kastner, S. in The Cognitive Neurosciences 6th edn Ch. 32 (eds Poeppel, D., Mangun, G. R. & Gazzaniga, M. S.) 367–375 (MIT Press, 2020).

  43. Peräkylä, J. et al. Causal evidence from humans for the role of mediodorsal nucleus of the thalamus in working memory. J. Cogn. Neurosci. 29, 2090–2102 (2017).

    Article  PubMed  Google Scholar 

  44. Dacre, J. et al. A cerebellar–thalamocortical pathway drives behavioral context-dependent movement initiation. Neuron 109, 2326–2338.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo, Z. V. et al. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 545, 181–186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bolkan, S. S. et al. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat. Neurosci. 20, 987–996 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou, H., Schafer, R. J. & Desimone, R. Pulvinar–cortex interactions in vision and attention. Neuron 89, 209–220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmitt, L. I. et al. Thalamic amplification of cortical connectivity sustains attentional control. Nature 545, 219–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sreenivasan, K. K. & D’Esposito, M. The what, where and how of delay activity. Nat. Rev. Neurosci. 20, 466–481 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nobre, A. C. & Stokes, A. M. in The Cognitive Neurosciences 6th edn Ch. 25 (eds Poeppel, D., Mangun, G. R. & Gazzaniga, M. S.) 291–300 (MIT Press, 2020).

  51. Watanabe, Y. & Funahashi, S. Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. I. Cue-, Delay-, and response-period activity. J. Neurophysiol. 92, 1738–1755 (2004).

    Article  PubMed  Google Scholar 

  52. DeNicola, A. L., Park, M.-Y., Crowe, D. A., MacDonald, A. W. & Chafee, M. V. Differential roles of mediodorsal nucleus of the thalamus and prefrontal cortex in decision-making and state representation in a cognitive control task measuring deficits in schizophrenia. J. Neurosci. 40, 1650–1667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mitchell, A. S. The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci. Biobehav. Rev. 54, 76–88 (2015).

    Article  PubMed  Google Scholar 

  54. Pergola, G. et al. The regulatory role of the human mediodorsal thalamus. Trends Cogn. Sci. 22, 1011–1025 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. de Bourbon-Teles, J. et al. Thalamic control of human attention driven by memory and learning. Curr. Biol. 24, 993–999 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Manoach, D. S., Greve, D. N., Lindgren, K. A. & Dale, A. M. Identifying regional activity associated with temporally separated components of working memory using event-related functional MRI. Neuroimage 20, 1670–1684 (2003).

    Article  PubMed  Google Scholar 

  57. Chen, X., Sorenson, E. & Hwang, K. Thalamocortical contributions to working memory processes during the n-back task. Neurobiol. Learn. Mem. 197, 107701 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Hwang, K., Shine, J. M., Cole, M. W. & Sorenson, E. Thalamocortical contributions to cognitive task activity. eLife 11, e81282 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chatham, C. H., Frank, M. J. & Badre, D. Corticostriatal output gating during selection from working memory. Neuron 81, 930–942 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Frank, M. J., Loughry, B. & O’Reilly, R. C. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn. Affect. Behav. Neurosci. 1, 137–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Hazy, T. E., Frank, M. J. & O’Reilly, R. C. Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Phil. Trans. R. Soc. B 362, 1601–1613 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kuramoto, E. et al. Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb. Cortex 19, 2065–2077 (2009).

    Article  PubMed  Google Scholar 

  63. Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R. & Haynes, J.-D. The distributed nature of working memory. Trends Cogn. Sci. 21, 111–124 (2017).

    Article  PubMed  Google Scholar 

  64. Malekmohammadi, M., Elias, W. J. & Pouratian, N. Human thalamus regulates cortical activity via spatially specific and structurally constrained phase–amplitude coupling. Cereb. Cortex 25, 1618–1628 (2015).

    Article  PubMed  Google Scholar 

  65. Sweeney-Reed, C. M. et al. Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation. eLife 3, e05352 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. O’Connor, D. H., Fukui, M. M., Pinsk, M. A. & Kastner, S. Attention modulates responses in the human lateral geniculate nucleus. Nat. Neurosci. 5, 1203–1209 (2002).

    Article  PubMed  Google Scholar 

  67. Ling, S., Pratte, M. S. & Tong, F. Attention alters orientation processing in the human lateral geniculate nucleus. Nat. Neurosci. 18, 496–498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang, A. S., Rogers, B. P. & Woodward, N. D. Disrupted modulation of thalamus activation and thalamocortical connectivity during dual task performance in schizophrenia. Schizophr. Res. 210, 270–277 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schofield, C. M., Kleiman-Weiner, M., Rudolph, U. & Huguenard, J. R. A gain in GABAA receptor synaptic strength in thalamus reduces oscillatory activity and absence seizures. Proc. Natl Acad. Sci. USA 106, 7630–7635 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ährlund-Richter, S. et al. A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse. Nat. Neurosci. 22, 657–668 (2019).

    Article  PubMed  Google Scholar 

  74. Cruikshank, S. J., Lewis, T. J. & Connors, B. W. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat. Neurosci. 10, 462–468 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Theyel, B. B., Llano, D. A. & Sherman, S. M. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat. Neurosci. 13, 84–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Behrens, T. E. J. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750–757 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Guedj, C. & Vuilleumier, P. Functional connectivity fingerprints of the human pulvinar: decoding its role in cognition. Neuroimage 221, 117162 (2020).

    Article  PubMed  Google Scholar 

  78. Jaramillo, J., Mejias, J. F. & Wang, X.-J. Engagement of pulvino-cortical feedforward and feedback pathways in cognitive computations. Neuron 101, 321–336.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Lurie, D. J. et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw. Neurosci. 4, 30–69 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wen, X. et al. Exploring communication between the thalamus and cognitive control-related functional networks in the cerebral cortex. Cogn. Affect. Behav. Neurosci. 21, 656–677 (2021).

    Article  PubMed  Google Scholar 

  81. Geier, K. T., Buchsbaum, B. R., Parimoo, S. & Olsen, R. K. The role of anterior and medial dorsal thalamus in associative memory encoding and retrieval. Neuropsychologia 148, 107623 (2020).

    Article  PubMed  Google Scholar 

  82. Shine, J. M. et al. The low-dimensional neural architecture of cognitive complexity is related to activity in medial thalamic nuclei. Neuron 104, 849–855.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. D’Esposito, M. From cognitive to neural models of working memory. Phil. Trans. R. Soc. B 362, 761–772 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. A dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. McAlonan, K., Cavanaugh, J. & Wurtz, R. H. Guarding the gateway to cortex with attention in visual thalamus. Nature 456, 391–394 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Hwang, K., Bertolero, M. A., Liu, W. B. & D’Esposito, M. The human thalamus is an integrative hub for functional brain networks. J. Neurosci. 37, 5594–5607 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Article  PubMed  Google Scholar 

  89. Thomas Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed Central  Google Scholar 

  90. Guimerà, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bertolero, M. A., Yeo, B. T. T. & D’Esposito, M. The modular and integrative functional architecture of the human brain. Proc. Natl Acad. Sci. USA 112, E6798–E6807 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E. Evidence for hubs in human functional brain networks. Neuron 79, 798–813 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Kawabata, K. et al. Bridging large-scale cortical networks: integrative and function-specific hubs in the thalamus. iScience 24, 103106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Greene, D. J. et al. Integrative and network-specific connectivity of the basal ganglia and thalamus defined in individuals. Neuron 105, 742–758.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Bell, P. T. & Shine, J. M. Subcortical contributions to large-scale network communication. Neurosci. Biobehav. Rev. 71, 313–322 (2016).

    Article  PubMed  Google Scholar 

  96. Crosson, B. Thalamic mechanisms in language: a reconsideration based on recent findings and concepts. Brain Lang. 126, 73–88 (2013).

    Article  PubMed  Google Scholar 

  97. Hwang, K., Shine, J. M., Bruss, J., Tranel, D. & Boes, A. Neuropsychological evidence of multi-domain network hubs in the human thalamus. eLife 10, e69480 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Müller, E. J. et al. Core and matrix thalamic sub-populations relate to spatio-temporal cortical connectivity gradients. Neuroimage 222, 117224 (2020).

    Article  PubMed  Google Scholar 

  101. Watson, B. O., MacLean, J. N. & Yuste, R. UP states protect ongoing cortical activity from thalamic inputs. PLoS ONE 3, e3971 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Garrett, D. D., Epp, S. M., Perry, A. & Lindenberger, U. Local temporal variability reflects functional integration in the human brain. Neuroimage 183, 776–787 (2018).

    Article  PubMed  Google Scholar 

  103. Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Waschke, L., Kloosterman, N. A., Obleser, J. & Garrett, D. D. Behavior needs neural variability. Neuron 109, 751–766 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Goris, R. L. T., Movshon, J. A. & Simoncelli, E. P. Partitioning neuronal variability. Nat. Neurosci. 17, 858–865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Scholvinck, M. L., Saleem, A. B., Benucci, A., Harris, K. D. & Carandini, M. Cortical state determines global variability and correlations in visual cortex. J. Neurosci. 35, 170–178 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Garrett, D. D. et al. Lost dynamics and the dynamics of loss: longitudinal compression of brain signal variability is coupled with declines in functional integration and cognitive performance. Cereb. Cortex 31, 5239–5252 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Grady, C. L. & Garrett, D. D. Brain signal variability is modulated as a function of internal and external demand in younger and older adults. Neuroimage 169, 510–523 (2018).

    Article  PubMed  Google Scholar 

  110. Garrett, D. D. et al. Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci. Biobehav. Rev. 37, 610–624 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Garrett, D. D. et al. Amphetamine modulates brain signal variability and working memory in younger and older adults. Proc. Natl Acad. Sci. USA 112, 7593–7598 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Garrett, D. D., Kovacevic, N., McIntosh, A. R. & Grady, C. L. The importance of being variable. J. Neurosci. 31, 4496–4503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shine, J. M. et al. Computational models link cellular mechanisms of neuromodulation to large-scale neural dynamics. Nat. Neurosci. 24, 765–776 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Shine, J. M., van den Brink, R. L., Hernaus, D., Nieuwenhuis, S. & Poldrack, R. A. Catecholaminergic manipulation alters dynamic network topology across cognitive states. Netw. Neurosci. 2, 381–396 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. McCormick, D. A., Pape, H. C. & Williamson, A. Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system. Prog. Brain Res. 88, 293–305 (1991).

    Article  CAS  PubMed  Google Scholar 

  116. Alavash, M. et al. Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance. Neuroimage 172, 341–356 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Li, S.-C., Lindenberger, U. & Sikström, S. Aging cognition: from neuromodulation to representation. Trends Cogn. Sci. 5, 479–486 (2001).

    Article  PubMed  Google Scholar 

  118. Shafiei, G. et al. Dopamine signaling modulates the stability and integration of intrinsic brain networks. Cereb. Cortex 29, 397–409 (2019).

    Article  PubMed  Google Scholar 

  119. Venton, B. J. et al. Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing: decoding dopamine neurotransmission. J. Neurochem. 87, 1284–1295 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Owesson-White, C. A., Cheer, J. F., Beyene, M., Carelli, R. M. & Wightman, R. M. Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation. Proc. Natl Acad. Sci. USA 105, 11957–11962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Guiard, B. P., El Mansari, M., Merali, Z. & Blier, P. Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int. J. Neuropsychopharmacol. 11, 625–639 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, W. & Bruno, R. M. High-order thalamic inputs to primary somatosensory cortex are stronger and longer lasting than cortical inputs. eLife 8, e44158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lewis, L. D. et al. Thalamic reticular nucleus induces fast and local modulation of arousal state. eLife 4, e08760 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gent, T. C., Bandarabadi, M., Herrera, C. G. & Adamantidis, A. R. Thalamic dual control of sleep and wakefulness. Nat. Neurosci. 21, 974–984 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Poulet, J. F. A., Fernandez, L. M. J., Crochet, S. & Petersen, C. C. H. Thalamic control of cortical states. Nat. Neurosci. 15, 370–372 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Constantinople, C. M. & Bruno, R. M. Effects and mechanisms of wakefulness on local cortical networks. Neuron 69, 1061–1068 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. David, F. et al. Essential thalamic contribution to slow waves of natural sleep. J. Neurosci. 33, 19599–19610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Larson-Prior, L. J. et al. Cortical network functional connectivity in the descent to sleep. Proc. Natl Acad. Sci. USA 106, 4489–4494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Spoormaker, V. I. et al. Development of a large-scale functional brain network during human non-rapid eye movement sleep. J. Neurosci. 30, 11379–11387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hale, J. R. et al. Altered thalamocortical and intra-thalamic functional connectivity during light sleep compared with wake. Neuroimage 125, 657–667 (2016).

    Article  PubMed  Google Scholar 

  131. Birn, R. M., Murphy, K., Handwerker, D. A. & Bandettini, P. A. fMRI in the presence of task-correlated breathing variations. Neuroimage 47, 1092–1104 (2009).

    Article  PubMed  Google Scholar 

  132. Chang, C., Cunningham, J. P. & Glover, G. H. Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage 44, 857–869 (2009).

    Article  PubMed  Google Scholar 

  133. Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. McCormick, D. A. & Bal, T. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Schabus, M. et al. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc. Natl Acad. Sci. USA 104, 13164–13169 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mak-McCully, R. A. et al. Coordination of cortical and thalamic activity during non-REM sleep in humans. Nat. Commun. 8, 15499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Magnin, M. et al. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans. Proc. Natl Acad. Sci. USA 107, 3829–3833 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zou, G. et al. Functional MRI of arousals in nonrapid eye movement sleep. Sleep 43, zsz218 (2020).

    PubMed  Google Scholar 

  139. Chang, C. et al. Tracking brain arousal fluctuations with fMRI. Proc. Natl Acad. Sci. USA 113, 4518–4523 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Setzer, B. et al. A temporal sequence of thalamic activity unfolds at transitions in behavioral arousal state. Nat. Commun. 13, 5442 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jones, B. E. Arousal and sleep circuits. Neuropsychopharmacology 45, 6–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Sanchez-Gonzalez, M. A. The primate thalamus is a key target for brain dopamine. J. Neurosci. 25, 6076–6083 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lőrincz, M. L. & Adamantidis, A. R. Monoaminergic control of brain states and sensory processing: existing knowledge and recent insights obtained with optogenetics. Prog. Neurobiol. 151, 237–253 (2017).

    Article  PubMed  Google Scholar 

  144. Akeju, O. et al. Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness. eLife 3, e04499 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Pérez-Santos, I., Palomero-Gallagher, N., Zilles, K. & Cavada, C. Distribution of the noradrenaline innervation and adrenoceptors in the macaque monkey thalamus. Cereb. Cortex 31, 4115–4139 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gugino, L. D. et al. Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. Br. J. Anaesth. 87, 421–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Purdon, P. L. et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl Acad. Sci. USA 110, E1142–E1151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Waschke, L. et al. Modality-specific tracking of attention and sensory statistics in the human electrophysiological spectral exponent. eLife 10, e70068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ching, S., Cimenser, A., Purdon, P. L., Brown, E. N. & Kopell, N. J. Thalamocortical model for a propofol-induced α-rhythm associated with loss of consciousness. Proc. Natl Acad. Sci. USA 107, 22665–22670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Redinbaugh, M. J. et al. Thalamus modulates consciousness via layer-specific control of cortex. Neuron 106, 66–75.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Honjoh, S. et al. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat. Commun. 9, 2100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Schiff, N. D. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann. NY Acad. Sci. 1129, 105–118 (2008).

    Article  PubMed  Google Scholar 

  153. Akeju, O. & Brown, E. N. Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr. Opin. Neurobiol. 44, 178–185 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kosciessa, J. Q., Lindenberger, U. & Garrett, D. D. Thalamocortical excitability modulation guides human perception under uncertainty. Nat. Commun. 12, 2430 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Haegens, S., Nacher, V., Luna, R., Romo, R. & Jensen, O. Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc. Natl Acad. Sci. USA 108, 19377–19382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jones, S. R. et al. Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. J. Neurophysiol. 102, 3554–3572 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Pettine, W. W., Louie, K., Murray, J. D. & Wang, X.-J. Excitatory–inhibitory tone shapes decision strategies in a hierarchical neural network model of multi-attribute choice. PLoS Comput. Biol. 17, e1008791 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mo, C. et al. Competing rhythmic neural representations of orientations during concurrent attention to multiple orientation features. Nat. Commun. 10, 5264 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Munn, B. R., Müller, E. J., Wainstein, G. & Shine, J. M. The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states. Nat. Commun. 12, 6016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mukherjee, A., Lam, N. H., Wimmer, R. D. & Halassa, M. M. Thalamic circuits for independent control of prefrontal signal and noise. Nature 600, 100–104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rikhye, R. V., Gilra, A. & Halassa, M. M. Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nat. Neurosci. 21, 1753–1763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mack, M. L., Preston, A. R. & Love, B. C. Ventromedial prefrontal cortex compression during concept learning. Nat. Commun. 11, 46 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pinault, D. The thalamic reticular nucleus: structure, function and concept. Brain Res. Rev. 46, 1–31 (2004).

    Article  PubMed  Google Scholar 

  165. Crabtree, J. W. Functional diversity of thalamic reticular subnetworks. Front. Syst. Neurosci. 12, 41 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Crick, F. Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl Acad. Sci. USA 81, 4586–4590 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nakajima, M., Schmitt, L. I. & Halassa, M. M. Prefrontal cortex regulates sensory filtering through a basal ganglia-to-thalamus pathway. Neuron 103, 445–458.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Higashikubo, B. & Moore, C. I. Systematic examination of the impact of depolarization duration on thalamic reticular nucleus firing in vivo. Neuroscience 368, 187–198 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Jager, P. et al. Dual midbrain and forebrain origins of thalamic inhibitory interneurons. eLife 10, e59272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Smith, Y., Raju, D. V., Pare, J.-F. & Sidibe, M. The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci. 27, 520–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Rubio-Garrido, P., Pérez-de-Manzo, F., Porrero, C., Galazo, M. J. & Clascá, F. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb. Cortex 19, 2380–2395 (2009).

    Article  PubMed  Google Scholar 

  172. Solari, S. V. H. & Stoner, R. Cognitive consilience: primate non-primary neuroanatomical circuits underlying cognition. Front. Neuroanat. 5, 65 (2011).

    PubMed  PubMed Central  Google Scholar 

  173. Lee, S.-H. & Dan, Y. Neuromodulation of brain states. Neuron 76, 209–222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lewis, L. D., Setsompop, K., Rosen, B. R. & Polimeni, J. R. Stimulus-dependent hemodynamic response timing across the human subcortical–cortical visual pathway identified through high spatiotemporal resolution 7 T fMRI. Neuroimage 181, 279–291 (2018).

    Article  PubMed  Google Scholar 

  176. Polimeni, J. R. & Lewis, L. D. Imaging faster neural dynamics with fast fMRI: a need for updated models of the hemodynamic response. Prog. Neurobiol. 207, 102174 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Iglesias, J. E. et al. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 183, 314–326 (2018).

    Article  PubMed  Google Scholar 

  178. Alkemade, A. et al. A unified 3D map of microscopic architecture and MRI of the human brain. Sci. Adv. 8, eabj7892 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors all researched data for the article, provided substantial contributions to discussion of its content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Kai Hwang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks M. Halassa, R. Knight and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shine, J.M., Lewis, L.D., Garrett, D.D. et al. The impact of the human thalamus on brain-wide information processing. Nat Rev Neurosci 24, 416–430 (2023). https://doi.org/10.1038/s41583-023-00701-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00701-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing