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Abstract

The CNS critically relies on the formation and proper function of its 
vasculature during development, adult homeostasis and disease. 
Angiogenesis — the formation of new blood vessels — is highly active 
during brain development, enters almost complete quiescence in the 
healthy adult brain and is reactivated in vascular-dependent brain 
pathologies such as brain vascular malformations and brain tumours. 
Despite major advances in the understanding of the cellular and 
molecular mechanisms driving angiogenesis in peripheral tissues, 
developmental signalling pathways orchestrating angiogenic processes 
in the healthy and the diseased CNS remain incompletely understood. 
Molecular signalling pathways of the ‘neurovascular link’ defining 
common mechanisms of nerve and vessel wiring have emerged as 
crucial regulators of peripheral vascular growth, but their relevance 
for angiogenesis in brain development and disease remains largely 
unexplored. Here we review the current knowledge of general and  
CNS-specific mechanisms of angiogenesis during brain development 
and in brain vascular malformations and brain tumours, including 
how key molecular signalling pathways are reactivated in vascular-
dependent diseases. We also discuss how these topics can be studied  
in the single-cell multi-omics era.
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Modes of neovascularization
The neovascularization of organs and tissues can occur via different 
mechanisms (Fig. 1). During physiological development, such vasculari-
zation may involve the formation of new blood vessels from pre-existing 
ones, defined as sprouting angiogenesis (by far the best-described 
mode)9,12,15,18 (Fig. 1a), the de novo generation of blood vessels from 
mesodermal angioblasts or haemangioblasts (which differentiate 
into endothelial progenitor cells (EPCs) and subsequently into ECs) 
in a process called ‘vasculogenesis’19 (Fig. 1b), and/or the splitting of 
existing blood vessels, named ‘intussusception’12 (Fig. 1c). Three addi-
tional pathological modes of neovascularization may occur in glial 
brain tumours and in tissues undergoing regenerative processes (for 
example, following ischaemic stroke): vascular co-option, in which 
tumour cells co-opt blood vessels to grow along pre-existing healthy 
blood vessels (Fig. 1d), glioma (or glioblastoma) stem cell (GSC)-to-
EC transdifferentiation or GSC-to-pericyte transdifferentiation20–22 
(Fig. 1e) and vasculogenic (or vascular) mimicry, in which tumour cells 
integrate into the blood vessel wall, mimicking ECs12 (Fig. 1f). Whereas 
sprouting angiogenesis and vasculogenesis are primary contributors 
to neovascularization during brain development and in brain AVMs 
(Fig. 1g,i), all six modes of vessel formation have been described in 
brain tumours23–26 (Fig. 1h), as discussed later herein.

Sprouting angiogenesis
On a cellular level, sprouting vessels are guided by specialized ECs that 
extend multiple filopodia, the endothelial tip cells (ETCs)9,12,18. Behind 
the leading ETC, proliferating endothelial stalk cells are responsible 
for the elongation of blood vessels and the formation of a functional 
lumen3,9,12,15,18 (Fig. 1a). Subsequently, sprouting vessels anastomose 
and establish a three-dimensional, perfused and fully functional vas-
cular network9,18 (Fig. 1a,g). Quiescent endothelial phalanx cells line 
the newly formed lumenized vessels and can be reactivated by pro-
angiogenic stimuli3,12,18. Sprouting angiogenesis and ETCs, stalk cells 
and phalanx cells are regulated by pro-angiogenic and anti-angiogenic 
molecules, the balance between them being thought to determine the 
angiogenic response3,12,18,27 (Supplementary Table 1). Findings of recent 
studies have complemented this traditional view on sprouting and 
ETCs by suggesting a key role of venous ECs as the primary subtype 
of ECs — which proliferate and migrate against the flow to acquire the 
ETC position — that are responsible for sprouting angiogenesis and 
expanding vascular networks28.

On a molecular level, the VEGF–VEGFR–DLL4–Jagged–Notch sig-
nalling cascade is a key regulator of sprouting angiogenesis in both CNS 
tissues and non-CNS tissues and is thought to be the central pattern gen-
erator underlying ETC, stalk cell and phalanx cell differentiation3,9,29,30 in 
development and disease. The most important Notch ligands — DLL4 
and Jagged 1 — have opposing roles in vessel formation, with DLL4 being 
anti-angiogenic and Jagged 1 being pro-angiogenic31. Interestingly, 
ETC and stalk cell specification is dynamically regulated by a feedback 
loop between the VEGF–VEGFR pathway and the DLL4–Jagged 1–Notch 
pathway32. Competition for the tip cell position occurs when activated 
ECs — expressing VEGFR1, VEGFR2, VEGFR3 and neuropilin 1 (NRP1) — 
upregulate DLL4 on their membrane, giving these ECs an advantage 
for the tip cell position29,32,33. DLL4 on ETCs activates Notch signal-
ling in adjacent stalk cells, thereby downregulating VEGFR2, VEGFR3 
and NRP1, upregulating VEGFR1 and restricting the ability of stalk 
cells to acquire the tip cell position30,34 and limiting tip cell numbers35.  
In contrast to DLL4, Jagged–Notch signalling drives tip cell selection 
and sprouting angiogenesis by antagonizing DLL4–Notch signalling31. 

Introduction
The human brain constitutes only 2% of body mass but receives 20% 
of cardiac output and consumes 20% of the body’s total oxygen and 
glucose, underlining the crucial importance of the CNS vasculature 
for a properly functioning brain1,2. Accordingly, the human brain vas-
culature is composed of an extensive and complex network of blood 
vessels, with a total length of 400 miles and including up to 100 billion 
capillaries2. The brain vascular network is established during embryonic 
and postnatal development via vasculogenesis (de novo formation of 
blood vessels) and sprouting angiogenesis (formation of new blood 
vessels from pre-existing ones), driven by various pro-angiogenic and 
anti-angiogenic factors3.

The endothelium of the brain vasculature displays specific prop-
erties that distinguish blood vessels in the CNS from those outside  
the CNS4. The most characteristic feature of the brain endothelium is the  
presence of a functional blood–brain barrier (BBB) — the highly selective 
semipermeable border between the vascular lumen of capillaries and 
the CNS parenchyma — established during embryonic and postnatal 
development by extrinsic cues provided by the perivascular micro-
environment3,5 and intrinsic endothelial cell (EC) regulation mediated 
by homeobox transcription factors6. Blood vessels in the brain are 
embedded in an anatomical or structural unit termed the ‘perivascular 
niche’ (PVN), which describes a microenvironment that, in addition to 
ECs, includes perivascular cells (PVCs), such as astrocytes, pericytes, 
perivascular fibroblasts, neurons, stem cells, microglia and vascular 
smooth muscle cells (vSMCs)3,7–9. Together, ECs and PVCs in the PVN 
form the neurovascular unit (NVU)9–11, which is the functional correlate of 
the structural PVN9–11. Cellular and molecular interactions between ECs 
and PVCs in the NVU contribute to regulation of CNS angiogenesis9–11.

Developmental vascular growth in the CNS involves general angio-
genic mechanisms (that is, mechanisms involved in angiogenesis inside 
and outside the CNS9) and CNS-specific angiogenic mechanisms. The 
NVU becomes deregulated in vascular-dependent brain pathologies 
such as brain tumours and brain vascular malformations, in which 
angiogenic signalling pathways become activated and lead to the 
formation of leaky, tortuous and dysfunctional neovessels via various 
modes of neovascularization9,12,13. These angiogenic pathways are, at 
least in part, reactivated signalling cascades regulating vascularization 
and the NVU and PVN during brain development9,12,13, but how these 
molecular mechanisms are involved in the initiation and progression 
of vascular-dependent brain pathologies remains poorly understood.

In this Review, we provide an overview of our current under-
standing of neovascularization in the developing, healthy adult and 
pathological brain (Fig. 1). Moreover, we describe recent insights into 
the human brain vasculature at the single-cell level, emphasizing the 
expanding knowledge of cerebrovascular cell type heterogeneity and 
the reactivation of developmental angiogenic signalling pathways 
in ECs of vascular-dependent brain pathologies. We review recent 
evidence regarding reactivated developmental signalling pathways in 
disease, focusing on molecules involved in angiogenesis and the neuro-
vascular link (NVL), defined as the shared molecular mechanisms regu-
lating both the vascular system and the nervous system9,14–17 (Fig. 2). 
We describe the involvement of these signalling cues in glial brain 
tumours and brain arteriovenous malformations (AVMs), two typical 
vascular-dependent CNS pathologies, with special focus on the distinc-
tion between CNS-specific cues and general molecular cues. Finally, 
we discuss several outstanding questions and emphasize how novel 
technologies used in the field of single-cell multi-omics may influence 
our understanding of brain vascular biology.
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MPDZ and the transcription factor ERG are key regulators of endothelial 
Notch–DLL4–Jagged 1 signalling36, underlining the dynamic nature of 
EC specification into ETCs, stalk cells and phalanx cells.

We previously described the regulatory effects of NVL molecules 
on peripheral and CNS angiogenesis during development, includ-
ing their modes of action as either general cues or CNS-specific cues 
for vascular growth and their emerging molecular interactions with 
the VEGF–VEGFR–DLL4–Jagged–Notch pathway, and we do not  
comprehensively revisit this topic here9.

Vasculogenesis and intussusception
During embryonic development, vasculogenesis gives rise to the heart 
and the primitive vascular plexus. The vascular system is generated 
from precursor cells (angioblasts or haemangioblasts), and its estab-
lishment occurs in parallel with haematopoiesis (the formation of blood 
cells)37 (Fig. 1b). Angioblasts and blood cells constitute blood islets, 
which then fuse and give rise to a honeycomb-shaped primitive vascular 
plexus before the onset of heartbeats37. Once blood circulation has been 
established, primary vascular plexuses are remodelled into hierarchical 
networks with arteriovenous distinction37 (Fig. 1g). Subsequently, PVCs, 
including vSMCs (in the case of arteries and veins) and pericytes (in the 
case of capillaries), are recruited and stabilize the vascular network37,38. 
Molecularly, fibroblast growth factors (FGFs) induce the formation of 
angioblasts, whereas VEGFA plays key roles in the differentiation and 
chemotaxis of angioblasts and EPCs37.

Intussusceptive angiogenesis is defined as the invagination of the 
capillary wall into the lumen to split a single vessel in two39,40 (Fig. 1c). 
This mode of neovascularization was first observed during the devel-
opment of peripheral organs41–44 and was subsequently character-
ized in CNS tissue45,46 and in several cancers, including glioblastoma47. 
Transcapillary intraluminal tissue pillars arise by invagination of the 
capillary wall into the vessel lumen in four consecutive steps40. First, 
a contact zone is established between two opposing capillary walls40. 
Second, reorganization of EC junctions and perforation of the vessel 
bilayer allows growth factors and cells to penetrate the lumen40. Third, 
an interstitial pillar core forms between the two new vessels at the con-
tact zone and is filled with pericytes and myofibroblasts40. Finally, the 
pillars increase in diameter40 (Fig. 1c). Interestingly, intussusceptive 
angiogenesis allows reorganization of existing cells without the need 
for an increase in EC number, which is especially important during 
distinct stages of embryonic development in which the growth rate 
surpasses the cellular resources40. The molecular basis of vascular 
intussusception remains unknown.

ECs and PVCs in the NVU and BBB
Newly formed sprouting vessels are initially fragile and become sta-
bilized by the recruitment of PVCs (such as pericytes, vSMCs and 
astrocytes)9,12, which is important for the establishment of functional, 
perfused blood vessels integrated into a three-dimensional vascu-
lar network3,9,48,49 (Fig. 3). Accordingly, ECs invading the CNS closely 
interact with PVCs of the surrounding parenchyma, thereby forming 
a functional NVU9,15,50,51 (Fig. 3a–d). As initially postulated in 1981, the 
CNS parenchyma provides instructive signals regulating EC sprouting 
into the CNS and induction of CNS-specific properties in ECs5,52. These 
structural and functional EC–PVC interactions result in the specific 
properties of CNS blood vessels, most importantly the establishment 
of the BBB53 (Fig. 3c,d), which is already established during embryonic 
development54,55 in a process regulated by extrinsic cues provided 
by the local CNS microenvironment5,9,52,56–58. Tight junction-specific 

proteins, such as CLDN5 and OCLN, are present at the BBB interface 
directly after blood vessels invade the brain at the embryonic stage and 
achieve functionality to meet barrier functions (which go beyond the 
presence or absence of passive permeability) according to the particular 
stage of brain development during the early postnatal period54,57–60. 
This highly regulated physical permeability barrier can become leaky in 
CNS pathologies such as brain tumours, brain vascular malformations, 
ischaemic stroke and some neurodevelopmental and neurodegenerative  
disorders4,60–63 (Fig. 4).

NVL molecules
Both the vascular system and the nervous system require coordinated 
guidance of their cellular and subcellular elements9,15,61. At the cellular 
level, axonal growth cones and ETCs exhibit similar lamellipodia and 
filopodia9,12,16,18,64 (Fig. 2a–c). At the subcellular level, axonal growth 
cones consist of a central domain containing microtubules and a periph-
eral domain composed of an actin meshwork (in lamellipodia) and 
F-actin bundles (in filopodia)9. Fan-like filopodial protrusions sense 
stimulatory and inhibitory guidance signals in the microenvironment 
and steer both the growing axon65,66 and the developing, newly forming 
blood vessels12,16,18,64,67 (Fig. 2a,b). F-actin structures have been found in 
ETC filopodia68, but the cytoskeletal organization of tip cells is less well 
described than that of axonal growth cones, mainly owing to technical 
limitations and the lack of specific ETC markers. Suggested tip cell 
markers — such as ESM1, APLN, RAMP3 and CLDN5 — that have emerged 
from microarray analysis and single-cell RNA sequencing (scRNA-seq) 
studies69–76 await full validation.

At the molecular level, numerous cues have been discovered that 
guide both ETCs and axonal growth cones9,12,15,16 (Fig. 2g,h). These 
cues include the four canonical axon guidance molecule families — 
netrins, semaphorins, ephrins and Slit proteins9,12,14–16,77 — and other 
axon guidance molecules, such as WNT proteins, SHH, bone morpho-
genetic protein (BMP), Nogo-A and Nogo-B, exert similar repulsive 
and attractive effects on neuronal growth cones78 and ETCs9,14,15,79,80 
(Supplementary Table 2). In addition to these neural cues guiding blood 
vessels, classic angiogenic factors such as VEGFA and FGF2 and their 
receptors, endothelin 3, artemin and the receptor complex RET–GFRα3 
can direct neuronal development and axonal growth during brain 
development9,14,15,79 (Fig. 2g). The NVL relies on direct cellular interac-
tions between vascular cells and neural cells. For instance, sensory 
neurons and Schwann cells in the peripheral nervous system provide 
a template for the patterning of arteries but not veins during skin 
development, whereas neuronal release of VEGF induces arterial dif-
ferentiation81. In the CNS, retinal ganglion cells and astrocytes provide 
a physical template for sprouting ECs while releasing pro-angiogenic 
and anti-angiogenic factors such as VEGFA, semaphorins and Nogo-A. 
Conversely, vessel-derived cues such as artemin and endothelin 3 guide 
growing axons in the retina82,83. Accordingly, ablation of radial glia84, 
oligodendrocyte precursor cells85 or astroglia86 results in a severe 
reduction in developmental angiogenesis14. Many of the NVL molecules 
interact with key downstream angiogenic signalling axes, most notably 
the VEGF–DLL4–Jagged 1–Notch and YAP–TAZ pathways9.

Angiogenesis and brain development
Embryonic CNS angiogenesis
Cellular mechanisms during embryonic brain development. During 
brain development in mice at embryonic day 8.5 (E8.5), a perineural 
vascular plexus (PNVP) (non-CNS tissue of mesodermal origin) forms 
around the neuroectodermal-derived neural tube via vasculogenesis 
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(Fig. 3a–d and Supplementary Table 1), in which VEGFA derived from the 
neural tube interacts with VEGFR2 expressed on PNVP angioblasts9,50. 
This PNVP will later be transformed into arteries and veins of the pia 
and the arachnoid mater (leptomeninges) ensheathing the CNS tissue87. 
At E9.5, vessel sprouts from the PNVP invade the CNS parenchyma and 
form the intraneural vascular plexus (INVP) via sprouting angiogene-
sis9,54,64,88 (Fig. 3a,b). These perforating vessels of the INVP follow a radial 
course towards the ventricles. Once they are inside the ventricular zone, 
they branch in a circumferential fashion parallel to the ependyma, 
giving rise to a periventricular vascular plexus89 (Fig. 3a,b). Only after 
this lateral branching at the periventricular level do lateral branches 
from the INVP sprout at several levels throughout the cortical layers89.

In humans, the pial capillary anastomotic plexus is considered the 
functional and structural analogue of the PNVP in embryonic mice90.  
The pial capillary anastomotic plexus is a meningeal layer of extra-
cerebral or non-CNS origin and is the source of all perforating vessels 
entering the cerebral cortex during later embryonic and postnatal 
stages67,90. The pial capillary anastomotic plexus is already detectable in 
6-week-old human embryos and is separated from the underlying cortical  
tissue by the brain’s external glial limiting membrane90. Subsequently, 
pial capillaries perforate the external glial limiting membrane and grow 
into the cerebral cortex (comparable to the formation of the INVP in 
mice) from the eighth week of gestation onwards90. Whereas the CNS is,  
after vasculogenic formation of the PNVP, predominantly vascularized 
by sprouting angiogenesis27, vascularization of non-CNS tissues mainly 
relies on vasculogenesis91,92, for reasons that remain elusive.

General molecular mechanisms during embryonic brain devel-
opment. Various general developmental pathways are active in 
both the CNS tissue and peripheral tissue, including the following:  
VEGFA–VEGFR–DLL4–Jagged 1–Notch signalling for appropriate ves-
sel sprouting, patterning and vascular remodelling34,50,93,94 (see earlier 
herein for a description of this signalling pathway); YAP and TAZ as 
essential co-transcriptional activators of the Hippo pathway in ECs95; 

angiopoietins and their receptors TIE1 and TIE2 as modulators of  
vessel stability96–98; the classic axon guidance ligand–receptor pairs 
SLIT2–ROBO4 (refs. 99–101), SEMA3E–plexin D1 (ref. 102), netrin 4–UNC5B103  
and ephrin B2–EphB4 (ref. 104); and the non-classic axon guidance cues, 
namely integrin αVβ8-activated TGFβ signalling105, WNT78, BMP78 and 
SHH78,79 (Supplementary Table 2). Although many of these pathways are 
active and important in CNS angiogenesis, they were first discovered 
in peripheral tissues, acting through a general (non-CNS-specific) 
molecular mode of action.

YAP and TAZ are transcriptional co-activators regulating the Hippo 
pathway and have crucial roles in organogenesis and embryonic vas-
cular brain development in a non-CNS-specific manner. The VEGF and 
YAP–TAZ signalling pathways converge: VEGF stimulates Rho family 
members, thereby altering cytoskeletal dynamics, contributing to the 
activation of YAP–TAZ signalling106. YAP and TAZ, in turn, upregulate  
the gene expression of Rho family members, providing actin cytoskele-
tal rearrangements needed for ETC migration and stalk cell proliferation  
during embryonic and postnatal vascular brain development95,106.

Angiopoietin 1 (ANG1) and ANG2 bind to the tyrosine kinases TIE1 
and TIE2 and directly act on ECs by modulating cell–cell and cell–extra-
cellular matrix (ECM) communication and promoting or inhibiting 
angiogenesis, which is of crucial importance before E13.5 (refs. 107,108). 
ANG1 and ANG2 often have complementary roles in the development of 
a healthy vasculature; they modulate vessel stability and can be either 
pro-angiogenic or anti-angiogenic depending on the context96,98,108.

Classic axon guidance cue signalling, such as SLIT-dependent 
activation of the EC-specific receptor ROBO4 inhibits endothelial 
hyperpermeability induced by pro-angiogenic factors and enhances 
vascular stability99. ROBO4-mediated SLIT2-dependent suppression of 
cellular permeability occurs through inhibition of the small GTPases 
ARF6 and RAC109. In vivo, inhibition of ARF6 resembles ROBO4 activa-
tion by reducing pathological angiogenesis and vessel leakage in retinal 
hyperpermeability models during vascular development inside and 
outside the CNS99,101,110. The effects of ROBO4 silencing on human brain 

Fig. 1 | Modes of vessel formation during brain development, in brain tumours 
and in brain AVMs. Vascularization during brain development, in brain tumours and  
in brain arteriovenous malformations (AVMs) can occur via different modes  
of neovascularization. a, Neovascularization is possible via the formation of  
new blood vessels from pre-existing ones in response to pro-angiogenic signalling 
molecules secreted by components of the neurovascular unit (NVU) (defined as 
physiological sprouting angiogenesis) or by tumour cells (defined as pathological 
sprouting angiogenesis). For simplicity, the NVU (in physiological conditions) 
and tumour cells (in pathological conditions) are illustrated as sources of 
pro-angiogenic molecules for this mode of neovascularization. Note that the 
secretion of pro-angiogenic molecules is not limited to these sources but can 
also occur from brain vascular malformations and other vascular-dependent 
brain pathologies as well as from components of the extracellular matrix. New 
vessel sprouts are guided by specialized endothelial tip cells extending multiple 
filopodial protrusions sensing and reacting to pro-angiogenic, anti-angiogenic 
and hypoxia-related cues in the microenvironment. At the back of the leading tip 
cell, proliferating endothelial stalk cells elongate the growing blood vessel and 
initiate the formation of a functional lumen. Phalanx cells are the most quiescent 
of the endothelial cell (EC) subtypes, extend few filopodia and migrate and 
divide poorly in response to VEGF. Endothelial phalanx cells line vessels once the 
new vessel branches have been consolidated. b, Physiological vasculogenesis is 
defined as the de novo generation of blood vessels from either yolk sac-derived 
endothelial progenitor cells (EPCs) or bone marrow-derived EPCs, depending 
on the developmental time point. Pathological vasculogenesis occurs upon 

secretion of pro-angiogenic molecules by tumour cells that activate bone 
marrow to produce EPCs. Both indirect paracrine secretion of pro-angiogenic 
growth factors and direct luminal incorporation into sprouting nascent vessels 
contribute to vasculogenesis. Note that the secretion of pro-angiogenic 
molecules is not limited to these sources but can also occur from brain vascular 
malformations and other vascular-dependent brain pathologies as well as from 
components of the extracellular matrix. c, The splitting of existing blood vessels —  
vascular intussusception — allows the reorganization of existing cells without a 
corresponding increase in EC number. During this process, the opposite capillary 
walls invaginate into the vessel lumen in consecutive steps with the formation  
of a transluminal bridge of pericytes, myofibroblasts and extracellular matrix.  
d–f, Pathological conditions such as tumours or regenerative processes can 
exhibit the aforementioned modes of vessel formation and three additional 
ones, namely vessel co-option, glioma stem cell to EC transdifferentiation or 
glioma stem cell to pericyte transdifferentiation, and vasculogenic mimicry. 
Vessel co-option occurs when tumour cells co-opt existing vessels in response 
to angiopoietin 2 (ANG2) expression gradients (part d). In glioma stem cell 
transdifferentiation, glioma stem-like cells differentiate into either tumour-
derived ECs or tumour-derived pericytes, induced predominantly by the TGFβ 
and NOTCH1 pathways in hypoxic conditions (part e). In vasculogenic mimicry, 
tumour cells (instead of ECs) are incorporated into the inner vessel wall, forming 
functional vessel-like structures and thereby mimicking ECs (part f). g–i, Modes 
of vessel formation involved in angiogenesis during brain development (part g), 
in brain tumours (part h) and in brain AVMs (part i).
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microvascular EC proliferation, migration and tube formation remain 
controversial101,110.

SEMA3A is a secreted protein mediating anti-angiogenesis via 
the NRP1 and plexin A–plexin D1 receptor complex111. The exact role of 
SEMA3A during developmental CNS angiogenesis is unknown, given 
the absence of a vascular phenotype in Sema3a−/− embryos112 and in 
NRP1sema mice113, which express a mutated variant of NRP1 that lacks 
the SEMA-binding domain. At E10, SEMA3A is expressed in vascular ECs 
in the spinal cord and dorsal aorta111. Interestingly, at E12.5, SEMA3A 
expression is stronger on ETCs than on stalk cells during INVP sprouting 
into the brain parenchyma and retina, indicating that its expressed on 
actively sprouting endothelium71,114. In zebrafish, Sema3A–plexin D1 
signalling negatively regulates angiogenesis through modulation of 
soluble Flt1 expression115, illustrating the role of Sema3A–plexin D1 
during embryonic brain vascularization in a non-CNS-specific manner.

SEMA3E–plexin D1 signalling negatively regulates angiogenesis 
inside and outside the CNS via interaction with the VEGF–DLL4– 
Jagged–Notch pathway. Plexin D1 can be detected in mouse embryos 
as early as E9.5 (refs. 102,116) as well as postnatally (postnatal day 2 to 
postnatal day 6) in the mouse retina102,116, where plexin D1 is expressed 
in ETCs and stalk cells but is absent in mature vessels, indicating that it 
has a role during developmental sprouting angiogenesis117. SEMA3E–
plexin D1 signalling leads to downstream activation of the small GTPase 
RhoJ, with subsequent VEGF-induced DLL4 expression in retinal ETCs 
in vivo118 and in human umbilical vein ECs in vitro, contributing to 
the ETC and stalk cell selection in both the CNS vasculature and the 
non-CNS vasculature117. Whether SEMA3A–plexin D1 signalling or 
SEMA3E–plexin D1 signalling regulates PNVP and INVP formation 
during embryonic human CNS development remains to be explored.

Netrin 1 and netrin 4 are anti-angiogenic factors that act through 
binding to UNC5B (in the case of netrin 1) or to neogenin with recruit-
ment of UNC5B (in the case of netrin 4) in peripheral tissues and the CNS 
in a general (non-CNS-specific) manner119–121. Netrin 1 and netrin 4 and 
their receptors act as repulsive or attractive cues, partially via regula-
tion of VEGF signalling119, starting during embryonic developmental 
angiogenesis inside and outside the CNS119,120.

Last, the Eph family of receptor tyrosine kinases interacts with 
membrane-bound ligands called ‘ephrins’122. Ephrin B2, being the 

sole transmembrane ligand for EphB4, is specifically expressed in 
arterial angioblasts starting at around E9 (ref. 123). EC and perivascu-
lar mesenchymal cell123 interactions lead to activation of the ephrin  
B2–EphB4 axis, providing attractive and repulsive guidance cues for 
EphB-expressing cells in angiogenesis as well as regulation of migratory 
and invasive cellular functions in a non-CNS-specific way122,123.

Non-classic axon guidance cues such as the five members of 
the αV integrin subfamily (αVβ1, αVβ3, αVβ5, αVβ6 and αVβ8) are 
expressed by many different cell types, notably by neurons and ECs 
of the brain (acting as NVL molecules) but also in other organs and 
tissues, and bind to RGD peptide motifs present on many shared ECM 
ligands, most importantly to latent TGFβ proteins124. The αV integrin 
is of particular interest in genetic studies in mice as it is an important 
regulator of embryonic cerebrovascular morphogenesis (although the 
actions of αV integrin are not exclusively CNS specific)125,126. Integrin 
αVβ8 activates ventral–dorsal TGFβ gradients in the brain, inhibiting 
EC sprouting and stabilizing blood vessels via downstream TGFβ1–
TGFBR2–ALK5–SMAD3 signalling105,125,127,128. Ablation of αV integrin-
coding or β8 integrin-coding genes in embryonic brain ECs causes 
pathological vascular phenotypes, including EC hyperproliferation 
and intracerebral haemorrhages105,127. In mice, knocking out either of 
the genes encoding the TGFβ signalling co-receptors — that is, ALK1 
(encoded by Acvrl1, also known as Alk1) and endoglin (ENG; encoded 
by Eng) — causes embryonic lethality at E11.5 (refs. 129,130).

Several axon guidance molecules, including the WNT proteins, 
SHH and BMP, guide both axonal growth cones78 and ETCs according to 
the concept of the NVL79 (Fig. 2). The specific effects of NVL molecules 
on ETC guidance, with the exception of the CNS-specific WNT ligands 
WNT7A and WNT7B (which are discussed later), are less clear than their 
roles in axon guidance15.

CNS-specific molecular mechanisms during embryonic brain 
development. CNS-specific molecular cues that are active in devel-
opmental angiogenesis include WNT7A and WNT7B, GPR124 and 
its co-receptor RECK131–137 with suggested upstream involvement of 
netrin 1–UNC5B138,139, DR6 and TROY50,140, the norrin–FZD4–LRP5–
TSPAN12 complex141–143 and the recently discovered brain EC-specific 
WNT regulator PPIL4 (ref. 144) (Supplementary Table 2). Even though 

Fig. 2 | Neurovascular link molecules affecting endothelial tip cell sprouting 
during vascular brain development, in brain tumours and in brain AVMs. 
a, The axonal growth cone at the leading edge of a growing axon is a specialized, 
subcellular ‘hand-like’ structure at the tip of an extending neuron. In the axonal 
growth cone, lamellipodia and filopodia sense and integrate attractive and 
repulsive guidance cues in the local tissue microenvironment, thereby guiding 
the extending axon to its target. The central domain of an axonal growth cone is 
rich in microtubules, whereas the peripheral domain predominantly contains 
filopodia (composed of F-actin bundles) and lamellipodia (composed of an 
actin meshwork). Some microtubules extend into the peripheral domain 
and rarely into filopodia. b, The endothelial tip cell (ETC) is a specialized vascular 
endothelial cell type at the tip of the newly forming blood vessel, followed by 
proliferating endothelial stalk cells. Similarly to axonal growth cones, ETCs 
are specialized, ‘hand-like’ structures at the forefront of growing blood vessels 
that sense environmental cues using lamellipodia and ‘finger-like’ filopodia, 
thereby guiding the growing blood vessels to their respective targets. Endothelial 
phalanx cells comprise a third, mostly silent vascular endothelial cell type, 
lining the border of functional, established blood vessels (not shown). ETCs use 
actin-based lamellipodia and filopodia sensing attractive and repulsive guidance 

cues in the local tissue microenvironment to reach their target. Microtubules 
have not been detected in filopodia so far. c, A newly forming blood vessel sprout 
including a migrating ETC extending multiple filopodia, followed by proliferating 
endothelial stalk cells creating a newly formed capillary lumen, and quiescent 
endothelial phalanx cells lining an established vascular blood vessel. Pericytes, 
astrocytes and the basement membrane are also depicted. d–f, Schematic 
illustrations showing the characteristics of the axonal growth cone (part d),  
ETC (part e) and vessel sprouting (part f) in pathological conditions. Newly 
formed vessels often show a disrupted basement membrane, vascular leakage  
and a reduced pericyte coverage (part f). g,h, Molecularly, sprouting angiogenesis 
into the CNS is regulated by neurovascular link molecules that act in a non- 
CNS-specific way (part g), such as VEGFA–VEGFR2, SEMA3A/SEMA3E–plexin D1, 
ephrin B2–EphB4 and SLIT2–ROBO4, or a CNS-specific manner (part h), such 
as WNT7A/WNT7B–GPR124–FZD6–RECK and DR6–TROY. Of note, the VEGFA/
VEGFC–VEGFR2/VEGFR3 and netrin 1–UNC5B signalling axes are shown in part 
h because even though they represent non-CNS-specific mechanisms, multiple 
CNS-specific mechanisms interact with these pathways downstream. AVM, 
arteriovenous malformation; SC, stalk cell; TC, tip cell; UL, unknown ligand.
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absolute CNS specificity is nearly impossible to prove, most of the 
CNS-specific molecular mechanisms that regulate the vasculature were 
shown to be absent in a number of peripheral tissues.

Endothelial β-catenin signalling is crucial for the establishment 
and maintenance of a functional BBB during embryonic and post-
natal brain development145,146. To activate the β-catenin pathway in a 
CNS-specific manner, the ligands WNT7A and WNT7B and/or norrin 
with its co-activator TSPAN12 (in retinal angiogenesis) is produced by 
glial cells or neurons to activate the co-receptors LRP5 and LRP6 on 
ECs146. Mutations in the genes encoding β-catenin, norrin, FZD4, LRP5, 
LRP6 and TSPAN12 can cause inherited defects in retinal vasculariza-
tion, whereas targeted mutations in the genes encoding WNT7A and 
WNT7B cause defects in both retinal and brain angiogenesis143. The 
binding of WNT7A and WNT7B to two membrane proteins expressed 
on CNS ECs —GPR124 and RECK — specifically enhances intracellular 
β-catenin signalling and is crucial for proper vessel ingression into the  
CNS parenchyma and the formation of CNS-specific properties of  
the INVP131,133–136,147,148. Interestingly, in regions where the barrier func-
tion of the BBB is physiologically reduced to monitor serum osmolarity 
and electrolyte balance — most notably the microvasculature of the 
circumventricular organs, the choroid plexus and the choriocapillaris 
and ciliary bodies in the eye — EC WNT–β-catenin signalling is kept at 
low rates, resulting in strict maintenance of this high-permeability 
state149,150.

Recent studies showed that EC-specific deletion of the gene encod-
ing the non-CNS-specific receptor UNC5B in mice induces loss of BBB 
integrity, characterized by reduced CLDN5 levels and increased expres-
sion of the permeability protein PLVAP138,139. UNC5B-bound netrin 1 
interacts with the CNS-specific WNT7A and WNT7B co-receptor LRP6, 
leading to downstream activation of the WNT–β-catenin pathway 
inside but not outside the CNS (for example, there are no effects on 
the vasculature in the lungs, heart and kidneys). This signalling might 
be an important CNS-specific downstream mechanism regulating 
BBB integrity138.

Embryonically, mutations in Gpr124 (also known as Adgra2) or 
Reck severely impair CNS angiogenesis and barriergenesis133,136,148. 
Endothelial-specific Gpr124 deletion causes embryonic lethality in mice 
from E15.5 onwards owing to angiogenic defects in the forebrain and 

neural tube, whereas Gpr124 overexpression produces CNS-specific 
hyperproliferative vascular malformations135. This forebrain (but not 
midbrain or hindbrain) localization pattern suggests that GPR124 medi-
ates EC migration towards regional guidance cues in the embryonic 
CNS135. Endothelial β-catenin signalling promotes sprouting angio-
genesis, ETC formation and VEGFR expression during postnatal brain 
and retinal vascular development151. Increased β-catenin levels also 
lead to upregulation of DR6 and TROY, which are required for vascular 
and BBB development and maintenance in a CNS-specific manner in 
zebrafish and mice140. ppil4−/− zebrafish exhibited a brain EC-specific 
phenotype, including necrosis in the dorsal midbrain and embryonic 
lethality 2 days after fertilization144. Interestingly, PPIL4 exerts brain 
EC-specific modes of action via a downstream effect on WNT signalling 
cascades144. Finally, the formation of arteriovenous connections during 
CNS development is partially mediated by the receptor–ligand pair 
Cxcr4–Cxcl12b in the CNS but not in the trunk of zebrafish embryos, 
suggesting it has a CNS-specific nature152.

Postnatal CNS angiogenesis
Cellular angiogenic mechanisms during postnatal brain devel-
opment. Sprouting angiogenesis continues postnatally and further 
remodels and expands the CNS vascular network3,9,153 (Fig. 3e,f). Whereas 
sprouting angiogenesis and ETCs advance in a radial manner during 
embryonic development88, postnatally, ETCs spread in all directions 
of the various cortical layers, mostly emanating from the main vessel  
branches established during brain embryogenesis3,153,154 (Fig. 3e,f).

General angiogenic molecular mechanisms during postnatal brain 
development. Much less is known about the molecular regulation 
of brain angiogenesis and vascular patterning postnatally than in 
the embryonic stage. Many molecules and molecular pathways are 
probably active during both developmental stages, including the 
VEGFA–VEGFR–DLL4–Jagged 1–Notch pathway, YAP–TAZ, integrin 
αVβ8, SEMA3A and SEMA3E, and ephrin B2–EphB4 (ref. 50) (Supple-
mentary Table 2). We identified Nogo-A as a major negative regulator 
of sprouting angiogenesis, ETCs and vascular network formation in 
the postnatal brain17, whereas its role during embryonic vascular brain 
development remains unclear. The vascular receptor for the Nogo-A 

Fig. 3 | Structural and molecular mechanisms of angiogenesis at the embryonic, 
postnatal and adult stages of vascular brain development. a, A human 
neural tube at the embryonic stage with the roof and floorplate illustrated 
on the coronal cutting plane. b, Sprouting angiogenesis into the neural tube 
during embryogenesis. The perineural vascular plexus (PNVP) is formed by 
vasculogenesis from mesodermal-derived angioblasts at around 7 weeks of 
gestational age in humans (embryonic day 8.5 (E8.5) in mice). Subsequently, 
at around 8 weeks of gestational age in humans (E9.5 in mice), angiogenic 
sprouts of the intraneural vascular plexus (INVP) are formed along radial glia via 
sprouting angiogenesis using endothelial tip cell (ETC) filopodia, invading the 
CNS parenchyma and migrating towards the ventricle, where pro-angiogenic 
and anti-angiogenic factors such as VEGFA and WNT proteins are produced. 
At the forefront of these angiogenic sprouts, ETCs guide the CNS-invading blood 
vessels using ETC filopodia. c, The anatomical organization of the meningeal 
layers, including dura, arachnoid and pia mater with intradural lymphatic 
vessels (blue) and blood vessels (red). An angiogenic vascular sprout emanating 
from the extraparenchymal PNVP composed of ETCs, endothelial stalk cells 
and endothelial phalanx cells invading the intraparenchymal INVP is shown. 
A perivascular space (PVS) surrounds the base of the vascular sprout. d, The 
neurovascular unit (NVU) for established blood vessels that is composed of 

a variety of cell types, including endothelial cells (ECs), pericytes, astrocytes 
and neurons. ECs and pericytes are ensheathed by a common basal lamina, the 
endothelial basement membrane. The blood–brain barrier (BBB) is composed 
of microvascular ECs that are mutually connected via complex tight junctions 
(TJs), thereby regulating or inhibiting paracellular diffusion of water-soluble 
molecules. ECs regulate the transport of molecules between the blood and 
the brain parenchyma via the expression of influx and efflux transporters. 
e, A coronal section of a human brain during postnatal development. f, At the 
postnatal stage, sprouting angiogenesis is the main mode of neovascularization, 
and vascular sprouting occurs in all directions throughout cortical layers 1–6. 
Endothelial sprouts invading the CNS parenchyma from week 8 of gestational  
age (E9.5 in mice) onwards grow along radial glia fibres towards the ventricle.  
g,h, In the healthy adult brain, the vasculature is almost quiescent, with only very 
few ECs proliferating. i,j, Molecularly, numerous pathways have been implicated 
in EC quiescence, survival and maintained inhibition of paracellular permeability, 
and the molecular cues can be either non-CNS specific or CNS specific. The 
TGFβ–TGFβR signalling axis is shown here because even though it is a non-CNS-
specific mechanism of angiogenesis, it interacts downstream with the CNS-specific 
WNT7A/WNT7B–GPR124–FZD6–RECK pathway. ANG1, angiopoietin 1; ANG2, 
angiopoietin 2; SC, stalk cell; TC, tip cell.
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isoform Nogo-B, NgBR155, regulates both embryonic and postnatal brain 
angiogenesis9,156–159. NgBR knockdown in zebrafish models stopped 
Nogo-B-stimulated EC migration and reduced VEGF-induced phospho-
rylation of AKT and EC morphogenesis in a general (non-CNS-specific) 
manner9,156.

CNS-specific angiogenic molecular mechanisms during postnatal 
brain development. Similarly to observations made during the embry-
onic stage, postnatal deletion of Gpr124, Reck or Ndp (which encodes 
norrin) compromises angiogenesis and BBB integrity in a CNS-specific 
manner133,136. Whereas most of the CNS-specific mechanisms regulating 
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During embryonic and postnatal brain development, angiogenesis is highly dynamic and is thought to occur 
primarily via sprouting angiogenesis and partially via vasculogenesis. 

Glial brain tumours probably develop in an adult quiescent vascular bed, where they reactivate the brain 
vasculature. All six modes of neovascularization are involved in initiation and progression of glial brain tumours.

Brain AVMs develop most likely as a consequence of aberrant development of the brain vasculature. 
Sprouting angiogenesis and vasculogenesis have been shown to be involved in these processes of 
pathological angiogenesis. A potential involvement of the other modes of vessel formation remains elusive.

Angiogenesis during embryonic and postnatal brain development

Angiogenesis in glial brain tumours

Angiogenesis in brain AVMs

Brain
tumour

Fig. 4 | Angiogenesis during brain development, in glial brain tumours 
and in brain AVMs. a,b, Angiogenesis during embryonic and postnatal brain 
development is initiated by bone marrow-derived de novo vasculogenesis 
followed by sprouting angiogenesis with the formation and elongation of new 
vessel sprouts from pre-existing vessels. Newly formed vessels fuse with other 
vascular sprouts in a process called ‘anastomosis’, thereby forming a healthy 
capillary bed within a three-dimensional network of perfused, functional 
vasculature. c,d, Glial brain tumours develop in a vascular bed where they 

reactivate the surrounding quiescent brain vasculature but also form their own 
blood vessels within the tumour mass. All six modes of neovascularization are 
active in glial brain tumours. e,f, Brain arteriovenous malformations (AVMs) 
develop as a consequence of aberrant vascular development of a healthy 
capillary bed in which the initial formation of arteriovenous shunts leads to 
further progression towards brain AVMs. Sprouting angiogenesis and bone 
marrow-derived vasculogenesis (in the AVM nidus) play an important role during 
the initiation and progression of brain AVMs.
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vascular brain development at the embryonic stage also regulate post-
natal brain angiogenesis and barriergenesis, little is known about the 
molecular mechanisms that regulate CNS vascular development solely 
at the postnatal stage (Supplementary Table 2).

Summary
In conclusion, during both embryonic and postnatal brain develop-
ment, sprouting angiogenesis is highly active and vascular sprouts 
led by ETC filopodia invade the CNS tissue to establish a functional 
vascular network. Molecular pathways regulating developmental brain 
angiogenesis in a general or CNS-specific way are increasingly being 
discovered, but our knowledge of these molecular processes and their 
interactions with the VEGF–VEGFR–DLL4–Jagged–Notch pathway and 
the Hippo–YAP–TAZ pathway remains incomplete9,50 (Supplemen-
tary Table 2). In the adult human brain vasculature, most of the afore-
mentioned developmental pathways are downregulated, keeping the  
vasculature in a quiescent homeostatic state9,61,160,161 (Fig. 3g–j).

Angiogenesis in brain tumours
In contrast to the healthy adult quiescent vasculature, brain tumours 
are characterized by aberrant angiogenesis and alterations to the 
BBB61,162, to CNS specificity and to arteriovenous specification of ECs24, 
but to what extent developmental signalling axes are reactivated in 
brain tumours remains poorly understood. Here we focus on intra-axial 
glial brain tumours, which are a classic example of highly angiogenic 
brain tumours characterized by the crucial role of their vasculature 
and aberrant capillary beds in disease initiation and progression163–166.

Glial brain tumours
Vascular proliferation is an important pathological hallmark of glio-
blastomas (high-grade gliomas), which have one of the most extensive 
vascular systems among all solid tumours and vascular proliferation is 
an important pathological hallmark164–166. However, targeting glioma 
vascularization using an anti-VEGF therapy167, a combined anti-FGF–
anti-VEGF therapy168 or other approaches has resulted in disappointing 
results166,169–171, probably owing to an incomplete understanding of the  
cellular and molecular mechanisms regulating angiogenesis and  
the NVU and PVN in glial brain tumours.

Modes of neovascularization
In glial brain tumours, all six mechanisms of neovascularization have 
been characterized23–26,172 (Figs. 1, 4c,d and 5 and Supplementary 
Table 1).

Vascular co-option. Chronologically, the first mode of neovasculariza-
tion in glial tumours is vascular co-option, involving the organization 
of tumour cells into perivascular cuffs around microvessels of the 
surrounding healthy brain tissue to form an early, initially well vascu-
larized tumour mass25 (Figs. 1d and 4c,d and Supplementary Table 1). 
This process mostly occurs in highly vascularized tissues but may also 
occur in malignancies both inside and outside the CNS, including liver 
cancer173, lung tumours174, breast-to-brain metastases175 and glial brain 
tumours176, as well as in tumour recurrence and metastatic growth fol-
lowing administration of anti-angiogenic therapies in glioblastoma13,176 
(Figs. 1d,h and 4c,d and Supplementary Table 1).

At the cellular level, cytoplasmic extensions of glioblastoma cells 
termed ‘flectopodia’ modify the normal contractile activity of pericytes 
surrounding pre-existing vessels, resulting in co-option of these blood 
vessels, thereby illustrating cellular interactions within the tumour 

NVU and PVN177. Molecularly, inhibition of the small GTPase CDC42,  
a principal regulator of cell polarity and actin cytoskeletal organization, 
impairs vessel co-option, thereby favouring an innate immune response 
against the tumour177. Co-opted vessels do not undergo sprouting 
angiogenesis as a direct next step but first regress via disruption of 
EC interactions and proteolysis of the basement membrane and ECM, 
mediated by expression of ANG2 (ref. 178) (Supplementary Table 1). 
ANG2 is expressed by ECs in co-opted vessels at an early stage and 
appears to counter the constitutive expression of ANG1 in healthy tis-
sues. ANG2 is upregulated through HIF1α-dependent mechanisms and 
contributes to the formation of the leaky, tortuous and dysfunctional 
vessel characteristics of glioblastoma179. Other molecular players 
in vascular co-option include bradykinin, EGFRvIII180, MDGI181 and 
ephrin B2 (ref. 182). Ultimately, the remaining tumour is rescued by 
sprouting angiogenesis at the tumour borders25,39,182 (discussed later). 
To date, no CNS-specific mechanisms regulating vascular co-option in 
glial tumours have been identified.

Sprouting angiogenesis. Glioma-associated sprouting angiogen-
esis begins after ANG1-mediated and ANG2-mediated breakdown of 
existing, co-opted vessels. In the presence of ANG2, VEGF promotes 
EC migration and proliferation and stimulates sprouting of pre-exist-
ing blood vessels29. Under hypoxic conditions characterized by high 
HIF1α expression, VEGF ligands and receptors are upregulated and 
VEGFA binds VEGFR2 and VEGFR3, resulting in MAPK (ERK)-dependent 
upregulation of VEGF signalling in gliomas64. DLL4 inhibition leads to 
non-productive angiogenesis with aberrantly high ETC and filopo-
dia numbers and suppression of tumour growth in glioma models, 
whereas prolonged complete inhibition of DLL4 resulted in highly 
vascular tumours with a haemangioblastoma phenotype, illustrating 
this carefully balanced mechanism183 (Figs. 1a,h, 4c,d and 5f,g and Sup-
plementary Tables 1 and 2). Stabilization of the newly formed capillaries 
requires interactions between ECs, PVCs and ECM components184–187. 
For instance, during vessel lumen formation, pericytes are recruited 
towards the newly formed vessels in response to platelet-derived 
growth factor (PDGF) and matrix metalloproteinase upregulation in 
activated glioma ECs to stabilize the vascular sprout53,185,187,188.

Bone marrow-derived vasculogenesis. Vasculogenesis is important 
in tumour biology, and involves the differentiation of three types of 
circulating bone marrow-derived cells: most importantly, EPCs and peri-
cyte progenitor cells25, and the less well characterized CD45+ vascular 
modulatory cells189 (Figs. 1b,h and 4c,d and Supplementary Table 1). Mul-
tiple studies showed that impaired recruitment of EPCs interferes with 
tumour progression in human gliomas190,191. EPCs, defined by the expres-
sion of progenitor markers (CD34 and CD133) and EC markers (CD31 
and VEGFR2) regulate angiogenesis-mediated tumour progression 
indirectly via paracrine secretion of pro-angiogenic growth factors192 
and by direct luminal incorporation into nascent sprouting vessels81,193.

In a transgenic mouse model of liver carcinogenesis, CCR2+ and 
CCR5+ EPCs were incorporated into the tumour vasculature191. Glio-
blastoma recruits CXCR4+ EPCs in the process of bone marrow-derived 
vasculogenesis through activity of HIF1α and its target SDF1α194. Bone 
marrow-derived vasculogenesis is important in glioblastoma resist-
ance to initial chemoradiotherapy and pharmacological VEGF inhibi-
tion195, and clinical trials targeting inhibition of the SDF–CXCR4–CXCR7 
axis combined with anti-VEGF therapy in glioblastoma are ongoing196. 
Clinically, the number of EPCs in peripheral blood of patients correlates 
with glioblastoma blood vessel density and angiogenic activity and 
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might serve as a biomarker for the identification of patients who may 
benefit from anti-angiogenic therapy197. The contribution of pericyte 
progenitor cells to pathological glioblastoma angiogenesis is a matter 
of debate, given that the pericyte progenitor cell population varies 
dramatically depending on the stage of disease and that glioblastoma 
shows a relatively low pericyte coverage of 10–20% (with substantial 
interpatient variability), compared with 67% in mammary carcinomas 
and 65% in colon carcinomas198.

Molecularly, EPC migration and proliferation are regulated by 
VEGFA–VEGFR2–VEGFR3–MAPK signalling, with VEGFR2 and VEGFR3 
being expressed on EPCs199, whereas EPC homing is regulated by key 
angiogenic chemokines (CXCL1, CXCL7, CXCL12 and CCL2), their 
respective receptors (CXCR2, CXCR4 and CCR2) and the TGFβ–SDF1α–
CXCL12 axis200. CNS-specific molecular mechanisms involved in  
vasculogenesis remain to be discovered.

Intussusception. Intussusceptive angiogenesis has been character-
ized in several cancers39, including glioblastoma47. Nico et al. detected 
a number of connections of intraluminal tissue folds with the opposite 
vessel walls (corresponding to a key step in the process of intussus-
ception (Fig. 1c)), thereby suggesting the existence of this mode of 
neovascularization in human glioblastoma47. The relevance of intus-
susception to human brain development and brain disease remains 
unknown, as do its underlying molecular mechanisms and whether it 
displays a CNS-specific or general mode of action.

Glioma stem cell to EC and glioma stem cell to pericyte transdif-
ferentiation. Located in the glioblastoma PVN, GSCs are closely associ-
ated with microvascular ECs, and studies have proposed that soluble 
factors secreted by ECs — including VEGFA201, IL-8 (ref. 202), SHH203 and 
CD9 (ref. 204) — and adhesive connections between ECs and GSCs control 
the fate and survival of GSCs, thereby affecting the aggressiveness of 
glioblastoma (Figs. 1e,h and 4c,d and Supplementary Table 1). A sub-
population of glioblastoma-derived ECs harbours the same somatic 
mutations (for example, mutation in the gene encoding EGFRvIII and 
chromosome 7 amplification) as GSCs, indicating that a notable por-
tion of the vascular endothelium has a neoplastic origin and GSCs can 
transdifferentiate into functional ECs, thereby contributing to tumour 
vascularization20,21,205. Recently, the P4HA1–COL6A1 axis was identi-
fied as a modulator of GSC-to-EC transdifferentiation206. Additional 
candidate modulators of this process include ETV2, a master regulator 
of EC development, and the transcription regulator TWIST1, and their 
expression positively correlates with malignancy grade207,208.

Mechanistically, treatment with the chemotherapeutic drug 
temozolomide increases the expression of GSC-specific markers in 

glioblastoma ECs and induces the transdifferentiation of GSCs to 
glioblastoma ECs, thus identifying chemotherapeutic stress as a driver 
of this mode of neovascularization209. Ionizing radiation has also been 
shown to initiate GSC-to-EC transdifferentiation through the previously 
described TIE2 pathway210,211. Interestingly, GSCs can also give rise to 
tumour pericytes supporting vessel function and tumourigenesis22. 
In vivo cell lineage tracing in a glioblastoma xenograft model dem-
onstrated that GSCs generate the majority of glioblastoma pericytes 
(predominantly via TGFβ signalling) and revealed that selective cell 
arrest of GSC-derived pericytes led to vessel wall disruption in vivo22. 
Transdifferentiation of GSCs to pericytes along with stem cell plastic-
ity and angiogenic properties of GSCs are regulated predominantly 
by the NOTCH1 pathway in hypoxic conditions212. The observation 
that GSC-derived pericytes bear tumour-specific genetic alterations 
distinguishing them molecularly from normal pericytes (for example, 
mutations in the gene encoding EGFRvIII, chromosome 7 amplifica-
tion, or PTEN or chromosome 10 deletion) provides possibilities to  
specifically target these tumour-derived pericytes22.

Clinically, pericyte coverage of tumour vasculature inversely cor-
relates with response to chemotherapy and survival in individuals 
with glioblastoma, suggesting that pericytes with a neoplastic origin 
in glioblastoma may regulate the brain tumour barrier, which impacts 
the efficiency of drug delivery213. Tumour vascular endothelium and 
GSC-derived pericytes have been suggested as novel targets for anti-
angiogenic therapy165,166,214. Cancer stem cell to EC or pericyte transdif-
ferentiation is a non-CNS-specific process that has been described in 
non-CNS tumours215.

Vasculogenic mimicry. ‘Vasculogenic mimicry’ (VM) refers to the abil-
ity of tumour cells to form functional vessel-like networks216,217 (Figs. 1f,h 
and 4c,d). Tumour cells lining these erythrocyte-containing ‘vascular’ 
channels, which are devoid of ECs, continue to express tumour cell 
markers. First identified in melanomas216, this mode of neovascu-
larization has been reported in various cancers inside and outside the 
CNS218–220 and in glial brain tumours221.

Molecularly, hypoxia promotes VM through expression of  
VE-cadherin (also known as CD144) on tumour ECs and tumour cells222. 
In glioblastoma, tumour cells lining the vasculature display an undiffer-
entiated embryonic-like biological and molecular phenotype, suggest-
ing the involvement of GSCs and reactivation of neurodevelopmental 
signalling programmes223. Several molecules and ligand–receptor pairs 
associated with anaplastic properties of these GSCs are associated 
with VM formation, including TGFβ, Nodal, EphE2 and VE-cadherin224. 
The incidence of VM was markedly higher in high-grade gliomas than 
in lower-grade gliomas225. Overall survival was notably lower and 

Fig. 5 | Molecular mechanisms regulating the vasculature during initiation 
and progression of glial brain tumours. Figure illustrating the hypothetical 
concept postulating the gyral confinement and respect of sulcal borders during 
progression from low-grade glial brain tumours to high grade glial brain tumours 
based on radiological observations and the concept of sprouting angiogenesis 
and recruitment of blood vessels from the adjacent brain parenchyma. a–c, Cross 
sections of the adult human brain in the coronal plane showing pathological 
angiogenesis in glial brain tumours. Illustrations and T1-weighted coronal 
and sagittal MRI scans with gadolinium show that low-grade gliomas are often 
confined to one gyrus, thereby respecting sulcal borders (parts a,c). Illustrations 
and T1-weighted coronal and sagittal MRI scans with gadolinium show that 
invasive high-grade gliomas do often not respect gyral confinement and cross 

sulcal borders (parts b,c). d,e, Molecularly, numerous signalling pathways have 
been implicated in the adult healthy brain, regulating endothelial cell quiescence, 
survival and maintained inhibition of paracellular permeability. Molecular cues 
can be either non-CNS specific (part d) or CNS specific (part e). These signalling 
pathways are thought to be of importance during both embryonic and postnatal 
vascular brain development, as well as to contribute to the maintenance of  
the quiescent healthy adult brain vasculature. f,g, Molecularly, different non-
CNS-specific and CNS-specific angiogenic molecular mechanisms have been 
implicated in glioma initiation and progression, and they include the reactivation 
of developmentally active ligand–receptor pairs. ANG1, angiopoietin 1; ANG2, 
angiopoietin 2; SC, stalk cell; TC, tip cell. Images in parts a,b courtesy of 
P. Nicholson.
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microvascular density was higher in people with VM-positive high-
grade gliomas than in individuals with VM-negative high-grade gliomas, 
indicating a notable contribution of VM channels to glioma blood 
supply225. IGFBP2 (ref. 226), leptin receptor ObR227, the RNA-binding 
protein ZRANB2 (ref. 228) and several specific long non-coding RNAs229 
and microRNAs230 stimulate VM, whereas histone deacetylase inhibi-
tors impair the process of VM in human glioblastoma231. CNS-specific 
mechanisms of VM have not been discovered to date.

Developmental pathways in glial tumours
General molecular mechanisms reactivated in glial brain tumour 
angiogenesis. Typical examples of developmentally active general 
mechanisms that are reactivated in pathological glial brain tumori-
genesis include VEGF–VEGFR, DLL4–Jagged–Notch, YAP–TAZ, PDGF–
PDGFR, SLIT2–ROBO4, semaphorin–plexin, semaphorin–neuropilin, 
ANG2–TIE1, ANG2–TIE2 and ephrin B2–EphB4 signalling (Fig. 5f and 
Supplementary Table 2). An increase in VEGFA expression has been 
associated with an increase in glioma malignancy and poor progno-
sis232. A frequent hallmark of glioma-associated angiogenesis is the 
activation of the developmentally active RTK signalling pathways233, 
most commonly caused by amplifications of, mutations in or over-
expression of EGFR in GSCs and ECs or pericytes234, contributing to 
sprouting angiogenesis and stem cell to EC transdifferentiation or stem 
cell to pericyte transdifferentiation233. Mutations in EGFR, in particular 
mutations encoding the EGFRvIII variant, lead to ligand-independent 
and constitutive activation of the EGFR signalling pathway235. This 
prolonged activation leads to tumour progression and stimulation of 
angiogenesis via secretion of proteases, which degrade the ECM and 
enable ECs to proliferate in the surrounding matrix via upregulation 
of unidentified pro-angiogenic molecules235.

The Notch pathway is linked to several glioblastoma-specific 
responses to hypoxia, angiogenesis and tumour growth183,236,237. Com-
bined targeting of EGFR signalling and Notch signalling results in 
decreased cell viability and EC sprouting compared with use of either 
of the monotherapies, supporting an important role of Notch–EGFR 
signalling crosstalk in glioblastoma238. However, inhibition of both the 
EGFR signalling pathway and the Notch signalling pathway is not suf-
ficient to fully stop EC sprouting in human glioblastoma cell cultures, 
despite almost complete inhibition of VEGF secretion upon combined 
treatment, suggesting that VEGF-independent pro-angiogenic factors 
contribute to sprouting angiogenesis238. Indeed, VEGF-independent 
YAP–TAZ upregulation was observed in glioblastoma on both glial 
tumour cells and tumour-associated ECs, and this correlated with 
malignancy grade95,239.

PDGFs, which have several critical roles in physiological embryonic 
development, are also known to have an important role in sprouting 
angiogenesis in human glial brain tumours240,241. Five different PDGF 
isoforms (PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC and PDGF-DD) acti-
vate cellular responses through two different receptors (PDGFRα and 
PDGFRβ; the latter is mainly involved in tumour ECs)242. PDGF-mediated 
endothelial-to-mesenchymal transition induces EC resistance to anti-
angiogenic therapies that target VEGF pathways by downregulating 
VEGFR2 expression in ECs that were isolated from human glioblastoma 
samples241.

Among the reactivated general molecular mechanisms regulating 
glial brain tumour vasculature, signalling by the classic axon guidance 
cue ephrin B2–EphB4 regulates ETC guidance in brain tumour angio-
genesis, and ephrin B2–EphB4 expression is associated with acceler-
ated glioma progression and a worse clinical prognosis in patients with 

glioblastoma123,243. Sawamiphak et al. found a reduction of tumour vol-
ume of up to 25% in an intracranial glioma model in ephrin B2-deficient 
mice104. Furthermore, ephrin B2 activation in ETC filopodia regulates 
VEGFR2 internalization, which is required for downstream signal-
ling and VEGF-induced tip cell filopodial extension and sprouting 
angiogenesis104. Additionally, in a glioblastoma EphB4 overexpression 
model, reactivation of this developmentally active ephrin B2–EphB4 
receptor–ligand pair in glial brain tumours and subsequent overex-
pression of EphB4 leads to a stabilization of pericyte–EC interactions, 
intact pericyte coverage and cellular proliferation, all hallmarks of 
anti-angiogenic therapy-resistant tumour vessels244.

Active during physiological embryonic and postnatal vascular 
development, TIE1-bound ANG2 and TIE2-bound ANG2 were also 
detected in tumour cells and ECs in high-grade gliomas (they are 
present at negligible levels in low-grade gliomas)245,246. Reactivation 
of TIE receptor signalling during ectopic overexpression of ANG2 in 
glioblastoma accelerates tumour progression and compromises the 
benefits of anti-VEGFR treatment in murine glioblastoma models247. 
Dual inhibition of ANG2 and VEGF receptors normalizes tumour 
vasculature and prolongs survival in glioblastoma models247.

SLIT2–ROBO4 signalling constitutes another classic axon guid-
ance cue regulating vascular development99,248. ROBO4 is markedly 
downregulated in ECs cultured in glioma-conditioned medium, and 
binding of SLIT2 to ROBO4 suppresses glioma-induced EC prolif-
eration, migration and tube formation in vitro by inhibiting VEGFR 
signalling249.

Among the five members of the αV integrin subfamily, αVβ8 — 
expressed in neurons, ECs and PVCs — is of particular interest as an 
important regulator of angiogenesis in the developing brain125,126. In 
mosaic mouse models of astrocytoma, xenografts and cell culture 
systems of human glioblastoma, αVβ8 integrin-activated TGFβ pro-
teins suppress pathological angiogenesis and differentially regu-
late glioblastoma (vessel) growth via autocrine activation of TGFβ  
signalling pathways250.

Other classic axon guidance cues such as netrin 1 and semaphorins 
(for example, SEMA3D, SEMA3E, SEMA3F and SEMA4D) play important 
roles in glioblastoma tumorigenesis and progression by affecting 
infiltration patterns and the aggressiveness of GSCs251–253.

Recently, we identified nucleolin, a neurodevelopmental regulator 
of angiogenesis in the human fetal brain vasculature, as a reactivated, 
positive regulator of sprouting angiogenesis in glioblastoma254. In our 
own scRNA-seq dataset, we have identified various reactivated fetal 
signalling pathways in human low-grade and high-grade glioma or glio-
blastoma with a general (non-CNS-specific) mode of action, including, 
cell–ECM interaction-related and cell–cell interaction-related signalling 
pathways, as well as WNT, BRAF, Notch, VEGF–VEGFR1 and VEGF–VEGFR2, 
IL-8–CXCR1, PI3K–AKT, PDGF–PDGFR, Hedgehog, angiopoietin–TIE1, 
angiopoietin–TIE2, ephrin and integrin signalling cascades163.

CNS-specific molecular mechanisms reactivated in glial brain 
tumour angiogenesis. Only a few studies have been published to 
date relating to the CNS-specific regulation of angiogenesis in pri-
mary glial brain tumours12,132 (Fig. 5g and Supplementary Table 2). 
WNT7A/WNT7B–β-catenin signalling, regulating embryonic and post-
natal developmental angiogenesis in a CNS-specific manner via the  
co-activator GPR124, also regulates pathological angiogenesis in mouse 
models of glioblastoma and ischaemic stroke132,145,146. Mice in which 
Gpr124 was conditionally knocked out in ECs (Gpr124-CKO mice) exhib-
ited decreased vessel density and increased loss of CNS microvascular 
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integrity, measured by BBB leakage, compared with heterozygous 
control animals in both the model of stroke255 and the model of glio-
blastoma132. To investigate whether GPR124 functions via downstream 
WNT–β-catenin signalling to regulate BBB function, primary cultured 
brain ECs from adult Gpr124-CKO mice and the Gpr124-heterozygous 
control group were transduced with Wnt7b-expressing adenovirus. 
Upregulation of WNT7B signalling resulted in increased BBB integrity 
in glioblastoma by positively regulating tight junction proteins, peri-
cyte coverage and cell–ECM interactions in the ECs from adult global 
Gpr124-heterozygous mice but not in those from Gpr124-CKO mice132, 
indicating a crucial role for WNT7A/WNT7B–GPR124–RECK–FZD–LRP 
signalling in brain tumour BBB integrity and identifying this molecular 
signalling pathway as a possible therapeutic CNS-specific target in 
glioblastoma132,256. More recently, engineered WNT7A ligands were 
shown to enable BBB repair in mouse models of stroke and glioblastoma 
by selectively binding the WNT7A/WNT7B-specific GPR124–RECK  
co-receptor complex, thereby acting as BBB-specific WNT activators to 
induce WNT signalling257. It remains to be determined whether WNT–
GPR124 signalling also affects pathological vascularization in non-CNS 
tumours or whether this signalling axis keeps its developmental CNS 
specificity in vascular-dependent CNS pathologies such as brain AVMs.

Other regulators of developmental brain angiogenesis such as 
norrin, DR6 and TROY have been reported to have effects in brain 
tumours such as medulloblastoma (mainly on neuronal migration, 
not on angiogenesis)258,259, but their potential regulatory roles in angio-
genesis in glial brain tumours and other non-CNS tumours remain 
to be investigated. Similarly, in light of the recently identified CNS-
specific UNC5B–netrin 1-mediated interaction with LRP6 (ref. 138),  
it would be interesting to see whether intravenous injection of netrin 1 
could increase WNT–β-catenin signalling in the BBB and repair CNS  
endothelial barrier breakdown in glial brain tumours.

From the findings taken together, reactivation of the VEGF–
VEGFR–DLL4–Jagged–Notch signalling axis, along with the YAP–TAZ 
pathway, is of crucial importance in the initiation and progression of 
angiogenesis in glial brain tumours. Many of the discussed classic axon 
guidance cues of the NVL are reactivated in glial brain tumours in a 
general way. Besides possible involvement of netrin 1 and semaphorins 
in glioblastoma vascularization252, the role of additional classic and 
non-classic axon guidance cues and CNS-specific cues in this process 
remains to be explored.

Molecular mechanisms in glial brain tumour vasculature at the 
single-cell level. scRNA-seq is a powerful approach to study brain 
tumour (including low-grade and high-grade glioma) biology260–264. 
Single-cell techniques enable the study of genetic heterogeneity265,266, 
developmental cellular lineages and hierarchies, and stem cell progra
mmes261,262,264,267, as well as the investigation of the various cell types in 
the tumour microenvironment266. Until recently, however, single-cell 
sequencing had not been applied to the study of the glioma vasculature. 
Xie and colleagues used scRNA-seq to study freshly isolated ECs from 
human glioblastoma tissues, gaining molecular insight into the hetero-
geneity of the human BBB and the pathological neovascularization in 
glioblastoma265. They identified distinct EC clusters that represent 
different states of angiogenesis and EC activation and impairment of 
the BBB in both the tumour centre and the tumour periphery, thereby 
highlighting the importance of different regions within the tumour 
with regard to the tumour vasculature.

To address the molecular heterogeneity of brain ECs (and PVCs) 
across development and disease, we recently created the first large-scale 

single-cell molecular atlas of the developing fetal, healthy adult and 
diseased human brain vasculature, focusing on brain vascular malfor-
mations and brain tumours, including AVMs and low-grade and high-
grade gliomas163. We performed scRNA-seq on approximately 600,000 
freshly isolated ECs and PVCs from 47 fetuses and adult patients163. This 
unprecedented insight into EC and PVC heterogeneity and functional 
specialization of the human brain vasculature in development, health 
and disease at the single-cell level revealed alterations in arteriovenous 
differentiation and CNS-specific properties, upregulation of major 
histocompatibility complex class II molecules and a central role for 
ECs in the brain NVU in pathological ECs across different brain diseases, 
including brain tumours and brain vascular malformations. Notably, 
we observed a marked increase in the angiogenic capillary EC cluster 
in glioblastoma (and lung cancer brain metastases) and to a lesser 
extent in lower-grade gliomas as compared with the adult control 
brain, indicative of the angiogenic nature of lower-grade and especially 
high-grade brain tumours. Moreover, these findings unravelled the 
top differentially regulated pathways (belonging to five major groups, 
namely angiogenesis-related pathways, development and NVL mol-
ecules, cell–cell and cell–ECM interactions, immune-related processes 
and metabolism) in both fetal and pathological brain ECs as compared 
with healthy adult brain ECs. Most interestingly, more than half of the 
differentially regulated pathways in pathological brain ECs also showed 
differential regulation in fetal brain ECs163. This observation was also 
made in both low-grade and high-grade gliomas, with the reactivated  
pathways belonging to the five canonical groups listed above.

In summary, these results showed that, in the human brain, patho-
logical ECs share common hallmarks across various diseases, including 
brain tumours and brain vascular malformations. Comparison of fetal 
and pathological ECs also suggested that signalling pathways regu-
lating vascular growth during fetal brain development are silenced 
in adulthood and subsequently activated again in the vasculature of 
brain tumours and brain vascular malformations, thereby highlight-
ing the potential importance of developmental pathways in various 
vascular-dependent brain pathologies. Notably, the observed simi-
larities between fetal and pathological brain ECs at the level of active 
signalling pathways (for example, reactivated developmental pathways 
versus persistence of a less differentiated cell type) as well as their 
functional importance are currently incompletely understood and 
warrant further investigation.

A developmental look at glial brain tumours
From surgical and neuroradiological observations, glial brain tumours 
are frequently confined to specific brain regions (Fig. 5), as illustrated 
by gliomas largely having a gyral or subgyral locatation268,269. Low-grade 
gliomas (from which many high-grade gliomas arise) are typically con-
fined to a gyrus while respecting pial borders, rarely crossing sulci268,270 
(Fig. 5a,c), but the cellular and molecular mechanisms underlying these 
observations are unknown. In light of compartment-specific embry-
onic vascular development6,56, it is intriguing to speculate that the 
restriction of the brain tumour extension within defined gyri might, 
at least partially, be due to its territorial vascular supply. Interestingly, 
upon malignant transformation of a low-grade glioma to a high-grade 
glioma, the tumour mass often spreads on a radial axis, crossing sulci 
and extending to adjacent gyri270 (Fig. 5b,c).

Strikingly, this brain tumour extension or progression looks com-
parable to the axis of brain AVM growth towards the ventricle, with 
infiltration along white matter tracts, such as the corpus callosum and 
subgyral short association fibres270,271 (Fig. 6). As long as glial tumours are 
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localized within gyri and respect the sulcal borders, their blood supply is 
thought to be provided by neovessels forming via sprouting angiogen-
esis from pre-existing arteries running within the sulci271. High-grade 
gliomas crossing these borders may find ways to break those bounda-
ries and recruit neovessels from adjacent sulci or gyri (for example, via 
CNS-specific and/or general reactivated NVL molecules or endothelial 
metabolism cues) via sprouting angiogenesis and other modes of vessel 
formation (Fig. 1), but this intriguing hypothesis needs further testing.

Angiogenesis in brain AVMs
Brain vascular malformations are characterized by abnormal blood vessel 
growth and altered maturation of the vessel wall61,162. Here, owing to space 
limitations, we focus on brain AVMs, which are one of the most commonly 
encountered brain vascular malformations and are a leading cause of 
haemorrhage in children and young adults272. Brain AVMs are character-
ized by aberrant angiogenesis and a malformed capillary bed, thereby 
representing an exemplar pathology to understand brain vascular biol-
ogy across arteriovenous zonation273 (Figs. 4e,f and 6). For in-depth 
discussions of other types of brain vascular malformations, we refer 
readers to review articles on cerebral cavernous malformations274–276, 
vein of Galen malformations277 and dural arteriovenous fistulas278.

Brain AVMs
High-pressure arterial blood from feeding arteries shunts directly 
into the low-pressure outflow veins, rendering brain AVMs prone to 
rupture273. Regarding their potential developmental origin, brain 
AVMs so far not been detected in utero (via either ultrasound or MRI 
techniques). As the same detection methods are capable of detect-
ing similarly sized vein of Galen vascular malformations in utero279, 
brain AVMs might not develop during embryonic or fetal stages of 
development. Moreover, the existence of more than ten case reports 
of de novo formation of brain AVMs in children (for example, they are 
not present on initial postnatal imaging after trauma but are present 
on subsequent postnatal imaging280) suggests a postnatal rather than 
a fetal or embryonic origin.

During normal vascular (brain) development, arteries and veins 
follow a parallel and countercurrent course without direct communi-
cation273. They are separated by capillary networks in the respective 
tissues, and premature arteriovenous connections are prevented by 
specific developmentally active molecular control systems (involving, 
for example, COUP transcription factor 2, NRP2, VEGFR3–FLT4 and 
EphB4 (refs. 273,281,282)). CNS and peripheral AVMs are thought to occur 
as a consequence of a failure in these control systems273. Whereas the 

molecular basis of this aberrant arteriovenous separation leading to 
AVM formation is unclear, genetic AVM syndromes have provided 
insight into some crucial signalling pathways that govern arteriovenous 
patterning273,283–285.

Hereditary brain and peripheral AVMs
Hereditary haemorrhagic telangiectasia. Hereditary haemorrhagic 
telangiectasia (HHT), or Osler–Weber–Rendu syndrome, is an auto-
somal dominant disorder characterized by germ line mutations in 
genes encoding components of the TGFβ signalling pathway27,273,286. 
As TGFβ is required in embryonic and postnatal development for the 
establishment and remodelling of the INVP via molecular regulation 
of EC proliferation, migration and differentiation as well as of pericyte 
and vSMC recruitment to newly formed blood vessels, it can be con-
sidered an important developmentally active signalling cascade that 
is reactivated in AVMs14,27,124 (Supplementary Table 2).

Mutations in ENG, encoding a TGFβ co-receptor that potentiates 
TGFβ signalling27,50, cause HHT type 1 (refs. 287,288) (Fig. 6j). Eng−/− mice 
die at E11.5 owing to defective (both CNS and non-CNS) vascular devel-
opment, caused by a lack of functional vSMCs and arrested vascular 
remodelling130. Thus, ENG is required for both CNS and peripheral 
vasculogenesis and angiogenesis289. Mutations in ALK1, encoding a 
type 1 TGFβ receptor that stimulates kinase activity290, cause HHT 
type 2 (ref. 288) (Fig. 6j). Alk1−/− mice die at E11.5 owing to comparable 
non-CNS-specific vascular defects such as AVMs in the intra-embryonic 
aortic endothelium, decreased vSMC coverage and disrupted arterial 
identity129,291. Mutations in SMAD4, encoding a downstream effector of 
TGFβ signalling290, lead to the combined syndrome of HHT and juvenile 
polyposis292 (Fig. 6j).

In addition, BMP9 and BMP10, which are important for vascular 
brain and retinal development293 and vessel normalization in breast 
cancer294, bind ALK1 with high affinity and induce downstream SMAD 
signalling, and their genes are mutated in a vascular anomaly syn-
drome that has phenotypic overlap with HHT295–297 (Fig. 6j). Increasing 
evidence shows that the BMP9–TGFBR–ENG–ALK1 signalling axis is a 
developmental (and non-CNS-specific) angiogenic pathway crucially 
involved in the formation of hereditary AVM syndromes298 (Fig. 6j). 
Whereas ENG and ALK1 are involved in sprouting angiogenesis dur-
ing development in a non-CNS-specific manner299, BMP9 and BMP10 
are critical for postnatal retinal vascular remodelling and embryonic 
vascular development inside and outside the CNS293,300.

Differences between mouse models of brain AVMs in adult mice 
versus developing mice might be due to the dynamic vessel remodelling 

Fig. 6 | Molecular mechanisms regulating the vasculature during initiation 
and progression of brain AVMs. Figure illustrating the hypothesis stating that 
the timing of mutation influences the size and location of the arteriovenous 
malformation (AVM). a,b, Cross section of the human brain in the coronal plane 
illustrating that mutations occurring in progenitor endothelial cells (ECs) at an 
early developmental time point will ‘trace’ the future developmental territory 
of their daughter cells, resulting in a large lesion spreading along a radial axis 
from the pial cortical surface to the ventricles. c,d, Anterior–posterior (c) 
and lateral (d) digital subtraction angiography of the right intracarotid artery 
showing a large AVM. e,f, Cross section of the human brain in the coronal plane 
illustrating that mutations at later developmental time point result in smaller 
lesions restricted to a local vascular territory. Note that these smaller AVMs 
are located around the pial, sulcal and cortical areas or alternatively in the 
ventricular, ependymal and subependymal zones (that is, choroidal AVMs) but 

do not occur isolated midway in the white matter without reaching either the 
cortical surface or the ventricular surface. g,h, Anterior–posterior and lateral 
digital subtraction angiography of the right intracarotid artery showing a smaller 
AVM. i, AVM extension as result of early, intermediate and late time points of 
mutation. j,k, Various molecular pathways have been implicated in AVM initiation 
and progression. The mutations shown belong to either hereditary or germ line 
mutations (part j) or somatic mutations in genes in the endothelial tip and stalk 
cells (part k). The proteins encoded by mutated genes are indicated with a flash 
symbol. Additional molecules and ligand–receptor pairs involved in regulating 
the vasculature during initiation and progression of brain AVMs can be found in 
Supplementary Table 2. BMP9, bone morphogenetic protein 9; EMT, endothelial-
to-mesenchymal transition; GPCR, G protein-coupled receptor; INVP, intraneural 
vascular plexus; SARS, seryl-tRNA synthetase 1; SC, stalk cell; TC, tip cell. Images 
in parts c,d,g,h courtesy of P. Nicholson.
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and highly angiogenic character of the vascular bed during develop-
ment versus the relatively stable and quiescent nature of the vasculature 
at the adult stage. Accordingly, in adult mice, regional or tissue-specific 
CKO of Eng or Alk1 produced AVMs in the lung, brain and gastrointes-
tinal tract but only if angiogenesis was simultaneously stimulated by 
VEGF301–303. This ‘second hit’ theory304 postulates that a genetic predis-
position (the first hit) in combination with an angiogenic trigger (for 
example, a repetitive injury; the second hit) leads to the reactivation 
of several developmental angiogenic pathways (for example, the TGFβ  
pathway)303. As HHT-related mutations involve loss of function in  
TGFβ pathway-linked genes in ECs but AVMs occur in only certain organs 
affected by these mutations, it may be that TGFβ haploinsufficiency is 
not sufficient to initiate a brain AVM in adulthood and requires another 
somatic mutation (a ‘second hit’) affecting the TGFβ pathway.

Accordingly, whereas in the adult mouse, with a stable or quies-
cent brain vasculature, this second hit is required to initiate brain AVM 
formation, in the developing (embryonic or postnatal) mouse, with a 
dynamic or active brain vasculature, brain AVM formation can occur 
without a second hit303. In about 15% of patients with clinical features 
of HHT, no mutations in genes encoding components of the TGFβ 
pathway are found and the origin of the malformation is unknown305.

Capillary malformation–AVM syndrome. Another hereditary genetic 
syndrome is capillary malformation–AVM syndrome type 1, caused by 
heterozygous germ line mutations in RASA1, encoding the cytoplasmic 
protein RasGAP, a negative regulator of the RAS–MAPK signalling 
pathway crucial for growth regulation and EC and PVC proliferation 
in various tissues306–309. RasGAP inactivates RAS by hydrolysing GTP to 
GDP, thereby negatively regulating the RAS–MAPK signal transduction 
pathway, with a loss of RasGAP activity resulting in the excessive acti-
vation of RAS and downstream signalling pathways295,307,309,310 (Fig. 6j). 
Mechanistically, RasGAP acts downstream of the endothelial receptor 

EphB4, a marker of venous endothelial identity and a regulator of 
developmental and brain tumour angiogenesis, by promoting venous 
differentiation311. Accordingly, RASA1 mutations result in dysregulation 
of arteriovenous patterning (with a shift from venous to arterial dif-
ferentiation) and formation of AVMs inside and outside the CNS310,312. 
Germ line mutations in EPHB4 have been identified in CM–AVMs that 
are negative for RASA1 mutations and are therefore categorized as 
capillary malformation–AVM type 2 (ref. 313).

Sporadic brain and peripheral AVMs
Somatic mutations are increasingly being reported in studies investigat-
ing the genetic basis of sporadic (brain) vascular malformations314–317. 
Many of these mutations are common non-coding single-nucleotide 
polymorphisms. For example, non-CNS-specific venous malformations 
are associated with somatic mutations in PIK3CA and TIE2 (refs. 315,316), 
lymphatic malformations are associated with mutations in PIK3CA318, 
Sturge–Weber syndrome, capillary malformations and congenital 
haemangiomas are linked to GNAQ mutations319,320, verrucous venous 
malformations are linked to MAP3K3 mutations321, extracranial AVMs 
are associated with MAP2K1 mutations322 and brain AVMs were recently 
associated with activating somatic mutations in KRAS162,323–325. Other 
groups studying brain AVMs have reported single-nucleotide poly-
morphisms located in ALK1 (refs. 326,327), ENG328, IL1B329, ITGB8 (ref. 330), 
ANGPTL4 (ref. 331), GPR124 (ref. 332), VEGFA333, MMP3 (ref. 334) and MMP9 
(ref. 317) (Fig. 6k; see Supplementary Table 2 for additional candidate 
genes for brain AVM initiation and progression).

Sturge–Weber syndrome is caused by non-hereditary somatic 
mutations in the protein GNAQ, characterized by port wine stains 
on the face and leptomeningeal angiomatosis with brain vascular 
malformations, indicating an underlying general/non-CNS-specific 
molecular mechanism319. Mutations in GNAQ decrease GTPase activity 
and increase signalling of associated G proteins, leading to increased 

Glossary

Blood–brain barrier
(BBB). A physiological barrier formed 
by the brain endothelium to regulate 
trafficking of most compounds from  
the blood to the brain.

Brain arteriovenous 
malformations
High-flow low-resistance vascular 
malformations characterized by a loss 
of vascular organization, a network of 
tortuous, dysplastic vascular channels 
(termed ‘nidus’) in between one or 
multiple feeding arteries and one  
or multiple draining veins in lieu of a 
normal intervening capillary network.

Brain vascular malformations
Malformations characterized by 
abnormal blood vessel growth and 
altered maturation of the vessel 
wall, including brain arteriovenous 

malformations, cerebral cavernous 
malformations, developmental venous 
anomalies, dural and pial arteriovenous 
fistulas, capillary telangiectasias,  
vein of Galen malformations and 
carotid-cavernous fistulae.

Glial brain tumours
Primary brain tumours originating  
from neuroglial stem or progenitor  
cells, accounting for almost 30%  
of all primary brain tumours and  
for 80% of all malignant primary  
brain tumours.

Glioma (or glioblastoma)  
stem cell
(GSC). A subpopulation of tumour 
cells with stem cell-like properties 
that contribute to tumour initiation, 
progression and resistance to 
anticancer therapies.

Neurovascular link
(NVL). The similar appearance and 
coordinated guidance of the cellular 
and subcellular elements of both 
the vascular system and the nervous 
system.

Neurovascular unit
(NVU). The functional unit of the 
complex crosstalk between endothelial 
cells and perivascular cells in the 
perivascular niche.

Perivascular niche
(PVN). The microenvironment around 
a blood vessel; it includes endothelial 
cells and perivascular cells such as 
astrocytes, pericytes, neurons, stem 
cells, microglia and vascular smooth 
muscle cells.

Reactivated developmental 
signalling pathways
Molecular signalling cues and pathways 
that are active during embryonic and/or 
postnatal vascular brain development, 
are silenced in the adult healthy brain 
vasculature and might be reactivated 
in vascular-dependent CNS diseases, 
including brain tumours and brain 
vascular malformations.

Single-nucleotide 
polymorphisms
A somatic mutation characterized by 
a single nucleotide change in the DNA 
sequence that can modulate biological 
mechanisms. Somatic mutations do 
not occur in the germ line but occur in a 
postzygotic progenitor or differentiated 
cell and are well described in both CNS 
and non-CNS cancer development.
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MAPK activity319,335 (Fig. 6k and Supplementary Table 2). It remains to 
be investigated whether genetic risk factors in the context of hereditary 
AVM syndromes render individuals more susceptible to developing 
sporadic AVMs.

A key future step in the improvement of the clinical management 
of brain AVMs would be the development of novel anti-angiogenic 
therapies336,337, for instance targeting the pathways downstream of 
KRAS mutations with MEK inhibitors (which are already approved for 
the treatment of brain tumours338,339) or other targets emanating from 
single-cell studies75,163,265. For explorations of the future clinical and 
pharmacological treatment of brain AVMs, we refer readers to recent 
reviews on this topic336,337.

Developmental pathways in brain AVMs
General molecular mechanisms reactivated in brain AVMs. Interest-
ingly, most of the mutations associated with vascular malformations 
characterized so far are linked to the RAS–RAF–MAPK and PI3K–PTEN–
AKT–mTOR pathways, both of which have pivotal roles in physiological 
(CNS and non-CNS) vascular development (Fig. 6j,k and Supplementary 
Table 2). In particular, high-flow AVMs are associated with the latter, as 
most brain and spinal AVMs have mutations in KRAS162,323–325, whereas 
low-flow vascular malformations are often associated with activating 
mutations affecting the PI3K pathway314,316. These observations strongly 
suggest that the RAS–RAF–MAPK pathway is a central signalling node for 
the development of AVMs in the brain and spinal cord as well as in non-
CNS organs. It remains, however, unclear whether and how the BMP9–
TGFβ–SMAD pathway involved in HHT-related AVMs (but also somatic 
mutations, for example, found in ITGB8) and genes affecting the RAS–
RAF–MAPK pathway overlap or interact during normal brain vascular  
development and (CNS and non-CNS) AVM initiation and progression.

Currently, the downstream effector signalling pathways that are 
required for AVM development are not well characterized in humans 
but they are hypothesized to be crucial regulators of arteriovenous 
specification and zonation273. Several AVM mouse models have eluci-
dated underlying molecular mechanisms driving brain AVM initiation 
and progression340. In particular, manipulation of the developmentally 
active DLL4–Jagged–Notch pathway resulted in the development 
of (CNS and non-CNS) vascular malformations in mice340. Whereas 
genetic ablation of both Notch1 and Notch4 resulted in embryonic 
lethality, haploinsufficiency of Dll4 induced AVM-like brain (and non-
CNS, including dorsal aorta and cardinal veins) lesions at the embryonic 
stage that were characterized by the lack of a capillary bed between 
feeding arteries and draining veins341.

At the postnatal stage, endothelial-specific inducible postnatal 
expression of constitutively active NOTCH4 induced brain AVMs in 
mice342, which resulted from the increase in length and calibre, and not 
the absence, of brain capillaries343. Strikingly, these AVMs were revers-
ible upon normalization of NOTCH4 expression342. vSMCs and ECs in 
human brain AVMs exhibited upregulated DLL4–Jagged–NOTCH1 
signalling compared with healthy cerebral vessels344, indicating that 
NOTCH1 signalling contributes to the development of human brain 
AVMs. In arteriovenous differentiation of ECs during development, 
NOTCH1 and NOTCH4 are major determinants of arterial fate choice, 
associated with expression of the arterial markers ephrin B2, CXCR4 
and connexin 40 (ref. 345). Lack of Notch signalling results in a default 
phenotype characterized by venous markers such as COUP transcrip-
tion factor 2, NRP2 and VEGFR3 and the receptor EphB4 (refs. 281,282). 
Furthermore, activating mutations in RAS–RAF–MAPK pathway genes 
would result in constitutively active and VEGF-independent activation 

of the Notch pathway. Indeed, expression of mutant active KRAS in ECs 
results in overexpression of the Notch pathway and angiogenic cas-
cades downstream of VEGF162 along with endothelial-to-mesenchymal  
transition. At a cellular level, mutant KRAS induced a migratory  
phenotype of brain (and peripheral) ECs, loss of tight junctions and 
disorganization of cytoskeletal actin with intact proliferation162.

A better understanding of the signalling downstream of the RAS–
RAF–MAPK and PI3K–PTEN–AKT–mTOR pathways during normal 
vascular development in CNS and non-CNS tissues and in AVMs may help 
to develop a more comprehensive picture of arteriovenous morpho-
genesis. A recent study addressed endothelial aberrancy in brain AVMs 
at the single-cell level, linking the transcriptional state of ECs isolated 
from human brain AVMs to a dysregulation of arteriovenous zonation, 
evidenced by a strong enrichment of arterial and venous transcriptional 
identity but not of capillary or venule transcriptional identity75. That 
study further found an upregulation of PLVAP (a marker of fenestrated 
endothelium75) and the pro-angiogenic protein PGF in the AVM nidus75.

Along those lines, in our own scRNA-seq dataset, we found upregu-
lated PLVAP predominantly in angiogenic capillary ECs of brain AVMs 
as well as reactivated fetal signalling pathways in human AVMs with 
a general (non-CNS-specific) mode of action, involving the integrin, 
TGFβ, angiopoietin–TIE, epithelial-to-mesenchymal transition-related, 
inflammatory-related and IL4-mediated signalling cascades163.

CNS-specific molecular mechanisms in brain AVMs. Most of the 
molecules involved in vascular brain development that are reactivated 
in brain AVMs act via a general (non-CNS-specific) mechanism of action 
(Fig. 6j,k and Supplementary Table 2). Interestingly, somatic mutations 
in the gene encoding the CNS-specific angiogenesis regulator GPR124 
were identified in human brain AVMs. This finding, however, could not 
be substantiated in a replication cohort or meta-analysis of individuals 
with brain AVMs332.

Molecular mechanisms in brain AVM vasculature at the single-
cell level. scRNA-seq allows the study of the biology of brain vascular 
malformations (including brain AVMs) at the single-cell level75,346,347, 
yielding insights into EC and PVC heterogeneity, their interactions 
in the blood vessel microenvironment, the intermediate cell types 
that arise during blood and lymphatic vessel development, and cell  
type-specific responses to disease347.

Recently, Winkler and colleagues presented a human cerebro-
vascular cell atlas that compared isolated cells from the adult human 
brain with cells isolated from resected human brain AVM tissue75. They 
uncovered a previously unknown heterogeneity in PVCs, revealed 
transcriptional variation within SMCs and perivascular fibroblasts, 
and identified SMC-like cells known as fibromyocytes75. In addition to 
a loss of physiological arteriovenous zonation, which is characteristic 
of brain AVM pathology, they reported a distinct transcriptomic state 
in a subset or cluster of ECs relating to heightened angiogenic potential 
and immunogenicity, indicating that this subset of ECs may originate 
from the AVM nidus75.

In our molecular single-cell atlas, we found an increase in the num-
ber of venous EC clusters in brain AVMs and cavernomas compared with 
adult control brain tissue163, suggesting an involvement of venous ECs 
in the pathophysiology of brain vascular malformations, as reported 
for cavernomas in mice346. Similarly to the situation observed in glial 
brain tumours, we identified alteration of arteriovenous differentiation 
and CNS-specific properties, upregulation of major histocompatibility 
complex class II molecules and reactivated developmental pathways 
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in brain AVMs (although these were less numerous than those in brain 
tumours) belonging to the aforementioned five major groups of path-
ways163, indicating some common mechanisms across brain tumours 
and brain vascular malformations163.

Although shared signalling pathways seem to regulate vascular 
growth in brain pathologies (including brain tumours and brain vascular 
malformations) and in the fetal brain, it remains to be clarified whether 
the pathways observed in brain pathologies are reactivated develop-
mental pathways or rather reflect the persistence (for example, the 
presence since development) of a less differentiated cell type (or even a 
combination of these two). Moreover, the functional relevance of these 
developmental pathways in vascular-dependent brain pathologies is 
not clear, and further studies will be needed to elucidate their transla-
tional potential in terms of developing therapies targeting the vascu-
lature in brain tumours and brain vascular malformations. Single-cell 
atlases such as those discussed above will inform such endeavours347.

A developmental look at brain AVMs
On the basis of neuroradiological and surgical observations, most brain 
AVMs occupy a defined segment of the brain’s vascular tree and do not 
grow after diagnosis273,348,349. It is currently thought that AVMs develop 
during early postnatal life, at highly active developmental stages, as 
mentioned earlier herein (Fig. 6a–i). Postnatal development of brain 
AVMs is supported by the lack of cases reported in utero (which indicates 
an embryonic AVM development). However, this does not exclude the 
possibility that somatic mutations and brain AVM initiation occur during 
embryonic development but remain undetectable until later stages of 
postnatal life. KRAS mutations seem restricted to the endothelium in 
brain AVMs, suggesting that somatic mutations occurring in progeni-
tor ECs will ‘trace’ the future developmental territory (for example, the 
vascular network field) of their daughter ECs. Accordingly, large brain 
AVMs would result from somatic mutations occurring early in develop-
ment (spanning larger vascular territories) (Fig. 6a–d), whereas small 
AVMs may reflect later mutations spanning a restricted vascular ter-
ritory (Fig. 6e–h). Strikingly, many brain AVMs spread preferentially 
along a radial axis extending from the ventricles to the pial cortical 
surface. When small, they can be constrained in and around the pial, 
sulcal and cortical areas or alternatively in the ventricular, ependymal 
and subependymal zones (for example, choroidal AVMs), but they 
do not occur isolated midway in the white matter without reaching 
either the cortical surface or the ventricular surface (Fig. 6a–i). These 
observations prompt a comparison with the radial ventriculocorti-
cal axis of the radial glia and cortical neuron migration as well as of 
sprouting angiogenesis during embryonic and postnatal brain vascular 
development and maturation (Fig. 3). Could somatic mutations in EC 
progenitors actually be genetic tracers of the migrating and dividing 
EC progenitors recruited in sprouting angiogenesis and could brain 
AVMs, consequently, be an aberrant, dysmorphic and oversized capil-
lary network occupying a developmentally defined vascular zone? This 
tempting but speculative hypothesis may clarify the temporo-spatial 
organization of sprouting angiogenesis in the developing CNS vascular 
network and developmental morphogenesis of brain AVMs.

Perspectives and conclusion
Several outstanding questions exist regarding the cellular and molecu-
lar mechanisms and the EC and PVC heterogeneity that underlie the 
brain vasculature during brain development, in the adult healthy brain 
and in vascular-dependent CNS pathologies and the shared angiogenic 
pathways between brain development and pathologies. First, how do 

CNS-specific and general cues interact molecularly to govern CNS 
angiogenesis during embryological and postnatal brain development 
and in vascular-dependent CNS pathologies? The CNS-specific cues 
that are known to regulate developmental angiogenesis show strik-
ing region specificity (for example, between the hindbrain and the 
forebrain)133,135,136,148. Moreover, brain region-specific intrinsic transcrip-
tion factors were shown to govern embryonic brain angiogenesis in a 
spatially regulated manner6. These are interesting observations that 
lead to the question of whether region-specific vascular growth might 
be linked to region-specific brain function during development and in 
disease. Furthermore, both glial brain tumours and brain AVMs are most 
often confined to specific brain regions, but whether CNS-specific and 
region-specific regulators6 of angiogenesis participate in the molecular 
mechanisms underlying these observations, suggestive of another link 
between the developmental brain vasculature and the pathological 
brain vasculature, remains unknown.

All currently known molecules and signalling pathways underlying 
hereditary AVM syndromes and sporadic brain AVMs characterized 
by somatic mutations are non-CNS-specific regulators of angiogen-
esis162,287,288,323,325,328 (although the CNS-specific signalling receptor 
GPR124 is expressed in brain AVM ECs332, a functional role for it in brain 
AVM has not been established to date). The lack of CNS specificity in 
this signalling is in line with the fact that multiple organs are affected 
by AVMs in these syndromes. Regarding sporadic AVMs, KRAS and 
BRAF mutations in ECs cause brain and spinal cord AVMs (peripheral 
AVMs were not reported)162,323,325, whereas RAS and MAPK variants cause 
sporadic brain AVMs and skin vascular malformations350, indicating 
specificity for neuroectodermal-derived tissues. Given the highly 
specialized vasculature of the CNS9 and the observed alteration of the  
CNS-specific gene profile in pathological brain ECs (for example, patho-
logical brain ECs partially acquiring a gene profile that is characteristic 
of peripheral or non-CNS ECs)163, we think that the role of CNS-specific  
and general regulators of angiogenesis in brain tumours, brain AVMs and  
other CNS pathologies warrants further investigation. For instance, 
conducting single-cell multi-omics studies of the vasculature in differ-
ent compartments of the developing brain as well as of brain region-
confined pathologies (for example, brain tumours in defined gyri, for 
instance superior temporal lobe glioblastoma351) will be an important 
step forward to elucidate these very exciting concepts.

The second question is how different or comparable are the 
mechanisms governing angiogenesis during brain development, in 
brain tumours and in brain AVMs, and how can this be addressed by 
single-cell analyses in the multi-omics era? Currently, it remains incom-
pletely understood to what extent developmental signalling pathways 
reactivated in pathologies differ from those active during (brain) devel-
opment. Regulatory effects of neurodevelopmental programmes in 
glioblastoma cells267 as well as oncofetal reprogramming of ECs in 
hepatocellular carcinoma have been reported in single-cell studies352, 
but the relevance of fetal pathways in the pathological brain vasculature  
has not been described so far. Therefore, direct comparison between ECs  
derived from developing (fetal or embryonic or postnatal) brains, 
ECs derived from healthy adult control brains and ECs derived from 
vascular-dependent CNS pathologies at single-cell resolution is of 
crucial importance.

Recently, the power of single-cell analyses enabled us to unravel 
key signalling pathways in brain ECs active during development that 
were reactivated in brain tumour and brain vascular malformation 
ECs163. Our finding that more than half of all regulated pathways in 
pathological ECs are of developmental origin confirm a paradigm 
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in which signalling axes driving vascular growth during fetal human 
brain development are silenced in the adult human control brain and 
(re)activated across various human brain pathologies, including vari-
ous brain tumours and brain vascular malformations163. The crucial 
importance of developmental pathways in vascular-dependent brain 
pathologies and the suggested functional plasticity of ECs353,354 across 
developmental and disease states will need to be functionally validated 
using emerging novel techniques such as single-cell genomics355, spatial 
transcriptomics (for example, Slide-seq356 or other spatial transcrip-
tomics techniques357) and single-cell proteomics (for example, imaging 
mass cytometry358, single-cell cellular indexing of transcriptomes and 
epitopes by sequencing (CITE-seq)359, and single-cell western blot-
ting360). These techniques provide exciting novel avenues allowing 
direct measurement of RNA and protein expression in isolated human 
brain ECs (and PVCs of the NVU), thereby providing insights into the 
molecular and genetic basis while retaining spatial information of both 
developmental and pathological CNS angiogenesis using an unbiased 
approach. These cellular and molecular insights at single-cell precision 
leading to the identification of novel molecular angiogenic signalling 
cascades then need to be studied using in vivo models of angiogenesis 
for both CNS (brain, spinal cord and retina) and non-CNS tissues/organs 
using xenograft models and other strategies361–363.

The third crucial question for future studies is can single-cell multi-
omics techniques be used to further clarify the role of inflammatory or 
immune-related processes in pathological angiogenesis beyond what is 
currently known (for example, inflammation-induced pro-angiogenic 
effects on the vasculature in brain tumours and brain vascular mal-
formations364–366)? Notably, recent single-cell studies have further 
emphasized additional roles of inflammatory processes in pathologi-
cal ECs across various brain diseases, including brain AVMs75,163, brain 
tumours163 and neurodegenerative diseases367–369. Interestingly, patho-
logical ECs show upregulation of inflammatory or immune-related 
pathways and of major histocompatibility complex class II molecules in 
brain tumours (including glial brain tumours) and brain vascular malfor-
mations (including brain AVMs)75,163 as well as elevated levels of immune 
cell–EC interactions in brain tumours (including glial brain tumours) 
and brain vascular malformations (including brain AVMs)163 as well as 
in Alzheimer disease and Huntington disease367,368. These very interest-
ing observations warrant further investigation at both the single-cell 
level and the functional level, with potentially crucial implications  
for both basic biological understanding and translational settings.

The fourth question is how important are NVL-related develop-
mental pathways for pathological brain angiogenesis, and are they of 
a CNS-specific nature or a general nature? We anticipate that address-
ing the role of NVL molecules in ECs and PVCs within the developing 
and the pathological CNS (for example, through leveraging single-cell 
multi-omics techniques163,370–372) will provide important insights that 
have to be characterized at multiple organizational levels.

At the molecular level, NVL-related pathways are of crucial impor-
tance during vascular brain development, and many are reactivated 
in vascular brain pathologies, as evidenced by our recent single-cell 
atlas9,12,14,79,373. As the cellular and molecular interaction and bilateral 
crosstalk between neuronal and vascular tissue are especially tight 
in the CNS9,14,374, we reason that NVL molecules (being of a general or 
a CNS-specific nature) are of crucial importance in the healthy and 
the diseased brain and need to be studied in more detail in the future.

Regarding the layered organization of the human brain375, neuro-
vascular interactions might be fundamentally different in distinct 
CNS compartments, with predominantly neuron-to-EC interactions 

in CNS grey matter and mainly oligodendrocyte-to-EC interactions in  
the CNS white matter, both involving classic and non-classic axon 
guidance cues9.

Members of the classic axonal guidance and NVL molecule fami-
lies such as netrins, semaphorins, ephrins and Slit proteins, and their 
receptors, as well as non-classic axon guidance and NVL molecules 
such as WNT proteins, SHH and BMPs are implicated in arteriovenous 
differentiation14,15,163,201,374,376. NVL molecules interact with the Notch 
pathway9, and interactions between NVL molecules and Notch are 
important in arteriovenous differentiation9,14,201. Most notably, NOTCH1 
and NOTCH4 are major drivers of arterial fate, associated with expres-
sion of the arterial markers ephrin B2, CXCR4 and connexin 40 (ref. 345). 
Lack of Notch signalling results in upregulation of venous markers such 
as COUP transcription factor 2, NRP2, VEGFR3 and the receptor EphB4 
(refs. 75,281,282). It remains to be explored how NVL molecules contribute 
to these phenomena, and analyses of NVL molecules and pathways in 
distinct arteriovenous compartments at the single-cell level75,163,367,368 
comprise a promising approach.

The final question is as follows: given the current focus on sprout-
ing angiogenesis, how important are other modes of vessel formation 
during brain development, in brain tumours and in brain AVMs, how 
do they differ between distinct vascular beds inside and outside the 
CNS and how are they regulated at the molecular level? Modes of ves-
sel formation other than sprouting angiogenesis probably have roles 
in both brain development and vascular-dependent brain patholo-
gies24. Vasculogenesis is important during PNVP formation, whereas 
the INVP is predominantly vascularized by sprouting angiogenesis27, 
but the involvement of other modes of vessel formation during these 
developmental stages remains to be determined. In tumours located 
inside and outside the CNS, GSC transdifferentiation into tumour 
ECs20,21,215 or tumour pericytes22 directly involves PVCs of the NVU. 
Similarly, vascular co-option and mimicry in liver cancer exemplifies 
PVC–EC interactions outside the CNS173. The molecular mechanisms 
underlying vascular co-option, vascular mimicry and vascular intus-
susception remain largely unexplored. A more thorough investiga-
tion of the influence of PVCs and cellular interactions within the NVU 
in the setting of these additional modes of neovascularization using 
single-cell sequencing (for example, scRNA-seq377 and CITE-seq359) 
and imaging (for example, fluorescence light sheet microscopy and 
high-throughput microscopy378) techniques is key for future progress 
in developmental and pathological settings.

In conclusion, it has become increasingly evident that the remark-
able cellular heterogeneity and molecular heterogeneity of the human 
brain vasculature within and between individuals across development  
and disease as well as its specific characteristics, such as CNS specific-
ity and arteriovenous zonation, require thorough characterization at  
the single-cell level. Furthermore, a clearer mechanistic understanding of  
the silencing of developmentally active angiogenic processes in the 
healthy adult brain and subsequent reactivation in disease at the single-
cell level will be crucial for the development of future therapies aimed 
at targeting vascular pathology. We anticipate that the constantly evolv-
ing multi-omics approaches (including scDNA-seq, single-cell assay 
for transposase-accessible chromatin with sequencing (scATAC-seq), 
imaging cytometry by time of flight and spatial transcriptomics) will 
enable various long-standing questions in the field of neurovascular 
biology to be answered and will continue to increase our knowledge of 
the human brain vasculature in development, adulthood and disease.
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