Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developmental mechanisms underlying the evolution of human cortical circuits

Abstract

The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cortical circuit evolution.
Fig. 2: Species-specific features of human cortical development.
Fig. 3: Genetic modifiers of human brain evolution.
Fig. 4: Example of a human-specific modifier of cortical development and function.

Similar content being viewed by others

References

  1. Wood, B. & E, K. B. Hominin taxic diversity: fact or fantasy? Am. J. Phys. Anthropol. 159, S37–S78 (2016).

    Article  PubMed  Google Scholar 

  2. Changeux, J. P., Goulas, A. & Hilgetag, C. C. A connectomic hypothesis for the hominization of the brain. Cereb. Cortex 31, 2425–2449 (2021).

    Article  PubMed  Google Scholar 

  3. Defelipe, J. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front. Neuroanat. 5, 29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lichtman, J. W. & Denk, W. The big and the small: challenges of imaging the brain’s circuits. Science 334, 618–623 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Geschwind, D. H. & Rakic, P. Cortical evolution: judge the brain by its cover. Neuron 80, 633–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl Acad. Sci. USA 109, 10661–10668 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241 e3226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuste, R. et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23, 1456–1468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vitali, I. & Jabaudon, D. Synaptic biology of barrel cortex circuit assembly. Semin. Cell Dev. Biol. 35, 156–164 (2014).

    Article  PubMed  Google Scholar 

  11. Balaram, P., Young, N. A. & Kaas, J. H. Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans. Eye Brain 6, 5–18 (2014).

    Article  PubMed Central  Google Scholar 

  12. DeFelipe, J., Alonso-Nanclares, L. & Arellano, J. I. Microstructure of the neocortex: comparative aspects. J. Neurocytol. 31, 299–316 (2002).

    Article  PubMed  Google Scholar 

  13. Hutsler, J. J., Lee, D. G. & Porter, K. K. Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species. Brain Res. 1052, 71–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Berg, J. et al. Human neocortical expansion involves glutamatergic neuron diversification. Nature 598, 151–158 (2021). A multimodal analysis reveals increased diversity of human upper layer cortical neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brain Initiative Cell Census Network. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article  Google Scholar 

  16. Goulas, A., Zilles, K. & Hilgetag, C. C. Cortical gradients and laminar projections in mammals. Trends Neurosci. 41, 775–788 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khrameeva, E. et al. Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Res. 30, 776–789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hodge, R. D. et al. Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons. Nat. Commun. 11, 1172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nano, P. R., Nguyen, C. V., Mil, J. & Bhaduri, A. Cortical cartography: mapping arealization using single-cell omics technology. Front. Neural Circuits 15, 788560 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Northcutt, R. G. & Kaas, J. H. The emergence and evolution of mammalian neocortex. Trends Neurosci. 18, 373–379 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Krubitzer, L. The magnificent compromise: cortical field evolution in mammals. Neuron 56, 201–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Pulvermuller, F. & Fadiga, L. Active perception: sensorimotor circuits as a cortical basis for language. Nat. Rev. Neurosci. 11, 351–360 (2010).

    Article  PubMed  Google Scholar 

  26. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Donahue, C. J., Glasser, M. F., Preuss, T. M., Rilling, J. K. & Van Essen, D. C. Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. Proc. Natl Acad. Sci. USA 115, E5183–E5192 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smaers, J. B., Gomez-Robles, A., Parks, A. N. & Sherwood, C. C. Exceptional evolutionary expansion of prefrontal cortex in great apes and humans. Curr. Biol. 27, 714–720 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Gabi, M. et al. No relative expansion of the number of prefrontal neurons in primate and human evolution. Proc. Natl Acad. Sci. USA 113, 9617–9622 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shibata, M. et al. Regulation of prefrontal patterning and connectivity by retinoic acid. Nature 598, 483–488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17, 648–665 (2013).

    Article  PubMed  Google Scholar 

  32. Sydnor, V. J. et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, Y. et al. Interneuron origin and molecular diversity in the human fetal brain. Nat. Neurosci. 24, 1745–1756 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 586, 262–269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boldog, E. et al. Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nat. Neurosci. 21, 1185–1195 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Falcone, C. et al. Cortical interlaminar astrocytes across the therian mammal radiation. J. Comp. Neurol. 527, 1654–1674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Falcone, C. et al. Redefining varicose projection astrocytes in primates. Glia 70, 145–154 (2022).

    Article  PubMed  Google Scholar 

  40. Geirsdottir, L. et al. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179, 1609–1622.e1616 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Sousa, A. M. M. et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science 358, 1027–1032 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Allen, D. E. et al. Fate mapping of neural stem cell niches reveals distinct origins of human cortical astrocytes. Science 376, 1441–1446 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Marin-Padilla, M. Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J. Comp. Neurol. 321, 223–240 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Bianchi, S. et al. Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans. Cereb. Cortex 23, 2429–2436 (2013).

    Article  PubMed  Google Scholar 

  46. Deitcher, Y. et al. Comprehensive morpho-electrotonic analysis shows 2 distinct classes of L2 and L3 pyramidal neurons in human temporal cortex. Cereb. Cortex 27, 5398–5414 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Elston, G. N., Benavides-Piccione, R. & Defelipe, J. The pyramidal cell in cognition: a comparative study in human and monkey. J. Neurosci. 21, RC163 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohan, H. et al. Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human neocortex. Cereb. Cortex 25, 4839–4853 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Benavides-Piccione, R., Ballesteros-Yanez, I., DeFelipe, J. & Yuste, R. Cortical area and species differences in dendritic spine morphology. J. Neurocytol. 31, 337–346 (2002).

    Article  PubMed  Google Scholar 

  50. Sherwood, C. C. et al. Invariant synapse density and neuronal connectivity scaling in primate neocortical evolution. Cereb. Cortex 30, 5604–5615 (2020). Comparative analysis of the cortex of 25 primate species reveals that the highest number of synapses per neuron are found in the human cortex.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Iascone, D. M. et al. Whole-neuron synaptic mapping reveals spatially precise excitatory/inhibitory balance limiting dendritic and somatic spiking. Neuron 106, 566–578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Beaulieu-Laroche, L. et al. Allometric rules for mammalian cortical layer 5 neuron biophysics. Nature 600, 274–278 (2021). Comparative profiling across 10 mammalian species reveals that human cortical neurons are outliers for several key parameters of intrinsic functional properties.

    Article  CAS  PubMed  Google Scholar 

  53. Beaulieu-Laroche, L. et al. Enhanced dendritic compartmentalization in human cortical neurons. Cell 175, 643–651 e614 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gidon, A. et al. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 367, 83–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Kalmbach, B. E. et al. h-channels contribute to divergent intrinsic membrane properties of supragranular pyramidal neurons in human versus mouse cerebral cortex. Neuron 100, 1194–1208 e1195 (2018). Changes in h-channel expression might explain the divergent electrophyiological properties of human cortical layer 2/3 pyramidal neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwarz, N. et al. Long-term adult human brain slice cultures as a model system to study human CNS circuitry and disease. Elife 8, e48417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stuart, G., Spruston, N. & Hausser, M. (eds) Dendrites (3rd edn) (Oxford University Press, 2016).

  58. Kalmbach, B. E. et al. Signature morpho-electric, transcriptomic, and dendritic properties of human layer 5 neocortical pyramidal neurons. Neuron 109, 2914–2927 e2915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Francioni, V. & Harnett, M. T. Rethinking single neuron electrical compartmentalization: dendritic contributions to network computation in vivo. Neuroscience 489, 185–199 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Eyal, G. et al. Human cortical pyramidal neurons: from spines to spikes via models. Front. Cell Neurosci. 12, 181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Eyal, G. et al. Unique membrane properties and enhanced signal processing in human neocortical neurons. Elife 5, e16553 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Campagnola, L. et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 375, eabj5861 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Molnar, G. et al. Complex events initiated by individual spikes in the human cerebral cortex. PLoS Biol. 6, e222 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Molnar, G. et al. Human pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicles. Elife 5, e18167 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Szegedi, V. et al. Plasticity in single axon glutamatergic connection to GABAergic interneurons regulates complex events in the human neocortex. PLoS Biol. 14, e2000237 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Testa-Silva, G. et al. High bandwidth synaptic communication and frequency tracking in human neocortex. PLoS Biol. 12, e1002007 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Douglas, R. J. & Martin, K. A. A functional microcircuit for cat visual cortex. J. Physiol. 440, 735–769 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vendetti, M. S. & Bunge, S. A. Evolutionary and developmental changes in the lateral frontoparietal network: a little goes a long way for higher-level cognition. Neuron 84, 906–917 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Libe-Philippot, B. & Vanderhaeghen, P. Cellular and molecular mechanisms linking human cortical development and evolution. Annu. Rev. Genet. 55, 555–581 (2021).

    Article  PubMed  Google Scholar 

  71. Miller, D. J., Bhaduri, A., Sestan, N. & Kriegstein, A. Shared and derived features of cellular diversity in the human cerebral cortex. Curr. Opin. Neurobiol. 56, 117–124 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M. & Sestan, N. The cellular and molecular landscapes of the developing human central nervous system. Neuron 89, 248–268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Villalba, A., Gotz, M. & Borrell, V. The regulation of cortical neurogenesis. Curr. Top. Dev. Biol. 142, 1–66 (2021).

    Article  PubMed  Google Scholar 

  74. Benito-Kwiecinski, S. et al. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 184, 2084–2102 e2019 (2021). Comparison of great ape and human neural organoids reveals mechanisms of prolonged expansion of human neuroepithelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013). Human and mouse corticogenesis retains species-specific developmental timing in vitro and following xenotransplantation.

    Article  CAS  PubMed  Google Scholar 

  76. Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Otani, T., Marchetto, M. C., Gage, F. H., Simons, B. D. & Livesey, F. J. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18, 467–480 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743–756 e717 (2019). Comparative single-cell transcriptomic analysis of human and primate fetal brain and organoids reveals increased mTOR signalling in human outer radial glia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Polleux, F., Dehay, C., Moraillon, B. & Kennedy, H. Regulation of neuroblast cell-cycle kinetics plays a crucial role in the generation of unique features of neocortical areas. J. Neurosci. 17, 7763–7783 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dehay, C. & Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8, 438–450 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Iwata, R., Casimir, P. & Vanderhaeghen, P. Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science 369, 858–862 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Kriegstein, A., Noctor, S. & Martinez-Cerdeno, V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci. 7, 883–890 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Fietz, S. A. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 13, 690–699 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Hansen, D. V., Lui, J. H., Parker, P. R. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Reillo, I., de Juan Romero, C., Garcia-Cabezas, M. A. & Borrell, V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21, 1674–1694 (2011). Refs. 84–86 describe outer radial glial cells and their implications for increasing cortical size.

    Article  PubMed  Google Scholar 

  87. Dehay, C., Kennedy, H. & Kosik, K. S. The outer subventricular zone and primate-specific cortical complexification. Neuron 85, 683–694 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Smart, I. H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    Article  PubMed  Google Scholar 

  89. Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nowakowski, T. J., Pollen, A. A., Sandoval-Espinosa, C. & Kriegstein, A. R. Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron 91, 1219–1227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fang, W. Q. & Yuste, R. Overproduction of neurons is correlated with enhanced cortical ensembles and increased perceptual discrimination. Cell Rep. 21, 381–392 (2017). Pharmacologically increasing the production of layer 2/3 pyramidal neurons in the mouse leads to a significant improvement in visual circuit function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Boothe, R. G., Greenough, W. T., Lund, J. S. & Wrege, K. A quantitative investigation of spine and dendrite development of neurons in visual cortex (area 17) of Macaca nemestrina monkeys. J. Comp. Neurol. 186, 473–489 (1979).

    Article  CAS  PubMed  Google Scholar 

  93. Bourgeois, J. P. & Rakic, P. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J. Neurosci. 13, 2801–2820 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Huttenlocher, P. R. Synaptic density in human frontal cortex - developmental changes and effects of aging. Brain Res. 163, 195–205 (1979).

    Article  CAS  PubMed  Google Scholar 

  95. Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Mrzljak, L., Uylings, H. B., Van Eden, C. G. & Judas, M. Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Prog. Brain Res. 85, 185–222 (1990).

    Article  CAS  PubMed  Google Scholar 

  97. Petanjek, Z., Judas, M., Kostovic, I. & Uylings, H. B. Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb. Cortex 18, 915–929 (2008).

    Article  PubMed  Google Scholar 

  98. Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011). Quantitative assessment of dendritic spine density demonstrates striking neoteny of synaptic development characterizing human cortex development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Petanjek, Z. et al. The protracted maturation of associative layer IIIC pyramidal neurons in the human prefrontal cortex during childhood: a major role in cognitive development and selective alteration in autism. Front. Psychiatry 10, 122 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Verendeev, A. & Sherwood, C. C. Human brain evolution. Curr. Opin. Behav. Sci. 16, 41–45 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Courchesne, E. et al. Mapping early brain development in autism. Neuron 56, 399–413 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Hazlett, H. C. et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 542, 348–351 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bianchi, S. et al. Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proc. Natl Acad. Sci. USA 110, 10395–10401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Travis, K., Ford, K. & Jacobs, B. Regional dendritic variation in neonatal human cortex: a quantitative Golgi study. Dev. Neurosci. 27, 277–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Elston, G. N., Oga, T. & Fujita, I. Spinogenesis and pruning scales across functional hierarchies. J. Neurosci. 29, 3271–3275 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Klingler, E. et al. Temporal controls over inter-areal cortical projection neuron fate diversity. Nature 599, 453–457 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Paredes, M. F. et al. Extensive migration of young neurons into the infant human frontal lobe. Science 354, aaf7073 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sorrells, S. F. et al. Immature excitatory neurons develop during adolescence in the human amygdala. Nat. Commun. 10, 2748 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Miller, D. J. et al. Prolonged myelination in human neocortical evolution. Proc. Natl Acad. Sci. USA 109, 16480–16485 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Williamson, J. M. & Lyons, D. A. Myelin dynamics throughout life: an ever-changing landscape. Front. Cell Neurosci. 12, 424 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Linaro, D. et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104, 972–986 e976 (2019). Xenotransplanted human cortical neurons integrate functionally into mouse cortical circuits following their species-specific tempo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Maroof, A. M. et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nicholas, C. R. et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12, 573–586 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schornig, M. et al. Comparison of induced neurons reveals slower structural and functional maturation in humans than in apes. Elife 10, e59323 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marchetto, M. C. et al. Species-specific maturation profiles of human, chimpanzee and bonobo neural cells. Elife 8, e37527 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Molnar, Z., Luhmann, H. J. & Kanold, P. O. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 370, eabb2153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Carroll, S. B. Genetics and the making of Homo sapiens. Nature 422, 849–857 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Kaessmann, H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 20, 1313–1326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Cardoso-Moreira, M. et al. Gene expression across mammalian organ development. Nature 571, 505–509 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Prabhakar, S., Noonan, J. P., Paabo, S. & Rubin, E. M. Accelerated evolution of conserved noncoding sequences in humans. Science 314, 786 (2006). Refs. 121 and 122 describe human accelerated regions and suggest their implication in human brain development.

    Article  CAS  PubMed  Google Scholar 

  123. Capra, J. A., Erwin, G. D., McKinsey, G., Rubenstein, J. L. & Pollard, K. S. Many human accelerated regions are developmental enhancers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130025 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Doan, R. N. et al. Mutations in human accelerated regions disrupt cognition and social behavior. Cell 167, 341–354 e312 (2016). This study identifies human accelerated regions associated with neurodevelopmental diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kamm, G. B., Pisciottano, F., Kliger, R. & Franchini, L. F. The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome. Mol. Biol. Evol. 30, 1088–1102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lambert, N. et al. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution. PLoS ONE 6, e17753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wei, Y. et al. Genetic mapping and evolutionary analysis of human-expanded cognitive networks. Nat. Commun. 10, 4839 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Won, H., Huang, J., Opland, C. K., Hartl, C. L. & Geschwind, D. H. Human evolved regulatory elements modulate genes involved in cortical expansion and neurodevelopmental disease susceptibility. Nat. Commun. 10, 2396 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Girskis, K. M. et al. Rewiring of human neurodevelopmental gene regulatory programs by human accelerated regions. Neuron 109, 3239–3251 e3237 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Uebbing, S. et al. Massively parallel discovery of human-specific substitutions that alter enhancer activity. Proc. Natl Acad. Sci. USA 118, e2007049118 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Whalen, S. et al. Machine-learning dissection of human accelerated regions in primate neurodevelopment. Neuron https://doi.org/10.1016/j.neuron.2022.12.026 (2023).

    Article  PubMed  Google Scholar 

  133. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Tiberi, L., Vanderhaeghen, P. & van den Ameele, J. Cortical neurogenesis and morphogens: diversity of cues, sources and functions. Curr. Opin. Cell Biol. 24, 269–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Boyd, J. L. et al. Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr. Biol. 25, 772–779 (2015). A human accelerated region that enhances WNT signalling has an impact on cortical expansion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Reilly, S. K. et al. Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science 347, 1155–1159 (2015). A description of regulatory elements displaying human-specific activation during brain development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. de la Torre-Ubieta, L. et al. The dynamic landscape of open chromatin during human cortical neurogenesis. Cell 172, 289–304 e218 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Song, M. et al. Cell-type-specific 3D epigenomes in the developing human cortex. Nature 587, 644–649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173, 1356–1369 e1322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Suzuki, I. K. et al. Human-specific NOTCH2NL genes expand cortical neurogenesis through delta/notch regulation. Cell 173, 1370–1384.e16 (2018). Refs. 139 and 140 identify hominid-specific genes NOTCH2NL as human-specific modifiers of cortical neurogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tilot, A. K. et al. The evolutionary history of common genetic variants influencing human cortical surface area. Cereb. Cortex 31, 1873–1887 (2021).

    Article  PubMed  Google Scholar 

  142. Vermunt, M. W. et al. Epigenomic annotation of gene regulatory alterations during evolution of the primate brain. Nat. Neurosci. 19, 494–503 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Moriano, J. & Boeckx, C. Modern human changes in regulatory regions implicated in cortical development. BMC Genomics 21, 304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bolt, C. C. & Duboule, D. The regulatory landscapes of developmental genes. Development 147, dev171736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Luo, X. et al. 3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell 184, 723–740 e721 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Vanderhaeghen, P. & Polleux, F. Developmental mechanisms patterning thalamocortical projections: Intrinsic, extrinsic and in between. Trends Neurosci. 27, 384–391 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. McLean, C. Y. et al. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471, 216–219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kronenberg, Z. N. et al. High-resolution comparative analysis of great ape genomes. Science 360, eaar6343 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Agoglia, R. M. et al. Primate cell fusion disentangles gene regulatory divergence in neurodevelopment. Nature 592, 421–427 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Song, J. H. T. et al. Genetic studies of human-chimpanzee divergence using stem cell fusions. Proc. Natl Acad. Sci. USA 118, e2117557118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pletikos, M. et al. Temporal specification and bilaterality of human neocortical topographic gene expression. Neuron 81, 321–332 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lui, J. H. et al. Radial glia require PDGFD-PDGFRβ signalling in human but not mouse neocortex. Nature 515, 264–268 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Andrews, M. G., Subramanian, L. & Kriegstein, A. R. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. Elife 9, e58737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jacobs, F. M. et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516, 242–245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Johansson, P. A. et al. A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development. Cell Stem Cell 29, 52–69 e58 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Turelli, P. et al. Primate-restricted KRAB zinc finger proteins and target retrotransposons control gene expression in human neurons. Sci. Adv. 6, eaba3200 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Arcila, M. L. et al. Novel primate miRNAs coevolved with ancient target genes in germinal zone-specific expression patterns. Neuron 81, 1255–1262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nowakowski, T. J. et al. Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nat. Neurosci. 21, 1784–1792 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sarropoulos, I., Marin, R., Cardoso-Moreira, M. & Kaessmann, H. Developmental dynamics of lncRNAs across mammalian organs and species. Nature 571, 510–514 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rani, N. et al. A primate lncRNA mediates notch signaling during neuronal development by sequestering miRNA. Neuron 90, 1174–1188 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Field, A. R. et al. Structurally conserved primate lncRNAs are transiently expressed during human cortical differentiation and influence cell-type-specific genes. Stem Cell Rep. 12, 245–257 (2019).

    Article  CAS  Google Scholar 

  165. Shibata, M. et al. Hominini-specific regulation of CBLN2 increases prefrontal spinogenesis. Nature 598, 489–494 (2021). This study identifies molecular mechanisms that underlie the increased connectivity of the human prefrontal cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ziffra, R. S. et al. Single-cell epigenomics reveals mechanisms of human cortical development. Nature 598, 205–213 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bhaduri, A. et al. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 598, 200–204 (2021). A comprehensive single-cell transcriptomic study describing area-specific patterns of gene expression in the human cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gu, Z. et al. Control of species-dependent cortico-motoneuronal connections underlying manual dexterity. Science 357, 400–404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ebert, D. H. & Greenberg, M. E. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493, 327–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ataman, B. et al. Evolution of osteocrin as an activity-regulated factor in the primate brain. Nature 539, 242–247 (2016). This study identifies primate-specific transcriptional programmes triggered by neuronal activity.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Pruunsild, P., Bengtson, C. P. & Bading, H. Networks of cultured iPSC-derived neurons reveal the human synaptic activity-regulated adaptive gene program. Cell Rep. 18, 122–135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Qiu, J. et al. Evidence for evolutionary divergence of activity-dependent gene expression in developing neurons. Elife 5, e20337 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Liu, X. et al. Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Res. 22, 611–622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Boulting, G. L. et al. Activity-dependent regulome of human GABAergic neurons reveals new patterns of gene regulation and neurological disease heritability. Nat. Neurosci. 24, 437–448 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Raju, C. S. et al. Secretagogin is expressed by developing neocortical GABAergic neurons in humans but not mice and increases neurite arbor size and complexity. Cereb. Cortex 28, 1946–1958 (2018).

    Article  PubMed  Google Scholar 

  176. Castelijns, B. et al. Hominin-specific regulatory elements selectively emerged in oligodendrocytes and are disrupted in autism patients. Nat. Commun. 11, 301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bustamante, C. D. et al. Natural selection on protein-coding genes in the human genome. Nature 437, 1153–1157 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Williamson, S. H. et al. Localizing recent adaptive evolution in the human genome. PLoS Genet. 3, e90 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. den Hoed, J. & Fisher, S. E. Genetic pathways involved in human speech disorders. Curr. Opin. Genet. Dev. 65, 103–111 (2020).

    Article  Google Scholar 

  181. Enard, W. et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137, 961–971 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Paabo, S. The human condition-a molecular approach. Cell 157, 216–226 (2014).

    Article  PubMed  Google Scholar 

  183. Rosso, L. et al. Birth and rapid subcellular adaptation of a hominoid-specific CDC14 protein. PLoS Biol. 6, e140 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Fortna, A. et al. Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol. 2, E207 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Sudmant, P. H. et al. Diversity of human copy number variation and multicopy genes. Science 330, 641–646 (2010). Refs. 184 and 185 describe hominid-specific gene duplications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dennis, M. Y. et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149, 912–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Stefansson, H. et al. Large recurrent microdeletions associated with schizophrenia. Nature 455, 232–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Florio, M. et al. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. Elife 7, e32332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347, 1465–1470 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Heide, M. et al. Human-specific ARHGAP11B increases size and folding of primate neocortex in the fetal marmoset. Science 369, 546–550 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Hou, Q. Q., Xiao, Q., Sun, X. Y., Ju, X. C. & Luo, Z. G. TBC1D3 promotes neural progenitor proliferation by suppressing the histone methyltransferase G9a. Sci. Adv. 7, eaba8053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ju, X. C. et al. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. Elife 5, e18197 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Liu, J. et al. The primate-specific gene TMEM14B marks outer radial glia cells and promotes cortical expansion and folding. Cell Stem Cell 21, 635–649 e638 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Van Heurck, R. et al. CROCCP2 acts as a human-specific modifier of cilia dynamics and mTOR signaling to promote expansion of cortical progenitors. Neuron 65–80.e6 (2023).

  195. Wong, K. et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 107, 209–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Bacon, C., Endris, V. & Rappold, G. Dynamic expression of the Slit-Robo GTPase activating protein genes during development of the murine nervous system. J. Comp. Neurol. 513, 224–236 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Guerrier, S. et al. The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 138, 990–1004 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Charrier, C. et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149, 923–935 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Schmidt, E. R. E., Kupferman, J. V., Stackmann, M. & Polleux, F. The human-specific paralogs SRGAP2B and SRGAP2C differentially modulate SRGAP2A-dependent synaptic development. Sci. Rep. 9, 18692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Fossati, M. et al. SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91, 356–369 (2016). Refs. 198–200 demonstrate that the human-specific paralog SRGAP2C inhibits the function of the ancestral SRGAP2A postsynaptic protein and leads to neotenic and increased excitatory and inhibitory synapse density.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Schmidt, E. R. E. et al. A human-specific modifier of cortical connectivity and circuit function. Nature 599, 640–644 (2021). Expression of human-specific SRGAP2C in mouse cortical pyramidal neurons leads to increased cortico-cortical connectivity, improved sensory coding by cortical circuits and improved behavioural performance in a sensory discrimination task.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Iwata, R. et al. Mitochondria metabolism sets the species-specific tempo of neuronal development. Science https://doi.org/10.1126/science.abn4705 (2023). This study identifies mitochondria metabolism as a key regulator of the species-specific tempo of neuronal development.

    Article  PubMed  Google Scholar 

  203. Rayon, T. et al. Species-specific pace of development is associated with differences in protein stability. Science 369, eaba7667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Matsuda, M. et al. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science 369, 1450–1455 (2020).

    Article  CAS  PubMed  Google Scholar 

  205. Hoye, M. L. et al. Aberrant cortical development is driven by impaired cell cycle and translational control in a DDX3X syndrome model. Elife 11, e78203 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wu, Q. et al. Selective translation of epigenetic modifiers affects the temporal pattern and differentiation of neural stem cells. Nat. Commun. 13, 470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Namba, T. et al. Human-specific ARHGAP11B acts in mitochondria to expand neocortical progenitors by glutaminolysis. Neuron 105, 867–881 e869 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Angevine, J. B. Jr & Sidman, R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768 (1961).

    Article  PubMed  Google Scholar 

  209. Polleux, F., Dehay, C. & Kennedy, H. The timetable of laminar neurogenesis contributes to the specification of cortical areas in mouse isocortex. J. Comp. Neurol. 385, 95–116 (1997).

    Article  CAS  PubMed  Google Scholar 

  210. Schmidt, E. R. E. & Polleux, F. Genetic mechanisms underlying the evolution of connectivity in the human cortex. Front. Neural Circuits 15, 787164 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. & Livesey, F. J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 15, 477–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl Acad. Sci. USA 110, 20284–20289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Arlotta, P. & Pasca, S. P. Cell diversity in the human cerebral cortex: from the embryo to brain organoids. Curr. Opin. Neurobiol. 56, 194–198 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hu, W. F., Chahrour, M. H. & Walsh, C. A. The diverse genetic landscape of neurodevelopmental disorders. Annu. Rev. Genomics Hum. Genet. 15, 195–213 (2014).

    Article  PubMed  Google Scholar 

  218. Eichler, E. E. Genetic variation, comparative genomics, and the diagnosis of disease. N. Engl. J. Med. 381, 64–74 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Mefford, H. C. et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N. Engl. J. Med. 359, 1685–1699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Sonderby, I. E. et al. 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Transl. Psychiatry 11, 182 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Funato, K., Smith, R. C., Saito, Y. & Tabar, V. Dissecting the impact of regional identity and the oncogenic role of human-specific NOTCH2NL in an hESC model of H3.3G34R-mutant glioma. Cell Stem Cell 28, 894–905 e897 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Sone, J. et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat. Genet. 51, 1215–1221 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Tian, Y. et al. Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am. J. Hum. Genet. 105, 166–176 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kang, Y. et al. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat. Neurosci. 24, 1377–1391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kwan, K. Y. et al. Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell 149, 899–911 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Marin, O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat. Med. 22, 1229–1238 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. Forrest, M. P., Parnell, E. & Penzes, P. Dendritic structural plasticity and neuropsychiatric disease. Nat. Rev. Neurosci. 19, 215–234 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Paulsen, B. et al. Autism genes converge on asynchronous development of shared neuron classes. Nature 602, 268–273 (2022). Mutations in autism spectrum disease risk genes lead to aberrant developmental timing in cortical organoids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Schafer, S. T. et al. Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons. Nat. Neurosci. 22, 243–255 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Penzes, P., Cahill, M. E., Jones, K. A., VanLeeuwen, J. E. & Woolfrey, K. M. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Espuny-Camacho, I. et al. Hallmarks of Alzheimer’s disease in stem-cell-derived human neurons transplanted into mouse brain. Neuron 93, 1066–1081 e1068 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to the many authors whose work could not be discussed owing to space constraints. They thank E. Schmidt for his help generating elements of Fig. 4. Work from the P.V. laboratory described here was funded by the European Research Council (ERC Advanced Grants GENDEVOCORTEX and NEUROTEMPO), the Belgian FWO and FRS/FNRS, the EOS Program, the AXA Research Fund, the Belgian Queen Elizabeth Medical Foundation, the ERA-NET NEURON and the Generet Fund. Work from the F.P. laboratory described here was funded by grants from NINDS (NIH grants RO1NS067557 and R35NS127232), an award from the Roger de Spoelberch Fondation and an award from the Nomis Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Pierre Vanderhaeghen or Franck Polleux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Association areas

A class of cortical areas defined by their opposition to primary areas (cortical regions receiving direct inputs from the dorsal thalamus). Association areas are where different sensory and/or motor modalities combine and where complex cognitive processes such as attention, planning and memories are encoded.

Cell fate mapping

A range of techniques aimed at genetically labelling the progeny of individual classes of progenitors, thereby reconstructing the lineage linking dividing progenitors and all the cells they generate.

Chromatin loops

The situation in which stretches of genomic sequence that lie on the same chromosome (configured in cis) are in closer physical proximity to each other than they are to intervening sequences.

cis-regulatory elements

Portions of genes containing the promoter and other regulatory elements controlling levels of gene transcription.

Comparative genomics

A subfield of biology involving the analysis of DNA sequence divergence and conservation between different organisms.

Connectome

A description of all the synaptic connections between neurons found within a brain region or the entire nervous system of an organism.

Cortical organoids

Self-organized 3D multicellular structures that can be patterned to mimic the neocortex.

Dendritic processing

The receipt, integration and processing of many synaptic inputs by dendrites. This processing takes the form of changes in membrane potential, which can — depending on the density and distribution of passive or active ionotropic channels — differentially affect the generation of action potentials at the level of the soma.

Dendritic spines

Micron-long protrusions present in specific neuronal subtypes, such as cortical pyramidal neurons, at the tip of which is located an excitatory synapse. Spines play important roles in electrically and biochemically isolating the postsynaptic compartment from the dendrite shaft. Experimentally, morphologically identified dendritic spines represent a close approximation to measuring number or density of excitatory synapses received by a neuron.

Epigenetic profiling

Molecular biology technique combined with biochemistry to monitor the post-translational modifications and physical interaction of DNA and chromatin and how they impact gene expression in cells.

Heterochrony

Changes in the relative timing of a developmental event when different species or brain regions are being compared.

Large segmental genomic duplications

Large segments (more than 1 kb) of the genome that have been duplicated in another position in the genome.

Long non-coding RNAs

RNAs longer than 200 bp that are not translated into protein.

Massively parallel reporter assays

A molecular biology technique used to simultaneously test the activity of multiple candidate genetic regulatory elements in a high-throughput manner.

Morphogen

One of a class of extracellular cues that can act at a distance from its source and regulate gene expression in receiving cells and tissues and thereby play a central role in cell type specification or tissue patterning.

Neurogenesis

The generation of postmitotic neurons by specialized classes of dividing progenitors.

Single-cell RNA sequencing

A high-throughput sequencing technique used to determine the sequences of mRNA expressed in single cells, also referred to as the transcriptional profile of single cells.

Topology-associated domains

Large self-interacting genomic regions (~1 Mb) physically interacting inside the nucleus. This level of chromatin organization plays key roles in regulating temporal and spatial patterns of gene expression in gene families such as the HOX cluster.

Xenotransplantation

Transplantation of cells from one species into a different species.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanderhaeghen, P., Polleux, F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 24, 213–232 (2023). https://doi.org/10.1038/s41583-023-00675-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00675-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing