Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurophysiological mechanisms of error monitoring in human and non-human primates

Abstract

Performance monitoring is an important executive function that allows us to gain insight into our own behaviour. This remarkable ability relies on the frontal cortex, and its impairment is an aspect of many psychiatric diseases. In recent years, recordings from the macaque and human medial frontal cortex have offered a detailed understanding of the neurophysiological substrate that underlies performance monitoring. Here we review the discovery of single-neuron correlates of error monitoring, a key aspect of performance monitoring, in both species. These neurons are the generators of the error-related negativity, which is a non-invasive biomarker that indexes error detection. We evaluate a set of tasks that allows the synergistic elucidation of the mechanisms of cognitive control across the two species, consider differences in brain anatomy and testing conditions across species, and describe the clinical relevance of these findings for understanding psychopathology. Last, we integrate the body of experimental facts into a theoretical framework that offers a new perspective on how error signals are computed in both species and makes novel, testable predictions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Locations of medial frontal lobe areas implicated in performance monitoring and typical recording approaches.
Fig. 2: Error neurons and error-related negativity in macaques and humans.
Fig. 3: Reliability and latency of error responses in macaques and humans.
Fig. 4: Tasks for studying performance monitoring in macaques and humans.
Fig. 5: Conceptual framework for action error computation.
Fig. 6: Circuit model for action error computation.

Similar content being viewed by others

References

  1. Rabbitt, P. M. Errors and error correction in choice-response tasks. J. Exp. Psychol. 71, 264–272 (1966). The original description of slowing after errors, revealing the existence of and a means to investigate performance monitoring.

    Article  CAS  PubMed  Google Scholar 

  2. Logan, G. D. & Crump, M. J. Cognitive illusions of authorship reveal hierarchical error detection in skilled typists. Science 330, 683–686 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Wessel, J. R. An adaptive orienting theory of error processing. Psychophysiology 55, e13041 (2018).

    Article  Google Scholar 

  4. Ullsperger, M., Danielmeier, C. & Jocham, G. Neurophysiology of performance monitoring and adaptive behavior. Physiol. Rev. 94, 35–79 (2014).

    Article  PubMed  Google Scholar 

  5. Ullsperger, M. Performance monitoring in neurological and psychiatric patients. Int. J. Psychophysiol. 59, 59–69 (2006).

    Article  PubMed  Google Scholar 

  6. Gillan, C. M., Fineberg, N. A. & Robbins, T. W. A trans-diagnostic perspective on obsessive-compulsive disorder. Psychol. Med. 47, 1528–1548 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Insel, T. R. The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. Am. J. Psychiatry 171, 395–397 (2014).

    Article  PubMed  Google Scholar 

  8. Holroyd, C. B. & Umemoto, A. The research domain criteria framework: the case for anterior cingulate cortex. Neurosci. Biobehav. Rev. 71, 418–443 (2016).

    Article  PubMed  Google Scholar 

  9. Loosen, A. M. & Hauser, T. U. Towards a computational psychiatry of juvenile obsessive-compulsive disorder. Neurosci. Biobehav. Rev. 118, 631–642 (2020).

    Article  PubMed  Google Scholar 

  10. Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13, 1161–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robble, M. A. et al. Concordant neurophysiological signatures of cognitive control in humans and rats. Neuropsychopharmacology 46, 252–1262 (2021).

    Article  Google Scholar 

  12. Fu, Z. et al. Single-neuron correlates of error monitoring and post-error adjustments in human medial frontal cortex. Neuron 101, 165–177.e165 (2019). Shows that single neurons in the human MFC that signal errors respond first in the pre-SMA and later in the dorsal ACC, and in both areas the amplitude of the ERN predicts firing rates of error neurons.

    Article  CAS  PubMed  Google Scholar 

  13. Sajad, A., Godlove, D. C. & Schall, J. D. Cortical microcircuitry of performance monitoring. Nat. Neurosci. 22, 265–274 (2019). Describes the organization of error-related neurons across the layers of a medial frontal area and their association with the ERN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shenhav, A., Cohen, J. D. & Botvinick, M. M. Dorsal anterior cingulate cortex and the value of control. Nat. Neurosci. 19, 1286–1291 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A. & Nieuwenhuis, S. The role of the medial frontal cortex in cognitive control. Science 306, 443–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Scangos, K. W., Aronberg, R. & Stuphorn, V. Performance monitoring by presupplementary and supplementary motor area during an arm movement countermanding task. J. Neurophysiol. 109, 1928–1939 (2013). Demonstrates that the pre-SMA and the SMA in macaques do not enable reactive response inhibition but instead signal errors.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nachev, P., Kennard, C. & Husain, M. Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 9, 856–869 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Fu, Z. et al. The geometry of domain-general performance monitoring in the human medial frontal cortex. Science 376, eabm9922 (2022). Reveals that neurons in the human MFC encode conflict probability, cognitive conflict and errors in a domain-general and compositional manner across two tasks, thereby revealing multiple signals needed by our proposed model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ito, S., Stuphorn, V., Brown, J. W. & Schall, J. D. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302, 120–122 (2003). Demonstrates error-related neural spiking in the cingulate cortex of macaques during the stop-signal task.

    Article  CAS  PubMed  Google Scholar 

  20. Procyk, E. et al. Midcingulate motor map and feedback detection: converging data from humans and monkeys. Cereb. Cortex 26, 467–476 (2016).

    PubMed  Google Scholar 

  21. Vogt, B. A. Midcingulate cortex: structure, connections, homologies, functions and diseases. J. Chem. Neuroanat. 74, 28–46 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Neubert, F. X., Mars, R. B., Sallet, J. & Rushworth, M. F. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proc. Natl Acad. Sci. USA 112, e2695–e2704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shackman, A. J. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Picard, N. & Strick, P. L. Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex 6, 342–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Emeric, E. E. et al. Performance monitoring local field potentials in the medial frontal cortex of primates: anterior cingulate cortex. J. Neurophysiol. 99, 759–772 (2008).

    Article  PubMed  Google Scholar 

  26. Emeric, E. E., Leslie, M., Pouget, P. & Schall, J. D. Performance monitoring local field potentials in the medial frontal cortex of primates: supplementary eye field. J. Neurophysiol. 104, 1523–1537 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Godlove, D. C. et al. Event-related potentials elicited by errors during the stop-signal task. I. Macaque monkeys. J. Neurosci. 31, 15640–15649 (2011). Demonstration of the macaque homologue of the ERN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schall, J. D., Stuphorn, V. & Brown, J. W. Monitoring and control of action by the frontal lobes. Neuron 36, 309–322 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Debener, S. et al. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J. Neurosci. 25, 11730–11737 (2005). Shows that the amplitude of the scalp-measured ERN co-varies trial-by-trial with the fMRI BOLD signal in the MFC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iannaccone, R. et al. Conflict monitoring and error processing: new insights from simultaneous EEG-fMRI. Neuroimage 105, 395–407 (2015).

    Article  PubMed  Google Scholar 

  31. Swick, D. & Turken, U. Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proc. Natl Acad. Sci. Usa. 99, 16354–16359 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turken, A. U. & Swick, D. Response selection in the human anterior cingulate cortex. Nat. Neurosci. 2, 920–924 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Stemmer, B., Segalowitz, S. J., Witzke, W. & Schonle, P. W. Error detection in patients with lesions to the medial prefrontal cortex: an ERP study. Neuropsychologia 42, 118–130 (2004).

    Article  PubMed  Google Scholar 

  34. Minxha, J., Adolphs, R., Fusi, S., Mamelak, A. N. & Rutishauser, U. Flexible recruitment of memory-based choice representations by the human medial frontal cortex. Science 368, eaba3313 (2020). Reveals encoding of task-specific but modality-independent choice signals in the human MFC at the single-cell level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bonini, F. et al. Action monitoring and medial frontal cortex: leading role of supplementary motor area. Science 343, 888–891 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Sheth, S. A. et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488, 218–221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Williams, Z. M., Bush, G., Rauch, S. L., Cosgrove, G. R. & Eskandar, E. N. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nat. Neurosci. 7, 1370–1375 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Kolling, N. et al. Value, search, persistence and model updating in anterior cingulate cortex. Nat. Neurosci. 19, 1280–1285 (2016). A review of evidence supporting the MCC’s role in decision making and, more broadly, acquiring action policies in a changing environment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ebitz, R. B. & Hayden, B. Y. Dorsal anterior cingulate: a Rorschach test for cognitive neuroscience. Nat. Neurosci. 19, 1278–1279 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Heilbronner, S. R. & Hayden, B. Y. Dorsal anterior cingulate cortex: a bottom-up view. Annu. Rev. Neurosci. 39, 149–170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E. & Donchin, E. The error-related negativity. Perspect. Psychol. Sci. 13, 200–204 (2018).

    Article  PubMed  Google Scholar 

  42. Gehring, W. J., Liu, Y., Orr, J. M. & Carp, J. in The Oxford Handbook of Event-Related Potential Components (eds Kappenman, E. S. & Luck, S. J.) (Oxford University Press, 2012). A comprehensive and authoritative review of the ERN in humans.

  43. Falkenstein, M., Hohnsbein, J., Hoormann, J. & Blanke, L. EPIC Ninth International Conference on Event-Related Potentials of the Brain, Noordwijk, The Netherlands 28 May–3 June 1989. Electroencephalogr. Clin. Neurophysiol. 42 (Suppl. 1), 1–393 (1991).

    Google Scholar 

  44. Gehring, W. J., Coles, M. G., Meyer, D. E. & Donchin, E. The error-related negativity: an event-related brain potential accompanying errors. Psychophysiology 27, S34 (1990).

    Google Scholar 

  45. Falkenstein, M., Hohnsbein, J., Hoormann, J. & Blanke, L. Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr. Clin. Neurophysiol. 78, 447–455 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E. & Donchin, E. A neural system for error detection and compensation. Psychol. Sci. 4, 385–390 (1993).

    Article  Google Scholar 

  47. Miltner, W. H., Braun, C. H. & Coles, M. G. Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a “generic” neural system for error detection. J. Cogn. Neurosci. 9, 788–798 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Holroyd, C. B. & Coles, M. G. H. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679–709 (2002). A computational model of error detection which proposes that the ERN is generated by transmission of the error signal carried by dopaminergic inputs to the MFC due to a transient pause of dopamine release and consequently disinhibition of pyramidal neurons.

    Article  PubMed  Google Scholar 

  49. Holroyd, C. B., Pakzad-Vaezi, K. L. & Krigolson, O. E. The feedback correct-related positivity: sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology 45, 688–697 (2008).

    Article  PubMed  Google Scholar 

  50. Dehaene, S., Posner, M. I. & Tucker, D. M. Localization of a neural system for error detection and compensation. Psychol. Sci. 5, 303–305 (1994). The first attempt to locate the current dipole producing the ERN.

    Article  Google Scholar 

  51. Yucel, M. et al. Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cereb. Cortex 11, 17–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Vogt, B. A., Nimchinsky, E. A., Vogt, L. J. & Hof, P. R. Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J. Comp. Neurol. 359, 490–506 (1995). Describes the composition of areas within the MFC of humans that may contribute to error monitoring.

    Article  CAS  PubMed  Google Scholar 

  53. Amiez, C., Wilson, C. R. E. & Procyk, E. Variations of cingulate sulcal organization and link with cognitive performance. Sci. Rep. 8, 13988 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Huster, R. J. et al. Effects of anterior cingulate fissurization on cognitive control during Stroop interference. Hum. Brain Mapp. 30, 1279–1289 (2009).

    Article  PubMed  Google Scholar 

  55. Herrera, B., Sajad, A., Woodman, G. F., Schall, J. D. & Riera, J. J. A minimal biophysical model of neocortical pyramidal cells: implications for frontal cortex microcircuitry and field potential generation. J. Neurosci. 40, 8513–8529 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Halnes, G., Maki-Marttunen, T., Pettersen, K. H., Andreassen, O. A. & Einevoll, G. T. Ion diffusion may introduce spurious current sources in current-source density (CSD) analysis. J. Neurophysiol. 118, 114–120 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Turner, E. C. et al. Distributions of cells and neurons across the cortical sheet in old world macaques. Brain Behav. Evol. 88, 1–13 (2016).

    Article  PubMed  Google Scholar 

  58. Cohen, M. X. Where does EEG come from and what does it mean. Trends Neurosci. 40, 208–218 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Cole, M. W., Yeung, N., Freiwald, W. A. & Botvinick, M. Cingulate cortex: diverging data from humans and monkeys. Trends Neurosci. 32, 566–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cavanagh, J. F., Zambrano-Vazquez, L. & Allen, J. J. B. Theta lingua franca: a common mid-frontal substrate for action monitoring processes. Psychophysiology 49, 220–238 (2012).

    Article  PubMed  Google Scholar 

  61. Yordanova, J., Falkenstein, M., Hohnsbein, J. & Kolev, V. Parallel systems of error processing in the brain. Neuroimage 22, 590–602 (2004).

    Article  PubMed  Google Scholar 

  62. van Driel, J., Ridderinkhof, K. R. & Cohen, M. X. Not all errors are alike: theta and alpha EEG dynamics relate to differences in error-processing dynamics. J. Neurosci. 32, 16795–16806 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Luu, P., Tucker, D. M. & Makeig, S. Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clin. Neurophysiol. 115, 1821–1835 (2004).

    Article  PubMed  Google Scholar 

  64. Trujillo, L. T. & Allen, J. J. B. Theta EEG dynamics of the error-related negativity. Clin. Neurophysiol. 118, 645–668 (2007).

    Article  PubMed  Google Scholar 

  65. Cavanagh, J. F. & Frank, M. J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18, 414–421 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hewig, J., Coles, M. G., Trippe, R. H., Hecht, H. & Miltner, W. H. Dissociation of Pe and ERN/Ne in the conscious recognition of an error. Psychophysiology 48, 1390–1396 (2011).

    Article  PubMed  Google Scholar 

  67. Di Gregorio, F., Maier, M. E. & Steinhauser, M. Errors can elicit an error positivity in the absence of an error negativity: evidence for independent systems of human error monitoring. NeuroImage 172, 427–436 (2018).

    Article  PubMed  Google Scholar 

  68. Wessel, J. R. Error awareness and the error-related negativity: evaluating the first decade of evidence. Front. Hum. Neurosci. 6, 88 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Stuphorn, V., Taylor, T. L. & Schall, J. D. Performance monitoring by the supplementary eye field. Nature 408, 857–860 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Holroyd, C. B., Dien, J. & Coles, M. G. H. Error-related scalp potentials elicited by hand and foot movements: evidence for an output-independent error-processing system in humans. Neurosci. Lett. 242, 65–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Reinhart, R. M., Carlisle, N. B., Kang, M. S. & Woodman, G. F. Event-related potentials elicited by errors during the stop-signal task. II: human effector-specific error responses. J. Neurophysiol. 107, 2794–2807 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Phillips, J. M. & Everling, S. Event-related potentials associated with performance monitoring in non-human primates. Neuroimage 97, 308–320 (2014).

    Article  PubMed  Google Scholar 

  73. Wang, C., Ulbert, I., Schomer, D. L., Marinkovic, K. & Halgren, E. Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. J. Neurosci. 25, 604–613 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yeung, N., Botvinick, M. M. & Cohen, J. D. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol. Rev. 111, 931–959 (2004).

    Article  PubMed  Google Scholar 

  75. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Smith, E. H. et al. Widespread temporal coding of cognitive control in the human prefrontal cortex. Nat. Neurosci. 22, 1883–1891 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Scangos, K. W. & Stuphorn, V. Medial frontal cortex motivates but does not control movement initiation in the countermanding task. J. Neurosci. 30, 1968–1982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sajad, A., Errington, S. P. & Schall, J. D. Functional architecture of executive control and associated event-related potentials in macaques. Nat. Commun. 13, 6279 (2022).

    Article  Google Scholar 

  79. Nakamura K., Roesch M. R. & Olson C. R. Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. J. Neurophysiol. 93, 884–908 (2005).

    Article  PubMed  Google Scholar 

  80. Ebitz, R. B. & Platt, M. L. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal. Neuron 85, 628–640 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shenhav, A. & Botvinick, M. Uncovering a missing link in anterior cingulate research. Neuron 85, 455–457 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Amiez, C. et al. Sulcal organization in the medial frontal cortex provides insights into primate brain evolution. Nat. Commun. 10, 3437 (2019). Analysis of the variable presence of a PCS in humans and apes and absence in monkeys.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sallet, J. et al. The organization of dorsal frontal cortex in humans and macaques. J. Neurosci. 33, 12255–12274 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schall, J. D. et al. in Evolutionary Neuroscience 2nd edn (ed Kaas, J. H.) 861–890 (Academic Press, 2020).

  85. Grosbras, M. H., Lobel, E., Van de Moortele, P. F., LeBihan, D. & Berthoz, A. An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging. Cereb. Cortex 9, 705–711 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Amiez, C. et al. The location of feedback-related activity in the midcingulate cortex is predicted by local morphology. J. Neurosci. 33, 2217–2228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Amiez, C. et al. Chimpanzee histology and functional brain imaging show that the paracingulate sulcus is not human-specific. Commun. Biol. 4, 54 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Buda, M., Fornito, A., Bergstrom, Z. M. & Simons, J. S. A specific brain structural basis for individual differences in reality monitoring. J. Neurosci. 31, 14308–14313 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Simons, J. S., Garrison, J. R. & Johnson, M. K. Brain mechanisms of reality monitoring. Trends Cogn. Sci. 21, 462–473 (2017).

    Article  PubMed  Google Scholar 

  90. Huster, R. J., Enriquez-Geppert, S., Pantev, C. & Bruchmann, M. Variations in midcingulate morphology are related to ERP indices of cognitive control. Brain Struct. Funct. 219, 49–60 (2014).

    Article  PubMed  Google Scholar 

  91. Garrison, J. R. et al. Paracingulate sulcus morphology is associated with hallucinations in the human brain. Nat. Commun. 6, 8956 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Shim, G. et al. Reduced cortical folding of the anterior cingulate cortex in obsessive-compulsive disorder. J. Psychiatry Neurosci. 34, 443–449 (2009).

    PubMed  PubMed Central  Google Scholar 

  93. Nimchinsky, E. A., Vogt, B. A., Morrison, J. H. & Hof, P. R. Spindle neurons of the human anterior cingulate cortex. J. Comp. Neurol. 355, 27–37 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Barbas, H. & Pandya, D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Vogt, B. A., Vogt, L., Farber, N. B. & Bush, G. Architecture and neurocytology of monkey cingulate gyrus. J. Comp. Neurol. 485, 218–239 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Matelli, M., Luppino, G. & Rizzolatti, G. Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J. Comp. Neurol. 311, 445–462 (1991).

    Article  CAS  PubMed  Google Scholar 

  97. Petrides, M. Comparative architectonic analysis of the human and the macaque frontal cortex. Handb. Neuropsychol. 11, 17–58 (1994).

    Google Scholar 

  98. Paxton, J. L., Barch, D. M., Racine, C. A. & Braver, T. S. Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cereb. Cortex 18, 1010–1028 (2008).

    Article  PubMed  Google Scholar 

  99. Danielmeier, C. & Ullsperger, M. Post-error adjustments. Front. Psychol. 2, 233 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Verbruggen, F. et al. A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. Elife 8, e46323 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Camalier, C. R. et al. Dynamics of saccade target selection: race model analysis of double step and search step saccade production in human and macaque. Vis. Res. 47, 2187–2211 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Schall, J. D. & Boucher, L. Executive control of gaze by the frontal lobes. Cogn. Affect. Behav. Neurosci. 7, 396–412 (2007).

    Article  PubMed  Google Scholar 

  103. Mosher, C. P., Mamelak, A. N., Malekmohammadi, M., Pouratian, N. & Rutishauser, U. Distinct roles of dorsal and ventral subthalamic neurons in action selection and cancellation. Neuron 109, 869–881 e866 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Coull, J. T., Cheng, R. K. & Meck, W. H. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36, 3–25 (2011).

    Article  PubMed  Google Scholar 

  105. Logan, G. D., Van Zandt, T., Verbruggen, F. & Wagenmakers, E. J. On the ability to inhibit thought and action: general and special theories of an act of control. Psychol. Rev. 121, 66–95 (2014).

    Article  PubMed  Google Scholar 

  106. Stuphorn, V. & Schall, J. D. Executive control of countermanding saccades by the supplementary eye field. Nat. Neurosci. 9, 925–931 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Menon, V., Adleman, N. E., White, C. D., Glover, G. H. & Reiss, A. L. Error-related brain activation during a Go/NoGo response inhibition task. Hum. Brain Mapp. 12, 131–143 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rivaud-Pechoux, S., Vidailhet, M., Brandel, J. P. & Gaymard, B. Mixing pro- and antisaccades in patients with parkinsonian syndromes. Brain 130, 256–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Simon, J. R. in Advances in Psychology Vol. 65 (eds Proctor, R. W. & Reeve, T. G.) 31–86 (Elsevier, 1990).

  110. MacLeod, C. M. Half a century of research on the Stroop effect: an integrative review. Psychol. Bull. 109, 163–203 (1991).

    Article  CAS  PubMed  Google Scholar 

  111. Eriksen, B. A. & Eriksen, C. W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143–149 (1974).

    Article  Google Scholar 

  112. Bush, G., Shin, L. M., Holmes, J., Rosen, B. R. & Vogt, B. A. The Multi-Source Interference Task: validation study with fMRI in individual subjects. Mol. Psychiatry 8, 60–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Mostofsky, S. H. & Simmonds, D. J. Response inhibition and response selection: two sides of the same coin. J. Cogn. Neurosci. 20, 751–761 (2008).

    Article  PubMed  Google Scholar 

  114. Washburn, D. A. The Stroop effect at 80: the competition between stimulus control and cognitive control. J. Exp. Anal. Behav. 105, 3–13 (2016).

    Article  PubMed  Google Scholar 

  115. Lauwereyns, J. et al. Interference from irrelevant features on visual discrimination by macaques (Macaca fuscata): a behavioral analogue of the human Stroop effect. J. Exp. Psychol. Anim. Behav. Process. 26, 352–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Michelet, T. et al. Electrophysiological correlates of a versatile executive control system in the monkey anterior cingulate cortex. Cereb. Cortex 26, 1684–1697 (2016).

    Article  PubMed  Google Scholar 

  117. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Bhushan, N. & Shadmehr, R. Computational nature of human adaptive control during learning of reaching movements in force fields. Biol. Cybern. 81, 39–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. McNamee, D. & Wolpert, D. M. Internal models in biological control. Annu. Rev. Control. Robot. Auton. Syst. 2, 339–364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 1998).

  122. Reppert, T. R., Heitz, R. P. & Schall, J. D. Neural mechanisms for executive control of speed-accuracy tradeoff. Preprint at bioRxiv https://doi.org/10.1101/773549 (2019).

    Article  Google Scholar 

  123. Dutilh, G. et al. Testing theories of post-error slowing. Atten. Percept. Psychophys. 74, 454–465 (2012).

    Article  PubMed  Google Scholar 

  124. Laming, D. Choice reaction performance following an error. Acta Psychol. 43, 199–224 (1979).

    Article  Google Scholar 

  125. Verguts, T., Notebaert, W., Kunde, W. & Wuhr, P. Post-conflict slowing: cognitive adaptation after conflict processing. Psychon. Bull. Rev. 18, 76–82 (2011).

    Article  PubMed  Google Scholar 

  126. Egner, T. Congruency sequence effects and cognitive control. Cogn. Affect. Behav. Neurosci. 7, 380–390 (2007).

    Article  PubMed  Google Scholar 

  127. Sohn, H., Narain, D., Meirhaeghe, N. & Jazayeri, M. Bayesian computation through cortical latent dynamics. Neuron 103, 934–947.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Frank, M. J., Samanta, J., Moustafa, A. A. & Sherman, S. J. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318, 1309–1312 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Chen, W. et al. Prefrontal-subthalamic hyperdirect pathway modulates movement inhibition in humans. Neuron 106, 579–588 e573 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cavanagh, J. F. et al. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat. Neurosci. 14, 1462–1467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Aron, A. R. & Poldrack, R. A. Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26, 2424–2433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Braver, T. S. The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn. Sci. 16, 106–113 (2012). An influential theoretical framework that divides cognitive control into a proactive mode and a reactive mode and proposes the differential roles of the PFC in subserving these two modes of cognitive control processes.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kerns, J. G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013). Offers a comprehensive theory of the role of the ACC in cognitive control.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Brown, J. W. & Braver, T. S. Learned predictions of error likelihood in the anterior cingulate cortex. Science 307, 1118–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Jiang, J., Beck, J., Heller, K. & Egner, T. An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands. Nat. Commun. 6, 8165 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Isoda, M. & Hikosaka, O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat. Neurosci. 10, 240–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Isoda, M. & Hikosaka, O. Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J. Neurosci. 28, 7209–7218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Aquino, T. G., Cockburn, J., Mamelak, A. N., Rutishauser, U. & O’Doherty, J. P. Neurons in human pre-supplementary motor area encode key computations for value-based choice. bioRxiv https://doi.org/10.1101/2021.10.27.466000 (2021).

    Article  PubMed  Google Scholar 

  141. Sarafyazd, M. & Jazayeri, M. Hierarchical reasoning by neural circuits in the frontal cortex. Science 364, eaav8911 (2019). Provides neuronal evidence that the macaque MFC is responsible for hierarchical reasoning about an error (that is, determining whether a loss of reward is caused by perceptual errors or a change in the response rule).

    Article  CAS  PubMed  Google Scholar 

  142. Maia, T. V. & Frank, M. J. From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 14, 154–162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Klaus, A., Alves da Silva, J. & Costa, R. M. What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci. 42, 459–483 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Gurney, K., Prescott, T. J. & Redgrave, P. A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern. 84, 401–410 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Wiecki, T. V. & Frank, M. J. A computational model of inhibitory control in frontal cortex and basal ganglia. Psychol. Rev. 120, 329–355 (2013).

    Article  PubMed  Google Scholar 

  146. Hatanaka, N. et al. Thalamocortical and intracortical connections of monkey cingulate motor areas. J. Comp. Neurol. 462, 121–138 (2003).

    Article  PubMed  Google Scholar 

  147. Godlove, D. C., Maier, A., Woodman, G. F. & Schall, J. D. Microcircuitry of agranular frontal cortex: testing the generality of the canonical cortical microcircuit. J. Neurosci. 34, 5355–5369 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ninomiya, T., Dougherty, K., Godlove, D. C., Schall, J. D. & Maier, A. Microcircuitry of agranular frontal cortex: contrasting laminar connectivity between occipital and frontal areas. J. Neurophysiol. 113, 3242–3255 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Larkum, M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36, 141–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Gidon, A. et al. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 367, 83–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Rutishauser, U., Slotine, J. J. & Douglas, R. Computation in dynamically bounded asymmetric systems. PLoS Comput. Biol. 11, e1004039 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Rutishauser, U., Douglas, R. J. & Slotine, J. J. Collective stability of networks of winner-take-all circuits. Neural Comput. 23, 735–773 (2011).

    Article  PubMed  Google Scholar 

  154. Seifert, S., von Cramon, D. Y., Imperati, D., Tittgemeyer, M. & Ullsperger, M. Thalamocingulate interactions in performance monitoring. J. Neurosci. 31, 3375–3383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hoesen, G. W. V., Morecraft, R. J. & Vogt, B. A. in Neurobiology of Cingulate Cortex and Limbic Thalamus (eds Vogt, B. A. & Gabriel, M.) 249–284 (Springer, 1993).

  156. Matelli, M. & Luppino, G. Thalamic input to mesial and superior area 6 in the macaque monkey. J. Comp. Neurol. 372, 59–87 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Kunimatsu, J. & Tanaka, M. Roles of the primate motor thalamus in the generation of antisaccades. J. Neurosci. 30, 5108–5117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Peterburs, J. et al. Altered error processing following vascular thalamic damage: evidence from an antisaccade task. PloS ONE 6, e21517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Allain, S., Hasbroucq, T., Burle, B., Grapperon, J. & Vidal, F. Response monitoring without sensory feedback. Clin. Neurophysiol. 115, 2014–2020 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Amiez, C., Champod, A. S., Wilson, C. R., Procyk, E. & Petrides, M. A unilateral medial frontal cortical lesion impairs trial and error learning without visual control. Neuropsychologia 75, 314–321 (2015).

    Article  PubMed  Google Scholar 

  161. Nachev, P., Wydell, H., O’Neill, K., Husain, M. & Kennard, C. The role of the pre-supplementary motor area in the control of action. Neuroimage 36, T155–T163 (2007).

    Article  PubMed  Google Scholar 

  162. Behrens, T. E., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Krigolson, O. E. & Holroyd, C. B. Hierarchical error processing: different errors, different systems. Brain Res. 1155, 70–80 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Haber, S. N. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 282, 248–257 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Aarts, E., Roelofs, A. & van Turennout, M. Anticipatory activity in anterior cingulate cortex can be independent of conflict and error likelihood. J. Neurosci. 28, 4671–4678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Heitz, R. P. & Schall, J. D. Neural mechanisms of speed-accuracy tradeoff. Neuron 76, 616–628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Falkenstein, M., Hohnsbein, J., Hoormann, J. & Blanke, L. Effects of errors in choice reaction tasks on the ERP under focused and divided attention. Psychophysiol. Brain Res. 1, 192–195 (1990).

    Google Scholar 

  168. Brooks, V. B. How does the limbic system assist motor learning? A limbic comparator hypothesis (part 1 of 2). Brain Behav. Evol. 29, 29–41 (1986).

    Article  CAS  PubMed  Google Scholar 

  169. Wang, J. X. et al. Prefrontal cortex as a meta-reinforcement learning system. Nat. Neurosci. 21, 860–868 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Jeurissen, D., Shushruth, S., El-Shamayleh, Y., Horwitz, G. D. & Shadlen, M. N. Deficits in decision-making induced by parietal cortex inactivation are compensated at two timescales. Neuron 110, 1924–1931.e1925 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Ogasawara, T., Nejime, M., Takada, M. & Matsumoto, M. Primate nigrostriatal dopamine system regulates saccadic response inhibition. Neuron 100, 1513–1526.e1514 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Grace, A. A. & Bunney, B. S. Nigral dopamine neurons - intracellular-recording and identification with L-dopa injection and histofluorescence. Science 210, 654–656 (1980).

    Article  CAS  PubMed  Google Scholar 

  173. Guyenet, P. G. & Aghajanian, G. K. Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res. 150, 69–84 (1978).

    Article  CAS  PubMed  Google Scholar 

  174. Thierry, A. M., Deniau, J. M., Herve, D. & Chevalier, G. Electro-physiological evidence for non-dopaminergic mesocortical and mesolimbic neurons in the rat. Brain Res. 201, 210–214 (1980).

    Article  CAS  PubMed  Google Scholar 

  175. Lavin, A. et al. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J. Neurosci. 25, 5013–5023 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Alexander, W. H. & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nat. Neurosci. 14, 1338–1344 (2011). A computational model that provides a unifying account of a wide range of neural signals in the MFC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Silvetti, M., Seurinck, R. & Verguts, T. Value and prediction error in medial frontal cortex: integrating the single-unit and systems levels of analysis. Front. Hum. Neurosci. 5, 75 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Alexander, W. H. & Brown, J. W. Hierarchical error representation: a computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Comput. 27, 2354–2410 (2015).

    Article  PubMed  Google Scholar 

  179. Shahnazian, D. & Holroyd, C. B. Distributed representations of action sequences in anterior cingulate cortex: a recurrent neural network approach. Psychon. Bull. Rev. 25, 302–321 (2018).

    Article  PubMed  Google Scholar 

  180. Vassena, E., Holroyd, C. B. & Alexander, W. H. Computational models of anterior cingulate cortex: at the crossroads between prediction and effort. Front. Neurosci. 11, 316 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Huang, Y. & Rao, R. P. N. Predictive coding. Wiley Interdiscip. Rev. Cogn. Sci. 2, 580–593 (2011).

    Article  PubMed  Google Scholar 

  182. Riesel, A. The erring brain: error-related negativity as an endophenotype for OCD — a review and meta-analysis. Psychophysiology 56, e13348 (2019).

    Article  PubMed  Google Scholar 

  183. Foti, D., Kotov, R., Bromet, E. & Hajcak, G. Beyond the broken error-related negativity: functional and diagnostic correlates of error processing in psychosis. Biol. Psychiatry 71, 864–872 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Luijten, M. et al. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J. Psychiatry Neurosci. 39, 149–169 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Manoach, D. S. & Agam, Y. Neural markers of errors as endophenotypes in neuropsychiatric disorders. Front. Hum. Neurosci. 7, 350 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Kirschner, H. & Klein, T. A. Beyond a blunted ERN - biobehavioral correlates of performance monitoring in schizophrenia. Neurosci. Biobehav. Rev. 133, 104504 (2021).

    Article  PubMed  Google Scholar 

  187. Endrass, T. & Ullsperger, M. Specificity of performance monitoring changes in obsessive-compulsive disorder. Neurosci. Biobehav. Rev. 46, 124–138 (2014).

    Article  PubMed  Google Scholar 

  188. Tsai, L. L., Young, H. Y., Hsieh, S. & Lee, C. S. Impairment of error monitoring following sleep deprivation. Sleep 28, 707–713 (2005).

    Article  PubMed  Google Scholar 

  189. Ridderinkhof, K. R. et al. Alcohol consumption impairs detection of performance errors in mediofrontal cortex. Science 298, 2209–2211 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Franken, I. H., van Strien, J. W., Franzek, E. J. & van de Wetering, B. J. Error-processing deficits in patients with cocaine dependence. Biol. Psychol. 75, 45–51 (2007).

    Article  PubMed  Google Scholar 

  191. Hajcak, G., Klawohn, J. & Meyer, A. The utility of event-related potentials in clinical psychology. Annu. Rev. Clin. Psychol. 15, 71–95 (2019).

    Article  PubMed  Google Scholar 

  192. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Huys, Q. J., Maia, T. V. & Frank, M. J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19, 404–413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank R. Adolphs, K. Silm and J. Brown for discussion and C. Holroyd for valuable comments. J.D.S. has been supported by the US National Institutes of Health and by the E. Bronson Ingram Chair in Neuroscience and is currently supported by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2022-04592). U.R. has been supported by the US National Institutes of Health (R01MH110831 and U01NS117839) and the NSF (BCS-2219800). A.S. has been supported by a Canadian Institutes of Health Research Postdoctoral Fellowship award.

Author information

Authors and Affiliations

Authors

Contributions

The authors all contributed to all aspects of preparing the article.

Corresponding authors

Correspondence to Zhongzheng Fu, Jeffrey D. Schall or Ueli Rutishauser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks M. Ullsperger, C. Carter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Action errors

Errors made owing to a failure of cognitive control, so that goal-directed responses yield to more automatic responses.

Control command

The identity and intensity of control mechanisms used in a given trial, including contributions from the control inverse model and the feedback controller.

Cognitive control

Ability to adjust behaviour according to the desired goal and to avoid repeating errors through detection of conflict, errors and success.

Corollary discharge

Copy of efferent signals that is provided to sensory or higher-level cognitive structures to enable forward models.

Error-related negativity

(ERN). Evoked potential that is measured over the medial frontal cortex shortly after an action error.

Forward models

Internal models that predict the future state of the motor effector or action selection process on the basis of the current state and a copy of a control or motor command (obtained as a corollary discharge).

Feedback controllers

Controllers that are activated by internally generated feedback (such as action errors). They provide control in a reactive manner.

Inverse models

Internal models that compute which control command is most likely to lead to a desired future state of the system on the basis of knowledge of the dynamics of the system. Used to provide control in a proactive manner.

Medial frontal cortex

(MFC). Areas along the midline of the frontal lobe, including the pre-supplementary motor area, supplementary eye field and middle cingulate cortex.

Middle cingulate cortex

(MCC). A region in the medial frontal cortex, located ventral to the primary motor cortex, supplementary eye field, supplementary motor area, and pre-supplementary motor area in Brodmann area 24. This area contributes to diverse functions, including performance monitoring and cognitive control.

Paracingulate sulcus

(PCS). A sulcus found in some people but not in macaques that is aligned parallel to and located dorsal to the cingulate sulcus in the medial frontal cortex.

Performance monitoring

Ability to monitor one’s own performance, either by self-monitoring or on the basis of external feedback.

Post-error slowing

A delay of response time in the trial following commission of an error response that is found commonly but not uniformly in various choice tasks.

Pre-supplementary motor area

(pre-SMA). An area in the medial frontal lobe, located anterior to the supplementary motor area in Brodmann area 6aβ, that contributes to cognitive control of action.

Superior frontal gyrus

(SFG). Dorsomedial gyrus of the frontal lobe situated along the midline. It includes the medial part of Brodmann area 6, within which the pre-supplementary motor area, supplementary motor area and frontal eye field are located.

Supplementary motor area

(SMA). An area in the medial frontal lobe, located anterior to the primary motor cortex in Brodmann area 6aα, that contributes to the production of self-generated actions.

Supplementary eye field

(SEF). An area in the superior frontal gyrus. It is distinguished from surrounding cortical areas by denser connections with visual and ocular motor structures and by its functional relationship with eye movements.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., Sajad, A., Errington, S.P. et al. Neurophysiological mechanisms of error monitoring in human and non-human primates. Nat Rev Neurosci 24, 153–172 (2023). https://doi.org/10.1038/s41583-022-00670-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00670-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing