Abstract
Performance monitoring is an important executive function that allows us to gain insight into our own behaviour. This remarkable ability relies on the frontal cortex, and its impairment is an aspect of many psychiatric diseases. In recent years, recordings from the macaque and human medial frontal cortex have offered a detailed understanding of the neurophysiological substrate that underlies performance monitoring. Here we review the discovery of single-neuron correlates of error monitoring, a key aspect of performance monitoring, in both species. These neurons are the generators of the error-related negativity, which is a non-invasive biomarker that indexes error detection. We evaluate a set of tasks that allows the synergistic elucidation of the mechanisms of cognitive control across the two species, consider differences in brain anatomy and testing conditions across species, and describe the clinical relevance of these findings for understanding psychopathology. Last, we integrate the body of experimental facts into a theoretical framework that offers a new perspective on how error signals are computed in both species and makes novel, testable predictions.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Rabbitt, P. M. Errors and error correction in choice-response tasks. J. Exp. Psychol. 71, 264–272 (1966). The original description of slowing after errors, revealing the existence of and a means to investigate performance monitoring.
Logan, G. D. & Crump, M. J. Cognitive illusions of authorship reveal hierarchical error detection in skilled typists. Science 330, 683–686 (2010).
Wessel, J. R. An adaptive orienting theory of error processing. Psychophysiology 55, e13041 (2018).
Ullsperger, M., Danielmeier, C. & Jocham, G. Neurophysiology of performance monitoring and adaptive behavior. Physiol. Rev. 94, 35–79 (2014).
Ullsperger, M. Performance monitoring in neurological and psychiatric patients. Int. J. Psychophysiol. 59, 59–69 (2006).
Gillan, C. M., Fineberg, N. A. & Robbins, T. W. A trans-diagnostic perspective on obsessive-compulsive disorder. Psychol. Med. 47, 1528–1548 (2017).
Insel, T. R. The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. Am. J. Psychiatry 171, 395–397 (2014).
Holroyd, C. B. & Umemoto, A. The research domain criteria framework: the case for anterior cingulate cortex. Neurosci. Biobehav. Rev. 71, 418–443 (2016).
Loosen, A. M. & Hauser, T. U. Towards a computational psychiatry of juvenile obsessive-compulsive disorder. Neurosci. Biobehav. Rev. 118, 631–642 (2020).
Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13, 1161–1169 (2010).
Robble, M. A. et al. Concordant neurophysiological signatures of cognitive control in humans and rats. Neuropsychopharmacology 46, 252–1262 (2021).
Fu, Z. et al. Single-neuron correlates of error monitoring and post-error adjustments in human medial frontal cortex. Neuron 101, 165–177.e165 (2019). Shows that single neurons in the human MFC that signal errors respond first in the pre-SMA and later in the dorsal ACC, and in both areas the amplitude of the ERN predicts firing rates of error neurons.
Sajad, A., Godlove, D. C. & Schall, J. D. Cortical microcircuitry of performance monitoring. Nat. Neurosci. 22, 265–274 (2019). Describes the organization of error-related neurons across the layers of a medial frontal area and their association with the ERN.
Shenhav, A., Cohen, J. D. & Botvinick, M. M. Dorsal anterior cingulate cortex and the value of control. Nat. Neurosci. 19, 1286–1291 (2016).
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A. & Nieuwenhuis, S. The role of the medial frontal cortex in cognitive control. Science 306, 443–447 (2004).
Scangos, K. W., Aronberg, R. & Stuphorn, V. Performance monitoring by presupplementary and supplementary motor area during an arm movement countermanding task. J. Neurophysiol. 109, 1928–1939 (2013). Demonstrates that the pre-SMA and the SMA in macaques do not enable reactive response inhibition but instead signal errors.
Nachev, P., Kennard, C. & Husain, M. Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 9, 856–869 (2008).
Fu, Z. et al. The geometry of domain-general performance monitoring in the human medial frontal cortex. Science 376, eabm9922 (2022). Reveals that neurons in the human MFC encode conflict probability, cognitive conflict and errors in a domain-general and compositional manner across two tasks, thereby revealing multiple signals needed by our proposed model.
Ito, S., Stuphorn, V., Brown, J. W. & Schall, J. D. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302, 120–122 (2003). Demonstrates error-related neural spiking in the cingulate cortex of macaques during the stop-signal task.
Procyk, E. et al. Midcingulate motor map and feedback detection: converging data from humans and monkeys. Cereb. Cortex 26, 467–476 (2016).
Vogt, B. A. Midcingulate cortex: structure, connections, homologies, functions and diseases. J. Chem. Neuroanat. 74, 28–46 (2016).
Neubert, F. X., Mars, R. B., Sallet, J. & Rushworth, M. F. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proc. Natl Acad. Sci. USA 112, e2695–e2704 (2015).
Shackman, A. J. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167 (2011).
Picard, N. & Strick, P. L. Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex 6, 342–353 (1996).
Emeric, E. E. et al. Performance monitoring local field potentials in the medial frontal cortex of primates: anterior cingulate cortex. J. Neurophysiol. 99, 759–772 (2008).
Emeric, E. E., Leslie, M., Pouget, P. & Schall, J. D. Performance monitoring local field potentials in the medial frontal cortex of primates: supplementary eye field. J. Neurophysiol. 104, 1523–1537 (2010).
Godlove, D. C. et al. Event-related potentials elicited by errors during the stop-signal task. I. Macaque monkeys. J. Neurosci. 31, 15640–15649 (2011). Demonstration of the macaque homologue of the ERN.
Schall, J. D., Stuphorn, V. & Brown, J. W. Monitoring and control of action by the frontal lobes. Neuron 36, 309–322 (2002).
Debener, S. et al. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J. Neurosci. 25, 11730–11737 (2005). Shows that the amplitude of the scalp-measured ERN co-varies trial-by-trial with the fMRI BOLD signal in the MFC.
Iannaccone, R. et al. Conflict monitoring and error processing: new insights from simultaneous EEG-fMRI. Neuroimage 105, 395–407 (2015).
Swick, D. & Turken, U. Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proc. Natl Acad. Sci. Usa. 99, 16354–16359 (2002).
Turken, A. U. & Swick, D. Response selection in the human anterior cingulate cortex. Nat. Neurosci. 2, 920–924 (1999).
Stemmer, B., Segalowitz, S. J., Witzke, W. & Schonle, P. W. Error detection in patients with lesions to the medial prefrontal cortex: an ERP study. Neuropsychologia 42, 118–130 (2004).
Minxha, J., Adolphs, R., Fusi, S., Mamelak, A. N. & Rutishauser, U. Flexible recruitment of memory-based choice representations by the human medial frontal cortex. Science 368, eaba3313 (2020). Reveals encoding of task-specific but modality-independent choice signals in the human MFC at the single-cell level.
Bonini, F. et al. Action monitoring and medial frontal cortex: leading role of supplementary motor area. Science 343, 888–891 (2014).
Sheth, S. A. et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488, 218–221 (2012).
Williams, Z. M., Bush, G., Rauch, S. L., Cosgrove, G. R. & Eskandar, E. N. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nat. Neurosci. 7, 1370–1375 (2004).
Kolling, N. et al. Value, search, persistence and model updating in anterior cingulate cortex. Nat. Neurosci. 19, 1280–1285 (2016). A review of evidence supporting the MCC’s role in decision making and, more broadly, acquiring action policies in a changing environment.
Ebitz, R. B. & Hayden, B. Y. Dorsal anterior cingulate: a Rorschach test for cognitive neuroscience. Nat. Neurosci. 19, 1278–1279 (2016).
Heilbronner, S. R. & Hayden, B. Y. Dorsal anterior cingulate cortex: a bottom-up view. Annu. Rev. Neurosci. 39, 149–170 (2016).
Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E. & Donchin, E. The error-related negativity. Perspect. Psychol. Sci. 13, 200–204 (2018).
Gehring, W. J., Liu, Y., Orr, J. M. & Carp, J. in The Oxford Handbook of Event-Related Potential Components (eds Kappenman, E. S. & Luck, S. J.) (Oxford University Press, 2012). A comprehensive and authoritative review of the ERN in humans.
Falkenstein, M., Hohnsbein, J., Hoormann, J. & Blanke, L. EPIC Ninth International Conference on Event-Related Potentials of the Brain, Noordwijk, The Netherlands 28 May–3 June 1989. Electroencephalogr. Clin. Neurophysiol. 42 (Suppl. 1), 1–393 (1991).
Gehring, W. J., Coles, M. G., Meyer, D. E. & Donchin, E. The error-related negativity: an event-related brain potential accompanying errors. Psychophysiology 27, S34 (1990).
Falkenstein, M., Hohnsbein, J., Hoormann, J. & Blanke, L. Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr. Clin. Neurophysiol. 78, 447–455 (1991).
Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E. & Donchin, E. A neural system for error detection and compensation. Psychol. Sci. 4, 385–390 (1993).
Miltner, W. H., Braun, C. H. & Coles, M. G. Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a “generic” neural system for error detection. J. Cogn. Neurosci. 9, 788–798 (1997).
Holroyd, C. B. & Coles, M. G. H. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679–709 (2002). A computational model of error detection which proposes that the ERN is generated by transmission of the error signal carried by dopaminergic inputs to the MFC due to a transient pause of dopamine release and consequently disinhibition of pyramidal neurons.
Holroyd, C. B., Pakzad-Vaezi, K. L. & Krigolson, O. E. The feedback correct-related positivity: sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology 45, 688–697 (2008).
Dehaene, S., Posner, M. I. & Tucker, D. M. Localization of a neural system for error detection and compensation. Psychol. Sci. 5, 303–305 (1994). The first attempt to locate the current dipole producing the ERN.
Yucel, M. et al. Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cereb. Cortex 11, 17–25 (2001).
Vogt, B. A., Nimchinsky, E. A., Vogt, L. J. & Hof, P. R. Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J. Comp. Neurol. 359, 490–506 (1995). Describes the composition of areas within the MFC of humans that may contribute to error monitoring.
Amiez, C., Wilson, C. R. E. & Procyk, E. Variations of cingulate sulcal organization and link with cognitive performance. Sci. Rep. 8, 13988 (2018).
Huster, R. J. et al. Effects of anterior cingulate fissurization on cognitive control during Stroop interference. Hum. Brain Mapp. 30, 1279–1289 (2009).
Herrera, B., Sajad, A., Woodman, G. F., Schall, J. D. & Riera, J. J. A minimal biophysical model of neocortical pyramidal cells: implications for frontal cortex microcircuitry and field potential generation. J. Neurosci. 40, 8513–8529 (2020).
Halnes, G., Maki-Marttunen, T., Pettersen, K. H., Andreassen, O. A. & Einevoll, G. T. Ion diffusion may introduce spurious current sources in current-source density (CSD) analysis. J. Neurophysiol. 118, 114–120 (2017).
Turner, E. C. et al. Distributions of cells and neurons across the cortical sheet in old world macaques. Brain Behav. Evol. 88, 1–13 (2016).
Cohen, M. X. Where does EEG come from and what does it mean. Trends Neurosci. 40, 208–218 (2017).
Cole, M. W., Yeung, N., Freiwald, W. A. & Botvinick, M. Cingulate cortex: diverging data from humans and monkeys. Trends Neurosci. 32, 566–574 (2009).
Cavanagh, J. F., Zambrano-Vazquez, L. & Allen, J. J. B. Theta lingua franca: a common mid-frontal substrate for action monitoring processes. Psychophysiology 49, 220–238 (2012).
Yordanova, J., Falkenstein, M., Hohnsbein, J. & Kolev, V. Parallel systems of error processing in the brain. Neuroimage 22, 590–602 (2004).
van Driel, J., Ridderinkhof, K. R. & Cohen, M. X. Not all errors are alike: theta and alpha EEG dynamics relate to differences in error-processing dynamics. J. Neurosci. 32, 16795–16806 (2012).
Luu, P., Tucker, D. M. & Makeig, S. Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clin. Neurophysiol. 115, 1821–1835 (2004).
Trujillo, L. T. & Allen, J. J. B. Theta EEG dynamics of the error-related negativity. Clin. Neurophysiol. 118, 645–668 (2007).
Cavanagh, J. F. & Frank, M. J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18, 414–421 (2014).
Hewig, J., Coles, M. G., Trippe, R. H., Hecht, H. & Miltner, W. H. Dissociation of Pe and ERN/Ne in the conscious recognition of an error. Psychophysiology 48, 1390–1396 (2011).
Di Gregorio, F., Maier, M. E. & Steinhauser, M. Errors can elicit an error positivity in the absence of an error negativity: evidence for independent systems of human error monitoring. NeuroImage 172, 427–436 (2018).
Wessel, J. R. Error awareness and the error-related negativity: evaluating the first decade of evidence. Front. Hum. Neurosci. 6, 88 (2012).
Stuphorn, V., Taylor, T. L. & Schall, J. D. Performance monitoring by the supplementary eye field. Nature 408, 857–860 (2000).
Holroyd, C. B., Dien, J. & Coles, M. G. H. Error-related scalp potentials elicited by hand and foot movements: evidence for an output-independent error-processing system in humans. Neurosci. Lett. 242, 65–68 (1998).
Reinhart, R. M., Carlisle, N. B., Kang, M. S. & Woodman, G. F. Event-related potentials elicited by errors during the stop-signal task. II: human effector-specific error responses. J. Neurophysiol. 107, 2794–2807 (2012).
Phillips, J. M. & Everling, S. Event-related potentials associated with performance monitoring in non-human primates. Neuroimage 97, 308–320 (2014).
Wang, C., Ulbert, I., Schomer, D. L., Marinkovic, K. & Halgren, E. Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. J. Neurosci. 25, 604–613 (2005).
Yeung, N., Botvinick, M. M. & Cohen, J. D. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol. Rev. 111, 931–959 (2004).
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).
Smith, E. H. et al. Widespread temporal coding of cognitive control in the human prefrontal cortex. Nat. Neurosci. 22, 1883–1891 (2019).
Scangos, K. W. & Stuphorn, V. Medial frontal cortex motivates but does not control movement initiation in the countermanding task. J. Neurosci. 30, 1968–1982 (2010).
Sajad, A., Errington, S. P. & Schall, J. D. Functional architecture of executive control and associated event-related potentials in macaques. Nat. Commun. 13, 6279 (2022).
Nakamura K., Roesch M. R. & Olson C. R. Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. J. Neurophysiol. 93, 884–908 (2005).
Ebitz, R. B. & Platt, M. L. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal. Neuron 85, 628–640 (2015).
Shenhav, A. & Botvinick, M. Uncovering a missing link in anterior cingulate research. Neuron 85, 455–457 (2015).
Amiez, C. et al. Sulcal organization in the medial frontal cortex provides insights into primate brain evolution. Nat. Commun. 10, 3437 (2019). Analysis of the variable presence of a PCS in humans and apes and absence in monkeys.
Sallet, J. et al. The organization of dorsal frontal cortex in humans and macaques. J. Neurosci. 33, 12255–12274 (2013).
Schall, J. D. et al. in Evolutionary Neuroscience 2nd edn (ed Kaas, J. H.) 861–890 (Academic Press, 2020).
Grosbras, M. H., Lobel, E., Van de Moortele, P. F., LeBihan, D. & Berthoz, A. An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging. Cereb. Cortex 9, 705–711 (1999).
Amiez, C. et al. The location of feedback-related activity in the midcingulate cortex is predicted by local morphology. J. Neurosci. 33, 2217–2228 (2013).
Amiez, C. et al. Chimpanzee histology and functional brain imaging show that the paracingulate sulcus is not human-specific. Commun. Biol. 4, 54 (2021).
Buda, M., Fornito, A., Bergstrom, Z. M. & Simons, J. S. A specific brain structural basis for individual differences in reality monitoring. J. Neurosci. 31, 14308–14313 (2011).
Simons, J. S., Garrison, J. R. & Johnson, M. K. Brain mechanisms of reality monitoring. Trends Cogn. Sci. 21, 462–473 (2017).
Huster, R. J., Enriquez-Geppert, S., Pantev, C. & Bruchmann, M. Variations in midcingulate morphology are related to ERP indices of cognitive control. Brain Struct. Funct. 219, 49–60 (2014).
Garrison, J. R. et al. Paracingulate sulcus morphology is associated with hallucinations in the human brain. Nat. Commun. 6, 8956 (2015).
Shim, G. et al. Reduced cortical folding of the anterior cingulate cortex in obsessive-compulsive disorder. J. Psychiatry Neurosci. 34, 443–449 (2009).
Nimchinsky, E. A., Vogt, B. A., Morrison, J. H. & Hof, P. R. Spindle neurons of the human anterior cingulate cortex. J. Comp. Neurol. 355, 27–37 (1995).
Barbas, H. & Pandya, D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375 (1989).
Vogt, B. A., Vogt, L., Farber, N. B. & Bush, G. Architecture and neurocytology of monkey cingulate gyrus. J. Comp. Neurol. 485, 218–239 (2005).
Matelli, M., Luppino, G. & Rizzolatti, G. Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J. Comp. Neurol. 311, 445–462 (1991).
Petrides, M. Comparative architectonic analysis of the human and the macaque frontal cortex. Handb. Neuropsychol. 11, 17–58 (1994).
Paxton, J. L., Barch, D. M., Racine, C. A. & Braver, T. S. Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cereb. Cortex 18, 1010–1028 (2008).
Danielmeier, C. & Ullsperger, M. Post-error adjustments. Front. Psychol. 2, 233 (2011).
Verbruggen, F. et al. A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. Elife 8, e46323 (2019).
Camalier, C. R. et al. Dynamics of saccade target selection: race model analysis of double step and search step saccade production in human and macaque. Vis. Res. 47, 2187–2211 (2007).
Schall, J. D. & Boucher, L. Executive control of gaze by the frontal lobes. Cogn. Affect. Behav. Neurosci. 7, 396–412 (2007).
Mosher, C. P., Mamelak, A. N., Malekmohammadi, M., Pouratian, N. & Rutishauser, U. Distinct roles of dorsal and ventral subthalamic neurons in action selection and cancellation. Neuron 109, 869–881 e866 (2021).
Coull, J. T., Cheng, R. K. & Meck, W. H. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36, 3–25 (2011).
Logan, G. D., Van Zandt, T., Verbruggen, F. & Wagenmakers, E. J. On the ability to inhibit thought and action: general and special theories of an act of control. Psychol. Rev. 121, 66–95 (2014).
Stuphorn, V. & Schall, J. D. Executive control of countermanding saccades by the supplementary eye field. Nat. Neurosci. 9, 925–931 (2006).
Menon, V., Adleman, N. E., White, C. D., Glover, G. H. & Reiss, A. L. Error-related brain activation during a Go/NoGo response inhibition task. Hum. Brain Mapp. 12, 131–143 (2001).
Rivaud-Pechoux, S., Vidailhet, M., Brandel, J. P. & Gaymard, B. Mixing pro- and antisaccades in patients with parkinsonian syndromes. Brain 130, 256–264 (2007).
Simon, J. R. in Advances in Psychology Vol. 65 (eds Proctor, R. W. & Reeve, T. G.) 31–86 (Elsevier, 1990).
MacLeod, C. M. Half a century of research on the Stroop effect: an integrative review. Psychol. Bull. 109, 163–203 (1991).
Eriksen, B. A. & Eriksen, C. W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143–149 (1974).
Bush, G., Shin, L. M., Holmes, J., Rosen, B. R. & Vogt, B. A. The Multi-Source Interference Task: validation study with fMRI in individual subjects. Mol. Psychiatry 8, 60–70 (2003).
Mostofsky, S. H. & Simmonds, D. J. Response inhibition and response selection: two sides of the same coin. J. Cogn. Neurosci. 20, 751–761 (2008).
Washburn, D. A. The Stroop effect at 80: the competition between stimulus control and cognitive control. J. Exp. Anal. Behav. 105, 3–13 (2016).
Lauwereyns, J. et al. Interference from irrelevant features on visual discrimination by macaques (Macaca fuscata): a behavioral analogue of the human Stroop effect. J. Exp. Psychol. Anim. Behav. Process. 26, 352–357 (2000).
Michelet, T. et al. Electrophysiological correlates of a versatile executive control system in the monkey anterior cingulate cortex. Cereb. Cortex 26, 1684–1697 (2016).
Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).
Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).
Bhushan, N. & Shadmehr, R. Computational nature of human adaptive control during learning of reaching movements in force fields. Biol. Cybern. 81, 39–60 (1999).
McNamee, D. & Wolpert, D. M. Internal models in biological control. Annu. Rev. Control. Robot. Auton. Syst. 2, 339–364 (2019).
Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 1998).
Reppert, T. R., Heitz, R. P. & Schall, J. D. Neural mechanisms for executive control of speed-accuracy tradeoff. Preprint at bioRxiv https://doi.org/10.1101/773549 (2019).
Dutilh, G. et al. Testing theories of post-error slowing. Atten. Percept. Psychophys. 74, 454–465 (2012).
Laming, D. Choice reaction performance following an error. Acta Psychol. 43, 199–224 (1979).
Verguts, T., Notebaert, W., Kunde, W. & Wuhr, P. Post-conflict slowing: cognitive adaptation after conflict processing. Psychon. Bull. Rev. 18, 76–82 (2011).
Egner, T. Congruency sequence effects and cognitive control. Cogn. Affect. Behav. Neurosci. 7, 380–390 (2007).
Sohn, H., Narain, D., Meirhaeghe, N. & Jazayeri, M. Bayesian computation through cortical latent dynamics. Neuron 103, 934–947.e5 (2019).
Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018).
Frank, M. J., Samanta, J., Moustafa, A. A. & Sherman, S. J. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318, 1309–1312 (2007).
Chen, W. et al. Prefrontal-subthalamic hyperdirect pathway modulates movement inhibition in humans. Neuron 106, 579–588 e573 (2020).
Cavanagh, J. F. et al. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat. Neurosci. 14, 1462–1467 (2011).
Aron, A. R. & Poldrack, R. A. Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26, 2424–2433 (2006).
Braver, T. S. The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn. Sci. 16, 106–113 (2012). An influential theoretical framework that divides cognitive control into a proactive mode and a reactive mode and proposes the differential roles of the PFC in subserving these two modes of cognitive control processes.
Kerns, J. G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).
Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013). Offers a comprehensive theory of the role of the ACC in cognitive control.
Brown, J. W. & Braver, T. S. Learned predictions of error likelihood in the anterior cingulate cortex. Science 307, 1118–1121 (2005).
Jiang, J., Beck, J., Heller, K. & Egner, T. An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands. Nat. Commun. 6, 8165 (2015).
Isoda, M. & Hikosaka, O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat. Neurosci. 10, 240–248 (2007).
Isoda, M. & Hikosaka, O. Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J. Neurosci. 28, 7209–7218 (2008).
Aquino, T. G., Cockburn, J., Mamelak, A. N., Rutishauser, U. & O’Doherty, J. P. Neurons in human pre-supplementary motor area encode key computations for value-based choice. bioRxiv https://doi.org/10.1101/2021.10.27.466000 (2021).
Sarafyazd, M. & Jazayeri, M. Hierarchical reasoning by neural circuits in the frontal cortex. Science 364, eaav8911 (2019). Provides neuronal evidence that the macaque MFC is responsible for hierarchical reasoning about an error (that is, determining whether a loss of reward is caused by perceptual errors or a change in the response rule).
Maia, T. V. & Frank, M. J. From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 14, 154–162 (2011).
Klaus, A., Alves da Silva, J. & Costa, R. M. What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci. 42, 459–483 (2019).
Gurney, K., Prescott, T. J. & Redgrave, P. A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern. 84, 401–410 (2001).
Wiecki, T. V. & Frank, M. J. A computational model of inhibitory control in frontal cortex and basal ganglia. Psychol. Rev. 120, 329–355 (2013).
Hatanaka, N. et al. Thalamocortical and intracortical connections of monkey cingulate motor areas. J. Comp. Neurol. 462, 121–138 (2003).
Godlove, D. C., Maier, A., Woodman, G. F. & Schall, J. D. Microcircuitry of agranular frontal cortex: testing the generality of the canonical cortical microcircuit. J. Neurosci. 34, 5355–5369 (2014).
Ninomiya, T., Dougherty, K., Godlove, D. C., Schall, J. D. & Maier, A. Microcircuitry of agranular frontal cortex: contrasting laminar connectivity between occipital and frontal areas. J. Neurophysiol. 113, 3242–3255 (2015).
Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).
Larkum, M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36, 141–151 (2013).
Gidon, A. et al. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 367, 83–87 (2020).
Rutishauser, U., Slotine, J. J. & Douglas, R. Computation in dynamically bounded asymmetric systems. PLoS Comput. Biol. 11, e1004039 (2015).
Rutishauser, U., Douglas, R. J. & Slotine, J. J. Collective stability of networks of winner-take-all circuits. Neural Comput. 23, 735–773 (2011).
Seifert, S., von Cramon, D. Y., Imperati, D., Tittgemeyer, M. & Ullsperger, M. Thalamocingulate interactions in performance monitoring. J. Neurosci. 31, 3375–3383 (2011).
Hoesen, G. W. V., Morecraft, R. J. & Vogt, B. A. in Neurobiology of Cingulate Cortex and Limbic Thalamus (eds Vogt, B. A. & Gabriel, M.) 249–284 (Springer, 1993).
Matelli, M. & Luppino, G. Thalamic input to mesial and superior area 6 in the macaque monkey. J. Comp. Neurol. 372, 59–87 (1996).
Kunimatsu, J. & Tanaka, M. Roles of the primate motor thalamus in the generation of antisaccades. J. Neurosci. 30, 5108–5117 (2010).
Peterburs, J. et al. Altered error processing following vascular thalamic damage: evidence from an antisaccade task. PloS ONE 6, e21517 (2011).
Allain, S., Hasbroucq, T., Burle, B., Grapperon, J. & Vidal, F. Response monitoring without sensory feedback. Clin. Neurophysiol. 115, 2014–2020 (2004).
Amiez, C., Champod, A. S., Wilson, C. R., Procyk, E. & Petrides, M. A unilateral medial frontal cortical lesion impairs trial and error learning without visual control. Neuropsychologia 75, 314–321 (2015).
Nachev, P., Wydell, H., O’Neill, K., Husain, M. & Kennard, C. The role of the pre-supplementary motor area in the control of action. Neuroimage 36, T155–T163 (2007).
Behrens, T. E., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).
Krigolson, O. E. & Holroyd, C. B. Hierarchical error processing: different errors, different systems. Brain Res. 1155, 70–80 (2007).
Haber, S. N. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 282, 248–257 (2014).
Aarts, E., Roelofs, A. & van Turennout, M. Anticipatory activity in anterior cingulate cortex can be independent of conflict and error likelihood. J. Neurosci. 28, 4671–4678 (2008).
Heitz, R. P. & Schall, J. D. Neural mechanisms of speed-accuracy tradeoff. Neuron 76, 616–628 (2012).
Falkenstein, M., Hohnsbein, J., Hoormann, J. & Blanke, L. Effects of errors in choice reaction tasks on the ERP under focused and divided attention. Psychophysiol. Brain Res. 1, 192–195 (1990).
Brooks, V. B. How does the limbic system assist motor learning? A limbic comparator hypothesis (part 1 of 2). Brain Behav. Evol. 29, 29–41 (1986).
Wang, J. X. et al. Prefrontal cortex as a meta-reinforcement learning system. Nat. Neurosci. 21, 860–868 (2018).
Jeurissen, D., Shushruth, S., El-Shamayleh, Y., Horwitz, G. D. & Shadlen, M. N. Deficits in decision-making induced by parietal cortex inactivation are compensated at two timescales. Neuron 110, 1924–1931.e1925 (2022).
Ogasawara, T., Nejime, M., Takada, M. & Matsumoto, M. Primate nigrostriatal dopamine system regulates saccadic response inhibition. Neuron 100, 1513–1526.e1514 (2018).
Grace, A. A. & Bunney, B. S. Nigral dopamine neurons - intracellular-recording and identification with L-dopa injection and histofluorescence. Science 210, 654–656 (1980).
Guyenet, P. G. & Aghajanian, G. K. Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res. 150, 69–84 (1978).
Thierry, A. M., Deniau, J. M., Herve, D. & Chevalier, G. Electro-physiological evidence for non-dopaminergic mesocortical and mesolimbic neurons in the rat. Brain Res. 201, 210–214 (1980).
Lavin, A. et al. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J. Neurosci. 25, 5013–5023 (2005).
Alexander, W. H. & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nat. Neurosci. 14, 1338–1344 (2011). A computational model that provides a unifying account of a wide range of neural signals in the MFC.
Silvetti, M., Seurinck, R. & Verguts, T. Value and prediction error in medial frontal cortex: integrating the single-unit and systems levels of analysis. Front. Hum. Neurosci. 5, 75 (2011).
Alexander, W. H. & Brown, J. W. Hierarchical error representation: a computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Comput. 27, 2354–2410 (2015).
Shahnazian, D. & Holroyd, C. B. Distributed representations of action sequences in anterior cingulate cortex: a recurrent neural network approach. Psychon. Bull. Rev. 25, 302–321 (2018).
Vassena, E., Holroyd, C. B. & Alexander, W. H. Computational models of anterior cingulate cortex: at the crossroads between prediction and effort. Front. Neurosci. 11, 316 (2017).
Huang, Y. & Rao, R. P. N. Predictive coding. Wiley Interdiscip. Rev. Cogn. Sci. 2, 580–593 (2011).
Riesel, A. The erring brain: error-related negativity as an endophenotype for OCD — a review and meta-analysis. Psychophysiology 56, e13348 (2019).
Foti, D., Kotov, R., Bromet, E. & Hajcak, G. Beyond the broken error-related negativity: functional and diagnostic correlates of error processing in psychosis. Biol. Psychiatry 71, 864–872 (2012).
Luijten, M. et al. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J. Psychiatry Neurosci. 39, 149–169 (2014).
Manoach, D. S. & Agam, Y. Neural markers of errors as endophenotypes in neuropsychiatric disorders. Front. Hum. Neurosci. 7, 350 (2013).
Kirschner, H. & Klein, T. A. Beyond a blunted ERN - biobehavioral correlates of performance monitoring in schizophrenia. Neurosci. Biobehav. Rev. 133, 104504 (2021).
Endrass, T. & Ullsperger, M. Specificity of performance monitoring changes in obsessive-compulsive disorder. Neurosci. Biobehav. Rev. 46, 124–138 (2014).
Tsai, L. L., Young, H. Y., Hsieh, S. & Lee, C. S. Impairment of error monitoring following sleep deprivation. Sleep 28, 707–713 (2005).
Ridderinkhof, K. R. et al. Alcohol consumption impairs detection of performance errors in mediofrontal cortex. Science 298, 2209–2211 (2002).
Franken, I. H., van Strien, J. W., Franzek, E. J. & van de Wetering, B. J. Error-processing deficits in patients with cocaine dependence. Biol. Psychol. 75, 45–51 (2007).
Hajcak, G., Klawohn, J. & Meyer, A. The utility of event-related potentials in clinical psychology. Annu. Rev. Clin. Psychol. 15, 71–95 (2019).
Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).
Huys, Q. J., Maia, T. V. & Frank, M. J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19, 404–413 (2016).
Acknowledgements
The authors thank R. Adolphs, K. Silm and J. Brown for discussion and C. Holroyd for valuable comments. J.D.S. has been supported by the US National Institutes of Health and by the E. Bronson Ingram Chair in Neuroscience and is currently supported by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2022-04592). U.R. has been supported by the US National Institutes of Health (R01MH110831 and U01NS117839) and the NSF (BCS-2219800). A.S. has been supported by a Canadian Institutes of Health Research Postdoctoral Fellowship award.
Author information
Authors and Affiliations
Contributions
The authors all contributed to all aspects of preparing the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Neuroscience thanks M. Ullsperger, C. Carter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Action errors
-
Errors made owing to a failure of cognitive control, so that goal-directed responses yield to more automatic responses.
- Control command
-
The identity and intensity of control mechanisms used in a given trial, including contributions from the control inverse model and the feedback controller.
- Cognitive control
-
Ability to adjust behaviour according to the desired goal and to avoid repeating errors through detection of conflict, errors and success.
- Corollary discharge
-
Copy of efferent signals that is provided to sensory or higher-level cognitive structures to enable forward models.
- Error-related negativity
-
(ERN). Evoked potential that is measured over the medial frontal cortex shortly after an action error.
- Forward models
-
Internal models that predict the future state of the motor effector or action selection process on the basis of the current state and a copy of a control or motor command (obtained as a corollary discharge).
- Feedback controllers
-
Controllers that are activated by internally generated feedback (such as action errors). They provide control in a reactive manner.
- Inverse models
-
Internal models that compute which control command is most likely to lead to a desired future state of the system on the basis of knowledge of the dynamics of the system. Used to provide control in a proactive manner.
- Medial frontal cortex
-
(MFC). Areas along the midline of the frontal lobe, including the pre-supplementary motor area, supplementary eye field and middle cingulate cortex.
- Middle cingulate cortex
-
(MCC). A region in the medial frontal cortex, located ventral to the primary motor cortex, supplementary eye field, supplementary motor area, and pre-supplementary motor area in Brodmann area 24. This area contributes to diverse functions, including performance monitoring and cognitive control.
- Paracingulate sulcus
-
(PCS). A sulcus found in some people but not in macaques that is aligned parallel to and located dorsal to the cingulate sulcus in the medial frontal cortex.
- Performance monitoring
-
Ability to monitor one’s own performance, either by self-monitoring or on the basis of external feedback.
- Post-error slowing
-
A delay of response time in the trial following commission of an error response that is found commonly but not uniformly in various choice tasks.
- Pre-supplementary motor area
-
(pre-SMA). An area in the medial frontal lobe, located anterior to the supplementary motor area in Brodmann area 6aβ, that contributes to cognitive control of action.
- Superior frontal gyrus
-
(SFG). Dorsomedial gyrus of the frontal lobe situated along the midline. It includes the medial part of Brodmann area 6, within which the pre-supplementary motor area, supplementary motor area and frontal eye field are located.
- Supplementary motor area
-
(SMA). An area in the medial frontal lobe, located anterior to the primary motor cortex in Brodmann area 6aα, that contributes to the production of self-generated actions.
- Supplementary eye field
-
(SEF). An area in the superior frontal gyrus. It is distinguished from surrounding cortical areas by denser connections with visual and ocular motor structures and by its functional relationship with eye movements.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fu, Z., Sajad, A., Errington, S.P. et al. Neurophysiological mechanisms of error monitoring in human and non-human primates. Nat Rev Neurosci 24, 153–172 (2023). https://doi.org/10.1038/s41583-022-00670-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41583-022-00670-w
This article is cited by
-
Motor oscillations reveal new correlates of error processing in the human brain
Scientific Reports (2024)
-
A distributed theta network of error generation and processing in aging
Cognitive Neurodynamics (2024)
-
Functional connectivity between the amygdala and prefrontal cortex underlies processing of emotion ambiguity
Translational Psychiatry (2023)