Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Development, wiring and function of dopamine neuron subtypes

Abstract

The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviours and are linked to various brain diseases. Considerable progress has been made in identifying mDA neuron subtypes, and recent work has begun to unveil how these neuronal subtypes develop and organize into functional brain structures. This progress is important for further understanding the disparate physiological functions of mDA neurons and their selective vulnerability in disease, and will ultimately accelerate therapy development. This Review discusses recent advances in our understanding of molecularly defined mDA neuron subtypes and their circuits, ranging from early developmental events, such as neuron migration and axon guidance, to their wiring and function, and future implications for therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical distribution of molecular mDA subtypes in the adult rodent and human midbrain.
Fig. 2: Molecular mechanisms that regulate the differentiation and positioning of mDA neuron subtypes.
Fig. 3: Subtype-specific wiring of rodent mDA neurons.

Similar content being viewed by others

References

  1. Björklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci. 30, 194–202 (2007).

    Article  PubMed  Google Scholar 

  2. Hegarty, S. V., Sullivan, A. M. & O’Keeffe, G. W. Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev. Biol. 379, 123–138 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Maiti, P., Manna, J., Dunbar, G. L., Maiti, P. & Dunbar, G. L. Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl. Neurodegener. 6, 1–35 (2017).

    Article  Google Scholar 

  4. Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Meyer-Lindenberg, A. et al. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat. Neurosci. 5, 267–271 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Milton, A. L. & Everitt, B. J. The persistence of maladaptive memory: addiction, drug memories and anti-relapse treatments. Neurosci. Biobehav. Rev. 36, 1119–1139 (2012).

    Article  PubMed  Google Scholar 

  8. Fu, Y. H. et al. A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Brain Struct. Funct. 217, 591–612 (2012).

    Article  PubMed  Google Scholar 

  9. Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The substantia nigra of the human brain: I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D28K immunohistochemistry. Brain 122, 1421–1436 (1999).

    Article  PubMed  Google Scholar 

  10. Grimm, J., Mueller, A., Hefti, F. & Rosenthal, A. Molecular basis for catecholaminergic neuron diversity. Proc. Natl Acad. Sci. USA 101, 13891–13896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Greene, J. G., Dingledine, R. & Greenamyre, J. T. Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol. Dis. 18, 19–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Chung, C. Y. et al. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum. Mol. Genet. 14, 1709–1725 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Brochier, C. et al. Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models. Physiol. Genomics 33, 170–179 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Brichta, L. et al. Identification of neurodegenerative factors using translatome–regulatory network analysis. Nat. Neurosci. 18, 1325–1333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tiklová, K. et al. Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. Nat. Commun. 10, 1–12 (2019).

    Article  Google Scholar 

  16. Hook, P. W. et al. Single-cell RNA-Seq of mouse dopaminergic neurons informs candidate gene selection for sporadic parkinson disease. Am. J. Hum. Genet. 102, 427–446 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–580.e19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Poulin, J.-F., Gaertner, Z., Moreno-Ramos, O. A. & Awatramani, R. Classification of midbrain dopamine neurons using single-cell gene expression profiling approaches. Trends Neurosci. 43, 155–169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poulin, J. F. et al. Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep. 9, 930–943 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kramer, D. J., Risso, D., Kosillo, P., Ngai, J. & Bateup, H. S. Combinatorial expression of Grp and Neurod6 defines dopamine neuron populations with distinct projection patterns and disease vulnerability. eNeuro 5, ENEURO.0152-18.2018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Farassat, N. et al. In vivo functional diversity of midbrain dopamine neurons within identified axonal projections. Elife 8, e48408 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beier, K. T. et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162, 622–634 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beier, K. T. et al. Topological organization of ventral tegmental area connectivity revealed by viral-genetic dissection of input-output relations. Cell Rep. 26, 159–167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lammel, S., Ion, D. I., Roeper, J. & Malenka, R. C. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70, 855–862 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lammel, S. et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57, 760–773 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. de Jong, J. W. et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron 101, 133–151.e7 (2019).

    Article  PubMed  Google Scholar 

  28. Tang, W., Kochubey, O., Kintscher, M. & Schneggenburger, R. A VTA to basal amygdala dopamine projection contributes to signal salient somatosensory events during fear learning. J. Neurosci. 40, 3969–3980 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bimpisidis, Z. et al. The NeuroD6 subtype of VTA neurons contributes to psychostimulant sensitization and behavioral reinforcement. eNeuro 6, ENEURO.0066-19.2019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Viereckel, T. et al. Midbrain gene screening identifies a new mesoaccumbal glutamatergic pathway and a marker for dopamine cells neuroprotected in Parkinson’s disease. Sci. Rep. 6, 35203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. Elife 4, e10032 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Menegas, W., Babayan, B. M., Uchida, N. & Watabe-Uchida, M. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. Elife 6, e21886 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Menegas, W., Akiti, K., Amo, R., Uchida, N. & Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci. 21, 1421–1430 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Engelhard, B. et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature 570, 509–513 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roeper, J. Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci. 36, 336–342 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Steinkellner, T. et al. Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons. J. Clin. Invest. 128, 774–788 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pereira Luppi, M. et al. Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and embryonic origins. Cell Rep. 37, 109975 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Tolve, M. et al. The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic neurons. Cell Rep. 36, 109697 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Phillips, R. A. et al. An atlas of transcriptionally defined cell populations in the rat ventral tegmental area. Cell Rep. 39, 110616 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Aguila, J. et al. Spatial RNA sequencing identifies robust markers of vulnerable and resistant human midbrain dopamine neurons and their expression in Parkinson’s disease. Front. Mol. Neurosci. 14, 699562 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Monzón-Sandoval, J. et al. Human-specific transcriptome of ventral and dorsal midbrain dopamine neurons. Ann. Neurol. 87, 853–868 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cantuti-Castelvetri, I. et al. Effects of gender on nigral gene expression and Parkinson disease. Neurobiol. Dis. 26, 606–614 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng, B. et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci. Transl. Med. 2, 52ra73 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kamath, T. et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat. Neurosci. 25, 588–595 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smajic, S. et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain 145, 964–978 (2022).

    Article  PubMed  Google Scholar 

  48. Reyes, S. et al. GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. J. Comp. Neurol. 520, 2591–2607 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Reyes, S. et al. Trophic factors differentiate dopamine neurons vulnerable to Parkinson’s disease. Neurobiol. Aging 34, 873–886 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Reyes, S., Cottam, V., Kirik, D., Double, K. L. & Halliday, G. M. Variability in neuronal expression of dopamine receptors and transporters in the substantia nigra. Mov. Disord. 28, 1351–1359 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Afonso-Oramas, D. et al. Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson’s disease. Neurobiol. Dis. 36, 494–508 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122, 1437–1448 (1999).

    Article  PubMed  Google Scholar 

  53. Agarwal, D. et al. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. Nat. Commun. 11, 1–11 (2020).

    Article  Google Scholar 

  54. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arenas, E., Denham, M. & Villaescusa, J. C. How to make a midbrain dopaminergic neuron. Development 142, 1918–1936 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Blaess, S. & Ang, S. L. Genetic control of midbrain dopaminergic neuron development. Wiley Interdiscip. Rev. Dev. Biol. 4, 113–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Brignani, S. & Pasterkamp, R. J. Neuronal subset-specific migration and axonal wiring mechanisms in the developing midbrain dopamine system. Front. Neuroanat. 11, 55 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rhinn, M. et al. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development 125, 845–856 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Millet, S. et al. A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401, 161–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Wassarman, K. M. et al. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124, 2923–2934 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Joyner, A. L., Liu, A. & Millet, S. Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr. Opin. Cell Biol. 12, 736–741 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Ono, Y. et al. Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 134, 3213–3225 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Wilkinson, D. G., Bailes, J. A. & McMahon, A. P. Expression of the proto-oncogene int-1 is restricted to specific neural cells in the developing mouse embryo. Cell 50, 79–88 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Rhinn, M., Dierich, A., Meur, Mle & Ang, S. Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development 126, 4295–4304 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Brodski, C. et al. Location and size of dopaminergic and serotonergic cell populations are controlled by the position of the midbrain-hindbrain organizer. J. Neurosci. 23, 4199–4207 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Basson, M. A. et al. Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development. Development 135, 889–898 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Sasaki, H., Hui, C. C., Nakafuku, M. & Kondoh, H. A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124, 1313–1322 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Roelink, H. et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Lin, W. et al. Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Dev. Biol. 333, 386–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Ang, S. L. et al. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119, 1301–1315 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Omodei, D. et al. Anterior-posterior graded response to Otx2 controls proliferation and differentiation of dopaminergic progenitors in the ventral mesencephalon. Development 135, 3459–3470 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Deng, Q. et al. Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development. Development 138, 3399–3408 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Andersson, E. et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124, 393–405 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Kele, J. et al. Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development 133, 495–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Kawano, H., Ohyama, K., Kawamura, K. & Nagatsu, I. Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res. Dev. Brain Res. 86, 101–113 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, S. et al. Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. Development 140, 4554–4564 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Sacchetti, P., Mitchell, T. R., Granneman, J. G. & Bannon, M. J. Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J. Neurochem. 76, 1565–1572 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Chung, S. et al. Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway. Cell Stem Cell 5, 646–658 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Prakash, N. et al. A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development 133, 89–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Ferri, A. L. M. et al. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 134, 2761–2769 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Blaess, S. et al. Temporal-spatial changes in Sonic Hedgehog expression and signaling reveal different potentials of ventral mesencephalic progenitors to populate distinct ventral midbrain nuclei. Neural Dev. 6, 29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Panman, L. et al. Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. Cell Rep. 8, 1018–1025 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Bayer, S. A., Wills, K. V., Triarhou, L. C. & Ghetti, B. Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp. Brain Res. 105, 191–199 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Bye, C. R., Thompson, L. H. & Parish, C. L. Birth dating of midbrain dopamine neurons identifies A9 enriched tissue for transplantation into parkinsonian mice. Exp. Neurol. 236, 58–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Bodea, G. O. et al. Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system. Development 141, 661–673 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Levitt, P. & Rakic, P. The time of genesis, embryonic origin and differentiation of the brain stem monoamine neurons in the rhesus monkey. Brain Res. 256, 35–57 (1982).

    Article  CAS  PubMed  Google Scholar 

  87. Altman, J. & Bayer, S. A. Development of the brain stem in the rat. V. Thymidine-radiographic study of the time of origin of neurons in the midbrain tegmentum. J. Comp. Neurol. 198, 677–716 (1981).

    Article  CAS  PubMed  Google Scholar 

  88. Ribes, V. et al. Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. Genes Dev. 24, 1186–1200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mavromatakis, Y. E. et al. Foxa1 and Foxa2 positively and negatively regulate Shh signalling to specify ventral midbrain progenitor identity. Mech. Dev. 128, 90–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Hayes, L., Zhang, Z., Albert, P., Zervas, M. & Ahn, S. The timing of Sonic hedgehog and Gli1 expression segregates midbrain dopamine neurons. J. Comp. Neurol. 519, 3001 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kabanova, A. et al. Function and developmental origin of a mesocortical inhibitory circuit. Nat. Neurosci. 18, 872–882 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Verwey, M. et al. Mesocortical dopamine phenotypes in mice lacking the Sonic Hedgehog receptor Cdon. eNeuro 3, ENEURO.0009-16.2016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Joksimovic, M. et al. Spatiotemporally separable Shh domains in the midbrain define distinct dopaminergic progenitor pools. Proc. Natl Acad. Sci. USA 106, 19185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brown, A., Machan, J. T., Hayes, L. & Zervas, M. Molecular organization and timing of Wnt1 expression define cohorts of midbrain dopamine neuron progenitors in vivo. J. Comp. Neurol. 519, 2978 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nouri, P. et al. Dose-dependent and subset-specific regulation of midbrain dopaminergic neuron differentiation by LEF1-mediated WNT1/b-catenin signaling. Front. Cell Dev. Biol. 8, 587778 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gyllborg, D. et al. The matricellular protein R-spondin 2 promotes midbrain dopaminergic neurogenesis and differentiation. Stem Cell Rep. 11, 651 (2018).

    Article  CAS  Google Scholar 

  97. Hoekstra, E. J. et al. Lmx1a encodes a rostral set of mesodiencephalic dopaminergic neurons marked by the Wnt/B-catenin signaling activator R-spondin 2. PLoS ONE 8, e74049 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, J. et al. A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1+/- mice. Neurobiol. Dis. 82, 32–45 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Fukusumi, Y. et al. Dickkopf 3 promotes the differentiation of a rostrolateral midbrain dopaminergic neuronal subset in vivo and from pluripotent stem cells in vitro in the mouse. J. Neurosci. 35, 13385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jung, H., Lee, S. K. & Jho, E. H. Mest/Peg1 inhibits Wnt signalling through regulation of LRP6 glycosylation. Biochem. J. 436, 263–269 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Mesman, S., van Hooft, J. A. & Smidt, M. P. Mest/Peg1 is essential for the development and maintenance of a SNc neuronal subset. Front. Mol. Neurosci. 9, 166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Smidt, M. P. et al. Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131, 1145–1155 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Maxwell, S. L., Ho, H. Y., Kuehner, E., Zhao, S. & Li, M. Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Dev. Biol. 282, 467–479 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Jacobs, F. M. J. et al. Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency. Development 134, 2673–2684 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Jacobs, F. M. J. et al. Retinoic acid-dependent and -independent gene-regulatory pathways of Pitx3 in meso-diencephalic dopaminergic neurons. Development 138, 5213–5222 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Veenvliet, J. V. et al. Specification of dopaminergic subsets involves interplay of En1 and Pitx3. Development 140, 3373–3384 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. di Giovannantonio, L. G. et al. Otx2 selectively controls the neurogenesis of specific neuronal subtypes of the ventral tegmental area and compensates En1-dependent neuronal loss and MPTP vulnerability. Dev. Biol. 373, 176–183 (2013).

    Article  PubMed  Google Scholar 

  108. di Salvio, M. et al. Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat. Neurosci. 13, 1481–1489 (2010).

    Article  PubMed  Google Scholar 

  109. Oosterveen, T. et al. Pluripotent stem cell derived dopaminergic subpopulations model the selective neuron degeneration in Parkinson’s disease. Stem Cell Rep. 16, 2718–2735 (2021).

    Article  CAS  Google Scholar 

  110. Khan, S. et al. Survival of a novel subset of midbrain dopaminergic neurons projecting to the lateral septum is dependent on NeuroD proteins. J. Neurosci. 37, 2305 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lo, P. S., Rymar, V. V., Kennedy, T. E. & Sadikot, A. F. The netrin-1 receptor DCC promotes the survival of a subpopulation of midbrain dopaminergic neurons: relevance for ageing and Parkinson’s disease. J. Neurochem. 161, 254–265 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hoekstra, E. J., von Oerthel, L., van der Linden, A. J. A. & Smidt, M. P. Phox2b influences the development of a caudal dopaminergic subset. PLoS ONE 7, e52118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mesman, S., Wever, I. & Smidt, M. P. Tcf4 is involved in subset specification of mesodiencephalic dopaminergic neurons. Biomedicines 9, 317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yin, M. et al. Ventral mesencephalon-enriched genes that regulate the development of dopaminergic neurons in vivo. J. Neurosci. 29, 5170–5182 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rabe, T. I. et al. The transcription factor Uncx4.1 acts in a short window of midbrain dopaminergic neuron differentiation. Neural Dev. 7, 1–16 (2012).

    Article  Google Scholar 

  116. Lee, S., Lumelsky, N., Studer, L., Auerbach, J. M. & McKay, R. D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Ye, W., Shimamura, K., Rubenstein, J. L. R., Hynes, M. A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Friling, S. et al. Efficient production of mesencephalic dopamine neurons by Lmxla expression in embryonic stem cells. Proc. Natl Acad. Sci. USA 106, 7613–7618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Panman, L. et al. Transcription factor-induced lineage selection of stem-cell-derived neural progenitor cells. Cell Stem Cell 8, 663–675 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 1, 703–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Kim, T. W. et al. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from hESCs for translational use. Cell Stem Cell 28, 343–355.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sandor, C. et al. Transcriptomic profiling of purified patient-derived dopamine neurons identifies convergent perturbations and therapeutics for Parkinson’s disease. Hum. Mol. Genet. 26, 552–566 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Fernandes, H. J. R. et al. Single-cell transcriptomics of Parkinson’s disease human in vitro models reveals dopamine neuron-specific stress responses. Cell Rep. 33, 108263 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Vazin, T., Chen, J., Lee, C.-T., Amable, R. & Freed, W. J. Assessment of stromal-derived inducing activity in the generation of dopaminergic neurons from human embryonic stem cell. Stem Cells 26, 1517–1525 (2008).

    Article  PubMed  Google Scholar 

  127. Vazin, T. et al. A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation from human embryonic stem cells. PLoS ONE 4, e6606 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Shults, C. W., Hashimoto, R., Brady, R. M. & Gage, F. H. Dopaminergic cells align along radial glia in the developing mesencephalon of the rat. Neuroscience 38, 427–436 (1990).

    Article  CAS  PubMed  Google Scholar 

  129. Marín, O., Valiente, M., Ge, X. & Tsai, L. H. Guiding neuronal cell migrations. Cold Spring Harb. Perspect. Biol. 2, a001834 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Brignani, S. et al. Remotely produced and axon-derived netrin-1 instructs GABAergic neuron migration and dopaminergic substantia nigra development. Neuron 107, 684–702.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Li, J. et al. Evidence for topographic guidance of dopaminergic axons by differential Netrin-1 expression in the striatum. Mol. Cell Neurosci. 61, 85–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Xu, B. et al. Critical roles for the netrin receptor deleted in colorectal cancer in dopaminergic neuronal precursor migration, axon guidance, and axon arborization. Neuroscience 169, 932–949 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Nishikawa, S., Goto, S., Yamada, K., Hamasaki, T. & Ushio, Y. Lack of Reelin causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal and Relnrl mutant mice. J. Comp. Neurol. 461, 166–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Kang, W.-Y. et al. Migratory defect of mesencephalic dopaminergic neurons in developing reeler mice. Anat. Cell Biol. 43, 241 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sharaf, A., Bock, H. H., Spittau, B., Bouché, E. & Krieglstein, K. ApoER2 and VLDLr are required for mediating reelin signalling pathway for normal migration and positioning of mesencephalic dopaminergic neurons. PLoS ONE 8, 71091 (2013).

    Article  Google Scholar 

  136. Vaswani, A. R. et al. Correct setup of the substantia nigra requires Reelin-mediated fast, laterally-directed migration of dopaminergic neurons. Elife 8, e41623 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Poulin, J. F. et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat. Neurosci. 21, 1260–1271 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Evans, R. C., Zhu, M. & Khaliq, Z. M. Dopamine inhibition differentially controls excitability of substantia nigra dopamine neuron subpopulations through T-type calcium channels. J. Neurosci. 37, 3704–3720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Carmichael, K. et al. Function and regulation of ALDH1A1-positive nigrostriatal dopaminergic neurons in motor control and Parkinson’s disease. Front. Neural Circuits 15, 644776 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jin, X. & Costa, R. M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535, 505–510 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sgobio, C. et al. Aldehyde dehydrogenase 1–positive nigrostriatal dopaminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum. Sci. Rep. 7, 5283 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wu, J. et al. Distinct connectivity and functionality of aldehyde dehydrogenase 1a1-positive nigrostriatal dopaminergic neurons in motor learning. Cell Rep. 28, 1167–1181.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hauser, T. U., Eldar, E. & Dolan, R. J. Separate mesocortical and mesolimbic pathways encode effort and reward learning signals. Proc. Natl Acad. Sci. USA 114, E7395–E7404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Halbout, B. et al. Mesolimbic dopamine projections mediate cue-motivated reward seeking but not reward retrieval in rats. Elife 8, e43551 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ioanas, H.-I., Saab, B. J. & Rudin, M. Whole-brain opto-fMRI map of mouse VTA dopaminergic activation reflects structural projections with small but significant deviations. Transl. Psychiatry 12, 60 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ikemoto, S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res. Rev. 56, 27–78 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Heymann, G. et al. Synergy of distinct dopamine projection populations in behavioral reinforcement. Neuron 105, 909–920.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Miranda-Barrientos, J. et al. Ventral tegmental area GABA, glutamate, and glutamate-GABA neurons are heterogeneous in their electrophysiological and pharmacological properties. Eur. J. Neurosci. 54, 4061–4084 (2021).

    Article  CAS  Google Scholar 

  152. Root, D. H. et al. Distinct signaling by ventral tegmental area glutamate, GABA, and combinatorial glutamate-GABA neurons in motivated behavior. Cell Rep. 32, 108094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Saunders, B. T., Richard, J. M., Margolis, E. B. & Janak, P. H. Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nat. Neurosci. 21, 1072–1083 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Brischoux, F., Chakraborty, S., Brierley, D. I. & Ungless, M. A. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl Acad. Sci. USA 106, 4894–4899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. de Jong, J. W., Fraser, K. M. & Lammel, S. Mesoaccumbal dopamine heterogeneity: what do dopamine firing and release have to do with it? Annu. Rev. Neurosci. 45, 109–129 (2022).

    Article  PubMed  Google Scholar 

  156. Zhao, Q. et al. Histochemical characterization of the dorsal raphe-periaqueductal grey dopamine transporter neurons projecting to the extended amygdala. eNeuro https://doi.org/10.1523/ENEURO.0121-22.2022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Lin, R. et al. The raphe dopamine system controls the expression of incentive memory. Neuron 106, 498–514.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Lin, R., Liang, J. & Luo, M. The raphe dopamine system: roles in salience encoding, memory expression, and addiction. Trends Neurosci. 44, 366–377 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Yu, W. et al. Periaqueductal gray/dorsal raphe dopamine neurons contribute to sex differences in pain-related behaviors. Neuron 109, 1365–1380.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Darvas, M., Fadok, J. P. & Palmiter, R. D. Requirement of dopamine signaling in the amygdala and striatum for learning and maintenance of a conditioned avoidance response. Learn. Mem. 18, 136–143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fadok, J. P., Dickerson, T. M. K. & Palmiter, R. D. Dopamine is necessary for cue-dependent fear conditioning. J. Neurosci. 29, 11089–11097 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fadok, J. P., Darvas, M., Dickerson, T. M. K. & Palmiter, R. D. Long-term memory for pavlovian fear conditioning requires dopamine in the nucleus accumbens and basolateral amygdala. PLoS ONE 5, e12751 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Morel, C. et al. Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors. Nat. Commun. 13, 1–13 (2022).

    Article  Google Scholar 

  164. Ball, K. T., Bennardo, G. M., Roe, J. & Wunderlich, K. J. Dopamine D1-like receptors in prelimbic, but not infralimbic, medial prefrontal cortex contribute to chronic stress-induced increases in cue-induced relapse to palatable food seeking during forced abstinence. Behav. Brain Res. 417, 113583 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Zubair, M. et al. Divergent whole brain projections from the ventral midbrain in macaques. Cereb. Cortex 31, 2913 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kramer, D. J. et al. Generation of a DAT-P2A-Flpo mouse line for intersectional genetic targeting of dopamine neuron subpopulations. Cell Rep. 35, 109123 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nakamura, S., Ito, Y., Shirasaki, R. & Murakami, F. Local directional cues control growth polarity of dopaminergic axons along the rostrocaudal Axis. J. Neurosci. 20, 4112–4119 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gates, M. A., Coupe, V. M., Torres, E. M., Fricker-Gates, R. A. & Dunnett, S. B. Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. Eur. J. Neurosci. 19, 831–844 (2004).

    Article  PubMed  Google Scholar 

  169. Prestoz, L., Jaber, M. & Gaillard, A. Dopaminergic axon guidance: which makes what? Front. Cell. Neurosci. 6, 32 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  170. van den Heuvel, D. M. A. & Pasterkamp, R. J. Getting connected in the dopamine system. Prog. Neurobiol. 85, 75–93 (2008).

    Article  PubMed  Google Scholar 

  171. Marillat, V. et al. Spatiotemporal expression patterns of slit and robo genes in the rat brain. J. Comp. Neurol. 442, 130–155 (2002).

    Article  PubMed  Google Scholar 

  172. Fenstermaker, A. G. et al. Wnt/planar cell polarity signaling controls the anterior–posterior organization of monoaminergic axons in the brainstem. J. Neurosci. 30, 16053–16064 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lin, L., Rao, Y. & Isacson, O. Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons. Mol. Cell. Neurosci. 28, 547–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Hernández-Montiel, H. L., Tamariz, E., Sandoval-Minero, M. T. & Varela-Echavarría, A. Semaphorins 3A, 3C, and 3F in mesencephalic dopaminergic axon pathfinding. J. Comp. Neurol. 506, 387–397 (2008).

    Article  PubMed  Google Scholar 

  175. Yamauchi, K. et al. FGF8 signaling regulates growth of midbrain dopaminergic axons by inducing semaphorin 3F. J. Neurosci. 29, 4044–4055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Blakely, B. D. et al. Wnt5a regulates midbrain dopaminergic axon growth and guidance. PLoS ONE 6, e18373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kolk, S. M. et al. Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. J. Neurosci. 29, 12542–12557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Torre, E. R., Gutekunst, C. A. & Gross, R. E. Expression by midbrain dopamine neurons of Sema3A and 3F receptors is associated with chemorepulsion in vitro but a mild in vivo phenotype. Mol. Cell Neurosci. 44, 135–153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hammond, R., Blaess, S. & Abeliovich, A. Sonic hedgehog is a chemoattractant for midbrain dopaminergic axons. PLoS ONE 4, e7007 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Soleilhavoup, C. et al. Nolz1 expression is required in dopaminergic axon guidance and striatal innervation. Nat. Commun. 11, 3111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Marín, O., Baker, J., Puelles, L. & Rubenstein, J. L. R. Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development 129, 761–773 (2002).

    Article  PubMed  Google Scholar 

  182. Dugan, J. P., Stratton, A., Riley, H. P., Farmer, W. T. & Mastick, G. S. Midbrain dopaminergic axons are guided longitudinally through the diencephalon by Slit/Robo signals. Mol. Cell. Neurosci. 46, 347–356 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Kawano, H. et al. Aberrant trajectory of ascending dopaminergic pathway in mice lacking Nkx2.1. Exp. Neurol. 182, 103–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  184. Bagri, A. et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33, 233–248 (2002).

    Article  CAS  PubMed  Google Scholar 

  185. Deschamps, C. et al. EphrinA5 protein distribution in the developing mouse brain. BMC Neurosci. 11, 105 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Deschamps, C., Faideau, M., Jaber, M., Gaillard, A. & Prestoz, L. Expression of ephrinA5 during development and potential involvement in the guidance of the mesostriatal pathway. Exp. Neurol. 219, 466–480 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. García-Peña, C. M. et al. Ascending midbrain dopaminergic axons require descending GAD65 axon fascicles for normal pathfinding. Front. Neuroanat. 8, 43 (2014).

    PubMed  PubMed Central  Google Scholar 

  188. Schmidt, E. R. E. et al. Subdomain-mediated axon-axon signaling and chemoattraction cooperate to regulate afferent innervation of the lateral habenula. Neuron 83, 372–387 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Prensa, L. & Parent, A. The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J. Neurosci. 21, 7247–7260 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Aransay, A., Rodríguez-López, C., García-Amado, M., Clascá, F. & Prensa, L. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis. Front. Neuroanat. 9, 59 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Barker, D. J., Root, D. H., Zhang, S. & Morales, M. Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J. Chem. Neuroanat. 73, 33–42 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Gauthier, J., Parent, M., Lévesque, M. & Parent, A. The axonal arborization of single nigrostriatal neurons in rats. Brain Res. 834, 228–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  194. Zhang, S. et al. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat. Neurosci. 18, 386–392 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fortin, G. M. et al. Segregation of dopamine and glutamate release sites in dopamine neuron axons: regulation by striatal target cells. FASEB J. 33, 400–417 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Banerjee, A. et al. Molecular and functional architecture of striatal dopamine release sites. Neuron 110, 248–265.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  197. Pereira, D. B. et al. Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. Nat. Neurosci. 19, 578–586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Manier, M. et al. Striatal target‐induced axonal branching of dopaminergic mesencephalic neurons in culture via diffusible factors. J. Neurosci. Res. 48, 358–371 (1997).

    Article  CAS  PubMed  Google Scholar 

  199. Hu, Z., Cooper, M., Crockett, D. P. & Zhou, R. Differentiation of the midbrain dopaminergic pathways during mouse development. J. Comp. Neurol. 476, 301–311 (2004).

    Article  PubMed  Google Scholar 

  200. Flanagan, J. G. Neural map specification by gradients. Curr. Opin. Neurobiol. 16, 59–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  201. Jaumotte, J. D. & Zigmond, M. J. Dopaminergic innervation of forebrain by ventral mesencephalon in organotypic slice co-cultures: effects of GDNF. Brain Res. Mol. Brain Res. 134, 139–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  202. Janis, L. S., Cassidy, R. M. & Kromer, L. F. Ephrin-A binding and EphA receptor expression delineate the matrix compartment of the striatum. J. Neurosci. 19, 4962–4971 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Yamaguchi, T., Wang, H. L., Li, X., Ng, T. H. & Morales, M. Mesocorticolimbic glutamatergic pathway. J. Neurosci. 31, 8476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Islam, K. U. S., Meli, N. & Blaess, S. The development of the mesoprefrontal dopaminergic system in health and disease. Front. Neural Circuits 15, 746582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Reynolds, L. M. et al. DCC receptors drive prefrontal cortex maturation by determining dopamine axon targeting in adolescence. Biol. Psychiatry 83, 181 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Manitt, C. et al. The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry. J. Neurosci. 31, 8381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Cuesta, S. et al. Dopamine axon targeting in the nucleus accumbens in adolescence requires Netrin-1. Front. Cell Dev. Biol. 8, 487 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Pasterkamp, R. J., Kolk, S. M., Hellemons, A. J. & Kolodkin, A. L. Expression patterns of semaphorin7A and plexinC1during rat neural development suggest roles in axon guidance and neuronal migration. BMC Dev. Biol. 7, 98 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Chabrat, A. et al. Transcriptional repression of Plxnc1 by Lmx1a and Lmx1b directs topographic dopaminergic circuit formation. Nat. Commun. 8, 933 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Chung, C. Y. et al. The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons. Brain 133, 2022 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Shigeoka, T. et al. Dynamic axonal translation in developing and mature visual circuits. Cell 166, 181–192 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kegeles, L. S. et al. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch. Gen. Psychiatry 67, 231–239 (2010).

    Article  CAS  PubMed  Google Scholar 

  213. McCutcheon, R. A., Abi-Dargham, A. & Howes, O. D. Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci. 42, 205–220 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Poisson, C. L., Engel, L. & Saunders, B. T. Dopamine circuit mechanisms of addiction-like behaviors. Front. Neural Circuits 15, 752420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Corre, J. et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. Elife 7, 1–22 (2018).

    Article  Google Scholar 

  216. Cassidy, C. M. et al. Evidence for dopamine abnormalities in the substantia nigra in cocaine addiction revealed by neuromelanin-sensitive MRI. Am. J. Psychiatry 177, 1038–1047 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Fearnley, J. M. & Lees, A. J. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114, 2283–2301 (1991).

    Article  PubMed  Google Scholar 

  218. Gibb, W. R. G. & Lees, A. J. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 54, 388–396 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Liu, G. et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J. Clin. Invest. 124, 3032–3046 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Schwarz, S. T. et al. Parkinson’s disease related signal change in the nigrosomes 1–5 and the substantia nigra using T2* weighted 7T MRI. Neuroimage Clin. 19, 683–689 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Huddleston, D. E. et al. In vivo detection of lateral–ventral tier nigral degeneration in Parkinson’s disease. Hum. Brain Mapp. 38, 2627–2634 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Sulzer, D. et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl Acad. Sci. USA 97, 11869–11874 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Segura-Aguilar, J. et al. Protective and toxic roles of dopamine in Parkinson’s disease. J. Neurochem. 129, 898–915 (2014).

    Article  CAS  PubMed  Google Scholar 

  224. Yamada, T., McGeer, P. L., Baimbridge, K. G. & McGeer, E. G. Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res. 526, 303–307 (1990).

    Article  CAS  PubMed  Google Scholar 

  225. German, D. C., Manaye, K. F., Brooksd, B. A. & Sonsalla, P. K. Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: sparing of calbindin-D28k–containing cells. Ann. N. Y. Acad. Sci. 648, 42–62 (1992).

    Article  CAS  PubMed  Google Scholar 

  226. Liang, C. L., Sinton, C. M., Sonsalla, P. K. & German, D. C. Midbrain dopaminergic neurons in the mouse that contain calbindin-D28k exhibit reduced vulnerability to MPTP-induced neurodegeneration. Neurodegeneration 5, 313–318 (1996).

    Article  CAS  PubMed  Google Scholar 

  227. Rcom-H’cheo-Gauthier, A., Goodwin, J. & Pountney, D. L. Interactions between calcium and alpha-synuclein in neurodegeneration. Biomolecules 4, 795–811 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Post, M. R., Lieberman, O. J. & Mosharov, E. V. Can interactions between α-synuclein, dopamine and calcium explain selective neurodegeneration in Parkinson’s disease? Front. Neurosci. 12, 161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Uittenbogaard, M., Baxter, K. K. & Chiaramello, A. The neurogenic basic helix-loop-helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass. ASN Neuro 2, 115–133 (2010).

    Article  CAS  Google Scholar 

  230. Buck, S. A. et al. VGLUT2 is a determinant of dopamine neuron resilience in a rotenone model of dopamine neurodegeneration. J. Neurosci. 41, 4937–4947 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Buck, S. A. et al. Roles of VGLUT2 and dopamine/glutamate co-transmission in selective vulnerability to dopamine neurodegeneration. ACS Chem. Neurosci. 13, 187–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  232. Steinkellner, T. et al. Dopamine neurons exhibit emergent glutamatergic identity in Parkinson’s disease. Brain 143, 879–886 (2021).

    Google Scholar 

  233. Björklund, A. & Stenevi, U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 177, 555–560 (1979).

    Article  PubMed  Google Scholar 

  234. Lindvall, O. et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease: a detailed account of methodology and a 6-month follow-up. Arch. Neurol. 46, 615–631 (1989).

    Article  CAS  PubMed  Google Scholar 

  235. Lindvall, O. et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247, 574–577 (1990).

    Article  CAS  PubMed  Google Scholar 

  236. Parmar, M., Torper, O. & Drouin-Ouellet, J. Cell-based therapy for Parkinson’s disease: a journey through decades toward the light side of the Force. Eur. J. Neurosci. 49, 463–471 (2019).

    Article  PubMed  Google Scholar 

  237. Henchcliffe, C. & Sarva, H. Restoring function to dopaminergic neurons: progress in the development of cell-based therapies for Parkinson’s disease. CNS Drugs 34, 559–577 (2020).

    Article  PubMed  Google Scholar 

  238. Björklund, A. & Parmar, M. Dopamine cell therapy: from cell replacement to circuitry repair. J. Parkinsons Dis. 11, S159–S165 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Guo, X., Tang, L. & Tang, X. Current developments in cell replacement therapy for Parkinson’s disease. Neuroscience 463, 370–382 (2021).

    Article  CAS  PubMed  Google Scholar 

  240. Li, J. Y. & Li, W. Postmortem studies of fetal grafts in Parkinson’s disease: what lessons have we learned? Front. Cell Dev. Biol. 9, 666675 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Rodríguez-Pallares, J., García-Garrote, M., Parga, J. & Labandeira-García, J. Combined cell-based therapy strategies for the treatment of Parkinson’s disease: focus on mesenchymal stromal cells. Neural Regen. Res. 18, 478 (2023).

    Article  PubMed  Google Scholar 

  242. Gaillard, A. et al. Anatomical and functional reconstruction of the nigrostriatal pathway by intranigral transplants. Neurobiol. Dis. 35, 477–488 (2009).

    Article  PubMed  Google Scholar 

  243. Kirkeby, A. et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. Cell Stem Cell 20, 135–148 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Grealish, S. et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15, 653–665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Aldrin-Kirk, P. et al. A novel two-factor monosynaptic TRIO tracing method for assessment of circuit integration of hESC-derived dopamine transplants. Stem Cell Rep. 17, 159–172 (2022).

    Article  CAS  Google Scholar 

  246. Morizane, A. et al. MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat. Commun. 8, 385 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Morizane, A. et al. Direct comparison of autologous and allogeneic transplantation of IPSC-derived neural cells in the brain of a nonhuman primate. Stem Cell Rep. 1, 283–292 (2013).

    Article  CAS  Google Scholar 

  248. Schweitzer, J. S. et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N. Engl. J. Med. 382, 1926–1932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Tao, Y. et al. Autologous transplant therapy alleviates motor and depressive behaviors in parkinsonian monkeys. Nat. Med. 27, 632–639 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. van de Haar, L. L. et al. Molecular signatures and cellular diversity during mouse habenula development. Cell Rep. 40, 111029 (2022).

    Article  PubMed  Google Scholar 

  251. Melani, R. & Tritsch, N. X. Inhibitory co-transmission from midbrain dopamine neurons relies on presynaptic GABA uptake. Cell Rep. 39, 110716 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Parkinson, J. An essay on the shaking palsy. J. Neuropsychiatry Clin. Neurosci. 14, 223–236 (2002).

    Article  PubMed  Google Scholar 

  253. Lees, A. J., Hardy, J. & Revesz, T. Parkinson’s disease. Lancet 373, 2055–2066 (2009).

    Article  CAS  PubMed  Google Scholar 

  254. Dickson, D. W. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med. 2, a009258 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Schapira, A. H. V., Chaudhuri, K. R. & Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 435–450 (2017).

    Article  CAS  PubMed  Google Scholar 

  256. Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 19, 170–178 (2020).

    Article  CAS  PubMed  Google Scholar 

  257. Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  258. Healy, D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol. 7, 583–590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Goker-Alpan, O. et al. Parkinsonism among Gaucher disease carriers. J. Med. Genet. 41, 937–940 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kakkar, A. K. & Dahiya, N. Management of Parkinson’s disease: current and future pharmacotherapy. Eur. J. Pharmacol. 750, 74–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  261. Oxtoby, N. P. et al. Sequence of clinical and neurodegeneration events in Parkinson’s disease progression. Brain 144, 975–988 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Elkouzi, A., Vedam-Mai, V., Eisinger, R. S. & Okun, M. S. Emerging therapies in Parkinson disease — repurposed drugs and new approaches. Nat. Rev. Neurol. 15, 204–223 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Bolam, J. P. & Pissadaki, E. K. Living on the edge with too many mouths to feed: why dopamine neurons die. Mov. Disord. 27, 1478–1483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Pacelli, C. et al. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr. Biol. 25, 2349–2360 (2015).

    Article  CAS  PubMed  Google Scholar 

  265. Giguère, N. et al. Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout. PLoS Genet. 15, 1–26 (2019).

    Article  Google Scholar 

  266. Ricke, K. M. et al. Mitochondrial dysfunction combined with high calcium load leads to impaired antioxidant defense underlying the selective loss of nigral dopaminergic neurons. J. Neurosci. 40, 1975–1986 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Kanaan, N. M., Kordower, J. H. & Collier, T. J. Age-related changes in dopamine transporters and accumulation of 3-nitrotyrosine in rhesus monkey midbrain dopamine neurons: Relevance in selective neuronal vulnerability to degeneration. Eur. J. Neurosci. 27, 3205–3215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Nakajima, S. et al. Age-related vulnerability to nigral dopaminergic degeneration in rats via Zn2+-permeable GluR2-lacking AMPA receptor activation. Neurotoxicology 83, 69–76 (2021).

    Article  CAS  PubMed  Google Scholar 

  269. Shi, H. et al. Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Hum. Mol. Genet. 26, 1915–1926 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Guillot, T. S. & Miller, G. W. Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Mol. Neurobiol. 39, 149–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  271. Fahn, S. Does levodopa slow or hasten the rate of progression of Parkinson’s disease? J. Neurol. 252, 37–42 (2005).

    Article  Google Scholar 

  272. Mosharov, E. V. et al. Interplay between cytosolic dopamine, calcium, and α-synuclein causes selective death of substantia nigra neurons. Neuron 62, 218–229 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Surmeier, D. J., Guzman, J. N., Sanchez-Padilla, J. & Schumacker, P. T. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience 198, 221–231 (2011).

    Article  CAS  PubMed  Google Scholar 

  274. Zucca, F. A. et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog. Neurobiol. 155, 96–119 (2017).

    Article  CAS  PubMed  Google Scholar 

  275. Jansen van Rensburg, Z., Abrahams, S., Bardien, S. & Kenyon, C. Toxic feedback loop involving iron, reactive oxygen species, α-synuclein and neuromelanin in Parkinson’s disease and intervention with turmeric. Mol. Neurobiol. 58, 5920–5936 (2021).

    Article  CAS  PubMed  Google Scholar 

  276. Nedergaard, S., Flatman, J. A. & Engberg, I. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J. Physiol. 466, 727–747 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Philippart, F. et al. Differential somatic Ca2+ channel profile in midbrain dopaminergic neurons. J. Neurosci. 36, 7234–7245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Conway, K. A., Rochet, J. C., Bieganski, R. M. & Lansbury, J. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science 294, 1346–1349 (2001).

    Article  CAS  PubMed  Google Scholar 

  279. Ren, Y., Liu, W., Jiang, H., Jiang, Q. & Feng, J. Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J. Biol. Chem. 280, 34105–34112 (2005).

    Article  CAS  PubMed  Google Scholar 

  280. Ulusoy, A., Björklund, T., Buck, K. & Kirik, D. Dysregulated dopamine storage increases the vulnerability to α-synuclein in nigral neurons. Neurobiol. Dis. 47, 367–377 (2012).

    Article  CAS  PubMed  Google Scholar 

  281. Biondetti, E. et al. The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson’s disease. Brain 144, 3114–3125 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Thomsen, M. B. et al. PET imaging reveals early and progressive dopaminergic deficits after intra-striatal injection of preformed alpha-synuclein fibrils in rats. Neurobiol. Dis. 149, 105229 (2021).

    Article  CAS  PubMed  Google Scholar 

  283. Uchihara, T. An order in Lewy body disorders: retrograde degeneration in hyperbranching axons as a fundamental structural template accounting for focal/multifocal Lewy body disease. Neuropathology 37, 129–149 (2017).

    Article  CAS  PubMed  Google Scholar 

  284. Bellucci, A., Antonini, A., Pizzi, M. & Spano, P. F. The end is the beginning: Parkinson’s disease in the light of brain imaging. Front. Aging Neurosci. 9, 330 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. Lingor for input on the manuscript. Work on the dopamine system in the laboratory of the authors is supported by Stichting Parkinson Fonds, the Dutch Research Council (NWO; ALW-VICI 865.14.004) and the NWO Gravitation programme BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012) to R.J.P. The authors apologize to all investigators whose research could not be appropriately cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to R. Jeroen Pasterkamp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks S. Blaess, L. Zweifel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

1-Methyl-4-phenyl-1,2,3,5-tetrahydropyridine

Neurotoxin that upon intracerebral injection causes rapid degeneration of the substantia nigra and parkinsonian symptoms, a method used for modelling (late-stage) Parkinson disease in animal models.

1-Methyl-4-phenylpyridinium

A toxic metabolite of 1-methyl-4-phenyl-1,2,3,5-tetrahydropyridine.

[3H]Thymidine

Radioactive thymidine analogue that is taken up when DNA is synthesized, used as a marker for cell proliferation.

Assembloid

A fused region-specific organoid used to model interactions between different tissue types or organs.

Axon guidance

Process during which extrinsic molecules instruct the orientation of axonal growth through attraction and/or repulsion of the axon tip.

Embryonic stem cells

(ES cells). Pluripotent stem cells derived from the inner cell mass of blastocyst-stage embryos.

Floorplate

A ventral organizer region along the midline of the neural tube that regulates neuronal differentiation and positioning.

Genetic fate mapping

Genetic labelling of ancestor cells and their descendants to map the anatomical and cellular origin of cells of interest.

Induced pluripotent stem cells

(iPS cells). Pluripotent stem cells that are generated through the reprogramming of somatic cells by expression of a set of transcription factors.

Intersectional genetics

Selective targeting of cells by exploiting the combinatorial expression of two or more genes to express genetically encoded recombinases that results in the activation of proteins to label or manipulate cells.

Laser capture microdissection

Laser- and microscope-assisted cutting that enables precise dissection of microregions within the tissue of interest.

Lineage tracing

The identification of cellular progeny at subsequent developmental stages and processes by labelling an ancestor (progenitor) cell.

Major histocompatibility complex

Cell surface proteins that present self-antigens to prevent an autoimmune response.

Marginal zone

Cell-sparse, outermost zone of the neural tube or brain containing primarily axons and glial cells.

Neuroblast

An undifferentiated precursor cell in the central nervous system that will eventually develop into a fully differentiated neural cell.

Organoids

Stem cell-derived and self-assembled 3D cultures that represent key features of the represented organ.

Radial glia-like cells

Cells that are positive for radial glia markers in single-cell RNA sequencing datasets.

Radial migration

Migration of cells along radial glia fibres away from the ventricular zone.

Ribo-tagging

Tagging of ribosomal subunits to enable immunopurification and downstream processing of ribosomes and attached mRNAs.

Single-cell RNA sequencing

(scRNA-seq). Dissociation and isolation of individual cells followed by sequencing of the RNA transcriptome per cell.

Single-nucleus RNA sequencing

(snRNA-seq). Dissociation and isolation of individual nuclei followed by sequencing of the RNA transcriptome per nucleus.

Slide-seq

Processing of tissue sections on an indexed slide to label RNA transcripts so as to preserve their spatial origin.

Spatial transcriptomics

Methods to assign cell types (based on mRNA readouts) to their anatomical location in tissue sections.

Tangential migration

Migration of cells along the medial–lateral axis, parallel to the ventricular surface and orthogonal to radial glia fibres.

Ventricular zone

A transient layer of tissue lining the ventricles of the central nervous system that contains neural stem cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garritsen, O., van Battum, E.Y., Grossouw, L.M. et al. Development, wiring and function of dopamine neuron subtypes. Nat Rev Neurosci 24, 134–152 (2023). https://doi.org/10.1038/s41583-022-00669-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00669-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing