Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A tripartite view of the posterior cingulate cortex

Abstract

The posterior cingulate cortex (PCC) is one of the least understood regions of the cerebral cortex. By contrast, the anterior cingulate cortex has been the subject of intensive investigation in humans and model animal systems, leading to detailed behavioural and computational theoretical accounts of its function. The time is right for similar progress to be made in the PCC given its unique anatomical and physiological properties and demonstrably important contributions to higher cognitive functions and brain diseases. Here, we describe recent progress in understanding the PCC, with a focus on convergent findings across species and techniques that lay a foundation for establishing a formal theoretical account of its functions. Based on this converging evidence, we propose that the broader PCC region contains three major subregions — the dorsal PCC, ventral PCC and retrosplenial cortex — that respectively support the integration of executive, mnemonic and spatial processing systems. This tripartite subregional view reconciles inconsistencies in prior unitary theories of PCC function and offers promising new avenues for progress.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Comparative anatomy of the PCC.
Fig. 2: Functional neuroimaging of the PCC.
Fig. 3: Electrophysiology of the PCC.

Data availability

The Neurosynth data for the term-based meta-analyses shown in Fig. 2 are available at https://neurosynth.org/analyses/terms/.

References

  1. Leech, R. & Sharp, D. J. The role of the posterior cingulate cortex in cognition and disease. Brain 137, 12–32 (2014).

    Article  PubMed  Google Scholar 

  2. Vann, S. D., Aggleton, J. P. & Maguire, E. A. What does the retrosplenial cortex do? Nat. Rev. Neurosci. 10, 792–802 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Pearson, J. M., Heilbronner, S. R., Barack, D. L., Hayden, B. Y. & Platt, M. L. Posterior cingulate cortex: adapting behavior to a changing world. Trends Cogn. Sci. 15, 143–151 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heilbronner, S. R. & Hayden, B. Y. Dorsal anterior cingulate cortex: a bottom-up view. Annu. Rev. Neurosci. 39, 149–170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ebitz, R. B. & Hayden, B. Y. Dorsal anterior cingulate: a Rorschach test for cognitive neuroscience. Nat. Neurosci. 19, 1278–1279 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Vogt, B. A. The cingulate cortex in neurologic diseases: history, structure, overview. Handb. Clin. Neurol. 166, 3–21 (2019).

    Article  PubMed  Google Scholar 

  7. Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gusnard, D. A., Raichle, M. E. & Raichle, M. E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2, 685–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Minoshima, S. et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann. Neurol. 42, 85–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Strom, A. et al. Cortical hypometabolism reflects local atrophy and tau pathology in symptomatic Alzheimer’s disease. Brain 145, 713–728 (2021).

    Article  PubMed Central  Google Scholar 

  12. Willbrand, E. H. et al. Uncovering a tripartite landmark in posterior cingulate cortex. Sci. Adv. 8, eabn9516 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yeung, N., Botvinick, M. M. & Cohen, J. D. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol. Rev. 111, 931–959 (2004).

    Article  PubMed  Google Scholar 

  14. Shenhav, A., Cohen, J. D. & Botvinick, M. M. Dorsal anterior cingulate cortex and the value of control. Nat. Neurosci. 19, 1286–1291 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Kolling, N. et al. Value, search, persistence and model updating in anterior cingulate cortex. Nat. Neurosci. 19, 1280–1285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vaidya, A. R., Pujara, M. S., Petrides, M., Murray, E. A. & Fellows, L. K. Lesion studies in contemporary neuroscience. Trends Cogn. Sci. 23, 653–671 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vogt, B. A., Nimchinsky, E. A., Vogt, L. J. & Hof, P. R. Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J. Comp. Neurol. 359, 490–506 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Vogt, B. A. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 6, 533–544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luders, E., Thompson, P. M. & Toga, A. W. The development of the corpus callosum in the healthy human brain. J. Neurosci. 30, 10985–10990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ono, M., Kubik, S. & Abernathey, C. D. Atlas of the Cerebral Sulci (Thieme, 1990).

  21. Vogt, B. A., Finch, D. M. & Olson, C. R. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb. Cortex 2, 435–443 (1992).

    CAS  PubMed  Google Scholar 

  22. Yukie, M. Neural connections of auditory association cortex with the posterior cingulate cortex in the monkey. Neurosci. Res. 22, 179–187 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Vogt, B. A. Retrosplenial cortex in the rhesus monkey: a cytoarchitectonic and Golgi study. J. Comp. Neurol. 169, 63–97 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Goldman-Rakic, P. S., Selemon, L. D. & Schwartz, M. L. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12, 719–743 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Aggleton, J. P. Understanding retrosplenial amnesia: insights from animal studies. Neuropsychologia 48, 2328–2338 (2010).

    Article  PubMed  Google Scholar 

  26. Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: I. three-dimensional and cytoarchitectonic organization. J. Comp. Neurol. 426, 339–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Margulies, D. S. et al. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc. Natl Acad. Sci. USA 106, 20069–20074 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parvizi, J., Van Hoesen, G. W., Buckwalter, J. & Damasio, A. Neural connections of the posteromedial cortex in the macaque. Proc. Natl Acad. Sci. USA 103, 1563–1568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cavanna, A. E. & Trimble, M. R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583 (2006).

    Article  PubMed  Google Scholar 

  30. Ritchey, M. & Cooper, R. A. Deconstructing the posterior medial episodic network. Trends Cogn. Sci. 24, 451–465 (2020).

    Article  PubMed  Google Scholar 

  31. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008).

    Article  PubMed  Google Scholar 

  32. Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Shibata, H. & Yukie, M. Differential thalamic connections of the posteroventral and dorsal posterior cingulate gyrus in the monkey. Eur. J. Neurosci. 18, 1615–1626 (2003).

    Article  PubMed  Google Scholar 

  34. Vogt, B. A. & Laureys, S. Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Prog. Brain Res. 150, 205–217 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vogt, B. A., Pandya, D. N. & Rosene, D. L. Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J. Comp. Neurol. 262, 256–270 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Vogt, B. A., Vogt, L. & Laureys, S. Cytology and functionally correlated circuits of human posterior cingulate areas. Neuroimage 29, 452–466 (2006).

    Article  PubMed  Google Scholar 

  37. Bzdok, D. et al. Subspecialization in the human posterior medial cortex. Neuroimage 106, 55–71 (2015).

    Article  PubMed  Google Scholar 

  38. Morris, R., Petrides, M. & Pandya, D. N. Architecture and connections of retrosplenial area 30 in the rhesus monkey (Macaca mulatta). Eur. J. Neurosci. 11, 2506–2518 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Palomero-Gallagher, N., Vogt, B. A., Schleicher, A., Mayberg, H. S. & Zilles, K. Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum. Brain Mapp. 30, 2336–2355 (2009).

    Article  PubMed  Google Scholar 

  40. Palomero-Gallagher, N., Mohlberg, H., Zilles, K. & Vogt, B. Cytology and receptor architecture of human anterior cingulate cortex. J. Comp. Neurol. 508, 906–926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 369, 988–992 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Vogt, B. A. & Pandya, D. N. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J. Comp. Neurol. 262, 271–289 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: III. Cortical efferents. J. Comp. Neurol. 502, 810–833 (2007).

    Article  PubMed  Google Scholar 

  44. Kobayashi, Y. & Amaral, D. G. Macaque monkey retrosplenial cortex: II. Cortical afferents. J. Comp. Neurol. 466, 48–79 (2003).

    Article  PubMed  Google Scholar 

  45. Morecraft, R. J., Cipolloni, P. B., Stilwell-Morecraft, K. S., Gedney, M. T. & Pandya, D. N. Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J. Comp. Neurol. 469, 37–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2009).

    Article  PubMed  Google Scholar 

  47. Vogt, B. A. & Paxinos, G. Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct. Funct. 219, 185–192 (2014).

    Article  PubMed  Google Scholar 

  48. Vogt, B. A. & Peters, A. Form and distribution of neurons in rat cingulate cortex: areas 32, 24, and 29. J. Comp. Neurol. 195, 603–625 (1981).

    Article  CAS  PubMed  Google Scholar 

  49. Heilbronner, S. R., Rodriguez-Romaguera, J., Quirk, G. J., Groenewegen, H. J. & Haber, S. N. Circuit-based corticostriatal homologies between rat and primate. Biol. Psychiatry 80, 509–521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Carlen, M. What constitutes the prefrontal cortex? Science 358, 478–482 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Preuss, T. M. Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. J. Cogn. Neurosci. 7, 1–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Bernier, M., Cunnane, S. C. & Whittingstall, K. The morphology of the human cerebrovascular system. Hum. Brain Mapp. 39, 4962–4975 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mavridis, I. N., Kalamatianos, T., Koutsarnakis, C. & Stranjalis, G. Microsurgical anatomy of the precuneal artery: does it really exist? Clarifying an ambiguous vessel under the microscope. Oper. Neurosurg. 12, 68–76 (2016).

    Article  Google Scholar 

  54. Kumral, E., Bayam, F. E. & Ozdemir, H. N. Cognitive and behavioral disorders in patients with precuneal infarcts. Eur. Neurol. 84, 157–167 (2021).

    Article  PubMed  Google Scholar 

  55. Pflugshaupt, T. et al. Bottom-up visual integration in the medial parietal lobe. Cereb. Cortex 26, 943–949 (2016).

    Article  PubMed  Google Scholar 

  56. Vogt, B. A., Vogt, L. J., Perl, D. P. & Hof, P. R. Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices. J. Comp. Neurol. 438, 353–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Milczarek, M. M. & Vann, S. D. The retrosplenial cortex and long-term spatial memory: from the cell to the network. Curr. Opin. Behav. Sci. 32, 50–56 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Miller, A. M., Vedder, L. C., Law, L. M. & Smith, D. M. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Front. Hum. Neurosci. 8, 586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mitchell, A. S., Czajkowski, R., Zhang, N., Jeffery, K. & Nelson, A. J. D. Retrosplenial cortex and its role in spatial cognition. Brain Neurosci. Adv. 2, 2398212818757098 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shulman, G. L. et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harrison, B. J. et al. Consistency and functional specialization in the default mode brain network. Proc. Natl Acad. Sci. USA 105, 9781–9786 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Raichle, M. E. & Snyder, A. Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage 37, 1083–1090 (2007).

    Article  PubMed  Google Scholar 

  65. Smallwood, J. & Schooler, J. W. The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518 (2015).

    Article  PubMed  Google Scholar 

  66. Christoff, K., Irving, Z. C., Fox, K. C., Spreng, R. N. & Andrews-Hanna, J. R. Mind-wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17, 718–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29–52 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Anticevic, A. et al. The role of default network deactivation in cognition and disease. Trends Cogn. Sci. 16, 584–592 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fletcher, P. C. et al. Brain systems for encoding and retrieval of auditory-verbal memory. An in vivo study in humans. Brain 118, 401–416 (1995).

    Article  PubMed  Google Scholar 

  70. Shallice, T. et al. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368, 633–635 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Andreasen, N. C. et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. Am. J. Psychiatry 152, 1576–1585 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Stiernman, L. J. et al. Dissociations between glucose metabolism and blood oxygenation in the human default mode network revealed by simultaneous PET-fMRI. Proc. Natl Acad. Sci. USA 118, e2021913118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Spreng, R. N., Mar, R. A. & Kim, A. S. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009).

    Article  PubMed  Google Scholar 

  74. Binder, J. R. & Desai, R. H. The neurobiology of semantic memory. Trends Cogn. Sci. 15, 527–536 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).

    Article  PubMed  Google Scholar 

  76. Huijbers, W. et al. Explaining the encoding/retrieval flip: memory-related deactivations and activations in the posteromedial cortex. Neuropsychologia 50, 3764–3774 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Otten, L. J. & Rugg, M. D. When more means less: neural activity related to unsuccessful memory encoding. Curr. Biol. 11, 1528–1530 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Daselaar, S. M., Prince, S. E. & Cabeza, R. When less means more: deactivations during encoding that predict subsequent memory. Neuroimage 23, 921–927 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. de Chastelaine, M. & Rugg, M. D. The relationship between task-related and subsequent memory effects. Hum. Brain Mapp. 35, 3687–3700 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wheeler, M. E. & Buckner, R. L. Functional-anatomic correlates of remembering and knowing. Neuroimage 21, 1337–1349 (2004).

    Article  PubMed  Google Scholar 

  81. Kahn, I., Davachi, L. & Wagner, A. D. Functional-neuroanatomic correlates of recollection: implications for models of recognition memory. J. Neurosci. 24, 4172–4180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Daselaar, S. M. et al. Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Front. Hum. Neurosci. 3, 13 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wagner, A. D., Shannon, B. J., Kahn, I. & Buckner, R. L. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453 (2005).

    Article  PubMed  Google Scholar 

  84. Shannon, B. J. & Buckner, R. L. Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex. J. Neurosci. 24, 10084–10092 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    Article  PubMed  Google Scholar 

  86. Mullally, S. L. & Maguire, E. A. Memory, imagination, and predicting the future: a common brain mechanism? Neuroscientist 20, 220–234 (2013).

    Article  PubMed  Google Scholar 

  87. Dohmatob, E., Dumas, G. & Bzdok, D. Dark control: the default mode network as a reinforcement learning agent. Hum. Brain Mapp. 41, 3318–3341 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  92. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu, J. et al. Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways. J. Neurosci. 31, 15065–15071 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fan, Y. et al. Dorsal and ventral posterior cingulate cortex switch network assignment via changes in relative functional connectivity strength to noncanonical networks. Brain Connect. 9, 77–94 (2019).

    Article  PubMed  Google Scholar 

  99. Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W. & Schacter, D. L. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53, 303–317 (2010).

    Article  PubMed  Google Scholar 

  100. Kahn, I., Andrews-Hanna, J. R., Vincent, J. L., Snyder, A. Z. & Buckner, R. L. Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 129–139 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang, S., Tepfer, L. J., Taren, A. A. & Smith, D. V. Functional parcellation of the default mode network: a large-scale meta-analysis. Sci. Rep. 10, 16096 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Eickhoff, S. B., Yeo, B. T. T. & Genon, S. Imaging-based parcellations of the human brain. Nat. Rev. Neurosci. 19, 672–686 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Braga, R. M., Van Dijk, K. R. A., Polimeni, J. R., Eldaief, M. C. & Buckner, R. L. Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. J. Neurophysiol. 121, 1513–1534 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gordon, E. M. et al. Individual-specific features of brain systems identified with resting state functional correlations. Neuroimage 146, 918–939 (2017).

    Article  PubMed  Google Scholar 

  106. Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vincent, J. L. et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531 (2006).

    Article  PubMed  Google Scholar 

  108. Rugg, M. D. & Vilberg, K. L. Brain networks underlying episodic memory retrieval. Curr. Opin. Neurobiol. 23, 255–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Ranganath, C. & Ritchey, M. Two cortical systems for memory-guided behaviour. Nat. Rev. Neurosci. 13, 713–726 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Valenstein, E. et al. Retrosplenial amnesia. Brain 110, 1631–1646 (1987).

    Article  PubMed  Google Scholar 

  111. Rudge, P. & Warrington, E. K. Selective impairment of memory and visual perception in splenial tumours. Brain 114, 349–360 (1991).

    Article  PubMed  Google Scholar 

  112. Takahashi, N., Kawamura, M., Shiota, J., Kasahata, N. & Hirayama, K. Pure topographic disorientation due to right retrosplenial lesion. Neurology 49, 464–469 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Ferguson, M. A. et al. A human memory circuit derived from brain lesions causing amnesia. Nat. Commun. 10, 3497 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gilmore, A. W., Nelson, S. M. & McDermott, K. B. A parietal memory network revealed by multiple MRI methods. Trends Cogn. Sci. 19, 534–543 (2015).

    Article  PubMed  Google Scholar 

  115. McDermott, K. B., Szpunar, K. K. & Christ, S. E. Laboratory-based and autobiographical retrieval tasks differ substantially in their neural substrates. Neuropsychologia 47, 2290–2298 (2009).

    Article  PubMed  Google Scholar 

  116. Chen, H. Y., Gilmore, A. W., Nelson, S. M. & McDermott, K. B. Are there multiple kinds of episodic memory? An fMRI investigation comparing autobiographical and recognition memory tasks. J. Neurosci. 37, 2764–2775 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Elman, J. A., Cohn-Sheehy, B. I. & Shimamura, A. P. Dissociable parietal regions facilitate successful retrieval of recently learned and personally familiar information. Neuropsychologia 51, 573–583 (2013).

    Article  PubMed  Google Scholar 

  118. Kim, H. Differential neural activity in the recognition of old versus new events: an activation likelihood estimation meta-analysis. Hum. Brain Mapp. 34, 814–836 (2013).

    Article  PubMed  Google Scholar 

  119. Kim, H. Parietal control network activation during memory tasks may be associated with the co-occurrence of externally and internally directed cognition: a cross-function meta-analysis. Brain Res. 1683, 55–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Gilmore, A. W. et al. High-fidelity mapping of repetition-related changes in the parietal memory network. Neuroimage 199, 427–439 (2019).

    Article  PubMed  Google Scholar 

  121. Rosen, M. L., Stern, C. E., Devaney, K. J. & Somers, D. C. Cortical and subcortical contributions to long-term memory-guided visuospatial attention. Cereb. Cortex 28, 2935–2947 (2018).

    Article  PubMed  Google Scholar 

  122. Mesulam, M. M., Nobre, A. C., Kim, Y. H., Parrish, T. B. & Gitelman, D. R. Heterogeneity of cingulate contributions to spatial attention. Neuroimage 13, 1065–1072 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Small, D. M. et al. The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. Neuroimage 18, 633–641 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Liuzzi, A. G., Aglinskas, A. & Fairhall, S. L. General and feature-based semantic representations in the semantic network. Sci. Rep. 10, 8931 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fairhall, S. L. & Caramazza, A. Brain regions that represent amodal conceptual knowledge. J. Neurosci. 33, 10552–10558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Qin, P. & Northoff, G. How is our self related to midline regions and the default-mode network? Neuroimage 57, 1221–1233 (2011).

    Article  PubMed  Google Scholar 

  127. Thornton, M. A. & Mitchell, J. P. Consistent neural activity patterns represent personally familiar people. J. Cogn. Neurosci. 29, 1583–1594 (2017).

    Article  PubMed  Google Scholar 

  128. Davey, C. G. & Harrison, B. J. The brain’s center of gravity: how the default mode network helps us to understand the self. World Psychiatry 17, 278–279 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ritchey, M., Libby, L. A. & Ranganath, C. Cortico-hippocampal systems involved in memory and cognition: the PMAT framework. Prog. Brain Res. 219, 45–64 (2015).

    Article  PubMed  Google Scholar 

  130. Barnett, A. J. et al. Intrinsic connectivity reveals functionally distinct cortico-hippocampal networks in the human brain. PLoS Biol. 19, e3001275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bonasia, K. et al. Prior knowledge modulates the neural substrates of encoding and retrieving naturalistic events at short and long delays. Neurobiol. Learn. Mem. 153, 26–39 (2018).

    Article  PubMed  Google Scholar 

  132. Bastin, C. et al. An integrative memory model of recollection and familiarity to understand memory deficits. Behav. Brain Sci. 42, e281 (2019).

    Article  PubMed  Google Scholar 

  133. Vogeley, K. et al. Neural correlates of first-person perspective as one constituent of human self-consciousness. J. Cogn. Neurosci. 16, 817–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Kravitz, D. J., Saleem, K. S., Baker, C. I. & Mishkin, M. A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12, 217–230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Riva, G., Di Lernia, D., Serino, A. & Serino, S. The role of reference frames in memory recollection. Behav. Brain Sci. 42, e296 (2020).

    Article  PubMed  Google Scholar 

  136. Guterstam, A., Bjornsdotter, M., Gentile, G. & Ehrsson, H. H. Posterior cingulate cortex integrates the senses of self-location and body ownership. Curr. Biol. 25, 1416–1425 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Gilmore, A. W. et al. Evidence supporting a time-limited hippocampal role in retrieving autobiographical memories. Proc. Natl Acad. Sci. USA 118, e2023069118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bird, C. M., Keidel, J. L., Ing, L. P., Horner, A. J. & Burgess, N. Consolidation of complex events via reinstatement in posterior cingulate cortex. J. Neurosci. 35, 14426–14434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dobbins, I. G., Rice, H. J., Wagner, A. D. & Schacter, D. L. Memory orientation and success: separable neurocognitive components underlying episodic recognition. Neuropsychologia 41, 318–333 (2003).

    Article  PubMed  Google Scholar 

  140. Kim, H. An integrative model of network activity during episodic memory retrieval and a meta-analysis of fMRI studies on source memory retrieval. Brain Res. 1747, 147049 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Epstein, R. A. & Baker, C. I. Scene perception in the human brain. Annu. Rev. Vis. Sci. 5, 373–397 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Silson, E. H., Steel, A. D. & Baker, C. I. Scene-selectivity and retinotopy in medial parietal cortex. Front. Hum. Neurosci. 10, 412 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Silson, E. H., Steel, A., Kidder, A., Gilmore, A. W. & Baker, C. I. Distinct subdivisions of human medial parietal cortex support recollection of people and places. eLife 8, e47391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gilmore, A. W. et al. Dynamic content reactivation supports naturalistic autobiographical recall in humans. J. Neurosci. 41, 153–166 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Afzalian, N. & Rajimehr, R. Spatially adjacent regions in posterior cingulate cortex represent familiar faces at different levels of complexity. J. Neurosci. 41, 9807–9826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hill, P. F., King, D. R. & Rugg, M. D. Age differences in retrieval-related reinstatement reflect age-related dedifferentiation at encoding. Cereb. Cortex 31, 106–122 (2021).

    Article  PubMed  Google Scholar 

  147. Silson, E. H. et al. A posterior-anterior distinction between scene perception and scene construction in human medial parietal cortex. J. Neurosci. 39, 705–717 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bainbridge, W. A., Hall, E. H. & Baker, C. I. Distinct representational structure and localization for visual encoding and recall during visual imagery. Cereb. Cortex 31, 1898–1913 (2021).

    Article  PubMed  Google Scholar 

  149. Grill-Spector, K., Weiner, K. S., Kay, K. & Gomez, J. The functional neuroanatomy of human face perception. Annu. Rev. Vis. Sci. 3, 167–196 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hesse, J. K. & Tsao, D. Y. The macaque face patch system: a turtle’s underbelly for the brain. Nat. Rev. Neurosci. 21, 695–716 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Kuhnen, C. M. & Knutson, B. The neural basis of financial risk taking. Neuron 47, 763–770 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Kable, J. W. & Glimcher, P. W. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10, 1625–1633 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Clithero, J. A. & Rangel, A. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9, 1289–1302 (2014).

    Article  PubMed  Google Scholar 

  154. Oldham, S. et al. The anticipation and outcome phases of reward and loss processing: a neuroimaging meta-analysis of the monetary incentive delay task. Hum. Brain Mapp. 39, 3398–3418 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Levy, D. J. & Glimcher, P. W. The root of all value: a neural common currency for choice. Curr. Opin. Neurobiol. 22, 1027–1038 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Levy, D. J. & Glimcher, P. W. Comparing apples and oranges: using reward-specific and reward-general subjective value representation in the brain. J. Neurosci. 31, 14693–14707 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kolling, N., Wittmann, M. & Rushworth, M. F. S. Multiple neural mechanisms of decision making and their competition under changing risk pressure. Neuron 81, 1190–1202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fromer, R., Dean Wolf, C. K. & Shenhav, A. Goal congruency dominates reward value in accounting for behavioral and neural correlates of value-based decision-making. Nat. Commun. 10, 4926 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Platt, M. L. & Plassmann, H. Neuroeconomics: Chapter 13. Multistage Valuation Signals and Common Neural Currencies (Academic Press, 2013).

  160. Waskom, M. L., Frank, M. C. & Wagner, A. D. Adaptive engagement of cognitive control in context-dependent decision making. Cereb. Cortex 27, 1270–1284 (2017).

    PubMed  Google Scholar 

  161. Corlett, P. R., Mollick, J. A. & Kober, H. Meta-analysis of human prediction error for incentives, perception, cognition, and action. Neuropsychopharmacology 47, 1339–1349 (2022).

    Article  PubMed  Google Scholar 

  162. McGuire, J. T., Nassar, M. R., Gold, J. I. & Kable, J. W. Functionally dissociable influences on learning rate in a dynamic environment. Neuron 84, 870–881 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lebreton, M., Abitbol, R., Daunizeau, J. & Pessiglione, M. Automatic integration of confidence in the brain valuation signal. Nat. Neurosci. 18, 1159–1167 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Glascher, J., Hampton, A. N. & O’Doherty, J. P. Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making. Cereb. Cortex 19, 483–495 (2009).

    Article  PubMed  Google Scholar 

  165. Kobayashi, K. & Hsu, M. Neural mechanisms of updating under reducible and irreducible uncertainty. J. Neurosci. 37, 6972–6982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Visalli, A., Capizzi, M., Ambrosini, E., Mazzonetto, I. & Vallesi, A. Bayesian modeling of temporal expectations in the human brain. Neuroimage 202, 116097 (2019).

    Article  PubMed  Google Scholar 

  167. Kao, C. H., Lee, S., Gold, J. I. & Kable, J. W. Neural encoding of task-dependent errors during adaptive learning. eLife 9, e58809 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76, 412–427 (2013).

    Article  PubMed  Google Scholar 

  169. Shenhav, A. & Karmarkar, U. R. Dissociable components of the reward circuit are involved in appraisal versus choice. Sci. Rep. 9, 1958 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Acikalin, M. Y., Gorgolewski, K. J. & Poldrack, R. A. A coordinate-based meta-analysis of overlaps in regional specialization and functional connectivity across subjective value and default mode networks. Front. Neurosci. 11, 1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Hayden, B. Y., Nair, A. C., McCoy, A. N. & Platt, M. L. Posterior cingulate cortex mediates outcome-contingent allocation of behavior. Neuron 60, 19–25 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Heilbronner, S. R., Hayden, B. Y. & Platt, M. L. Decision salience signals in posterior cingulate cortex. Front. Neurosci. 5, 55 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  173. McCoy, A. N., Crowley, J. C., Haghighian, G., Dean, H. L. & Platt, M. L. Saccade reward signals in posterior cingulate cortex. Neuron 40, 1031–1040 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Dean, H. L., Crowley, J. C. & Platt, M. L. Visual and saccade-related activity in macaque posterior cingulate cortex. J. Neurophysiol. 92, 3056–3068 (2004).

    Article  PubMed  Google Scholar 

  175. Dean, H. L. & Platt, M. L. Allocentric spatial referencing of neuronal activity in macaque posterior cingulate cortex. J. Neurosci. 26, 1117–1127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Olson, C. R., Musil, S. Y. & Goldberg, M. E. Single neurons in posterior cingulate cortex of behaving macaque: eye movement signals. J. Neurophysiol. 76, 3285–3300 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. Hayden, B. Y., Smith, D. V. & Platt, M. L. Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex. Proc. Natl Acad. Sci. USA 106, 5948–5953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Liu, B., Tian, Q. & Gu, Y. Robust vestibular self-motion signals in macaque posterior cingulate region. eLife 10, e64569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li, Y. S., Nassar, M. R., Kable, J. W. & Gold, J. I. Individual neurons in the cingulate cortex encode action monitoring, not selection, during adaptive decision-making. J. Neurosci. 39, 6668–6683 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Smith, A. T. Cortical visual area CSv as a cingulate motor area: a sensorimotor interface for the control of locomotion. Brain Struct. Funct. 226, 2931–2950 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).

    Article  CAS  PubMed  Google Scholar 

  182. Sugrue, L. P., Corrado, G. S. & Newsome, W. T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. McCoy, A. N. & Platt, M. L. Risk-sensitive neurons in macaque posterior cingulate cortex. Nat. Neurosci. 8, 1220–1227 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Wang, M. Z., Hayden, B. & Heilbronner, S. Anatomically distinct OFC-PCC circuits relay choice from value space to action space. Nat. Commun. 13, 1–12 (2022).

    Google Scholar 

  185. Weissman, D. H., Roberts, K. C., Visscher, K. M. & Woldorff, M. G. The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Hayden, B. Y., Smith, D. V. & Platt, M. L. Cognitive control signals in posterior cingulate cortex. Front. Hum. Neurosci. 4, 223 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Pearson, J. M., Hayden, B. Y., Raghavachari, S. & Platt, M. L. Neurons in posterior cingulate cortex signal exploratory decisions in a dynamic multioption choice task. Curr. Biol. 19, 1532–1537 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Barack, D. L., Chang, S. W. C. & Platt, M. L. Posterior cingulate neurons dynamically signal decisions to disengage during foraging. Neuron 96, 339–347.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19, 304–313 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Lerner, Y., Honey, C. J., Silbert, L. J. & Hasson, U. Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. J. Neurosci. 31, 2906–2915 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Heilbronner, S. R. & Platt, M. L. Causal evidence of performance monitoring by neurons in posterior cingulate cortex during learning. Neuron 80, 1384–1391 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Bussey, T. J., Wise, S. P. & Murray, E. A. The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 115, 971–982 (2001).

    Article  CAS  PubMed  Google Scholar 

  193. Wirth, S. et al. Single neurons in the monkey hippocampus and learning of new associations. Science 300, 1578–1581 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Hayden, B. Y., Pearson, J. M. & Platt, M. L. Neuronal basis of sequential foraging decisions in a patchy environment. Nat. Neurosci. 14, 933–939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Azab, H. & Hayden, B. Y. Correlates of economic decisions in the dorsal and subgenual anterior cingulate cortices. Eur. J. Neurosci. 47, 979–993 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Strait, C. E. et al. Neuronal selectivity for spatial positions of offers and choices in five reward regions. J. Neurophysiol. 115, 1098–1111 (2016).

    Article  PubMed  Google Scholar 

  197. Joshi, S., Li, Y., Kalwani, R. M. & Gold, J. I. Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89, 221–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Fox, K. C. R., Foster, B. L., Kucyi, A., Daitch, A. L. & Parvizi, J. Intracranial electrophysiology of the human default network. Trends Cogn. Sci. 22, 307–324 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Parvizi, J. & Kastner, S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 21, 474–483 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Nir, Y. et al. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr. Biol. 17, 1275–1285 (2007).

    Article  CAS  PubMed  Google Scholar 

  201. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J. & Hsiao, S. S. Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci. 28, 11526–11536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ray, S. & Maunsell, J. H. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Belitski, A. et al. Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J. Neurosci. 28, 5696–5709 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Foster, B. L., Rangarajan, V., Shirer, W. R. & Parvizi, J. Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron 86, 578–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Miller, K. J., Weaver, K. E. & Ojemann, J. G. Direct electrophysiological measurement of human default network areas. Proc. Natl Acad. Sci. USA 106, 12174–12177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Jerbi, K. et al. Exploring the electrophysiological correlates of the default-mode network with intracerebral EEG. Front. Syst. Neurosci. 4, 27 (2010).

    PubMed  PubMed Central  Google Scholar 

  208. Ossandon, T. et al. Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance. J. Neurosci. 31, 14521–14530 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Dastjerdi, M. et al. Differential electrophysiological response during rest, self-referential, and non-self-referential tasks in human posteromedial cortex. Proc. Natl Acad. Sci. USA 108, 3023–3028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Foster, B. L., Dastjerdi, M. & Parvizi, J. Neural populations in human posteromedial cortex display opposing responses during memory and numerical processing. Proc. Natl Acad. Sci. USA 109, 15514–15519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Kucyi, A. & Parvizi, J. Pupillary dynamics link spontaneous and task-evoked activations recorded directly from human insula. J. Neurosci. 40, 6207–6218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Raccah, O., Daitch, A. L., Kucyi, A. & Parvizi, J. Direct cortical recordings suggest temporal order of task-evoked responses in human dorsal attention and default networks. J. Neurosci. 38, 10305–10313 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Daitch, A. L. & Parvizi, J. Spatial and temporal heterogeneity of neural responses in human posteromedial cortex. Proc. Natl Acad. Sci. USA 115, 4785–4790 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lega, B., Germi, J. & Rugg, M. Modulation of oscillatory power and connectivity in the human posterior cingulate cortex supports the encoding and retrieval of episodic memories. J. Cogn. Neurosci. 29, 1415–1432 (2017).

    Article  PubMed  Google Scholar 

  215. Aponik-Gremillion, L. et al. Distinct population and single-neuron selectivity for executive and episodic processing in human dorsal posterior cingulate. eLife 11, e80722 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Foster, B. L. & Parvizi, J. Resting oscillations and cross-frequency coupling in the human posteromedial cortex. Neuroimage 60, 384–391 (2012).

    Article  PubMed  Google Scholar 

  217. Hacker, C. D., Snyder, A. Z., Pahwa, M., Corbetta, M. & Leuthardt, E. C. Frequency-specific electrophysiologic correlates of resting state fMRI networks. Neuroimage 149, 446–457 (2017).

    Article  PubMed  Google Scholar 

  218. Foster, B. L., Kaveh, A., Dastjerdi, M., Miller, K. J. & Parvizi, J. Human retrosplenial cortex displays transient theta phase locking with medial temporal cortex prior to activation during autobiographical memory retrieval. J. Neurosci. 33, 10439–10446 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Foster, B. L. et al. Spontaneous neural dynamics and multi-scale network organization. Front. Syst. Neurosci. 10, 7 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Kucyi, A. et al. Intracranial electrophysiology reveals reproducible intrinsic functional connectivity within human brain networks. J. Neurosci. 38, 4230–4242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Foster, B. L. & Parvizi, J. Direct cortical stimulation of human posteromedial cortex. Neurology 88, 685–691 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Balestrini, S. et al. Multimodal responses induced by cortical stimulation of the parietal lobe: a stereo-electroencephalography study. Brain 138, 2596–2607 (2015).

    Article  PubMed  Google Scholar 

  223. Richer, F., Martinez, M., Cohen, H. & Saint-Hilaire, J. M. Visual motion perception from stimulation of the human medial parieto-occipital cortex. Exp. Brain Res. 87, 649–652 (1991).

    Article  CAS  PubMed  Google Scholar 

  224. Herbet, G. et al. Disrupting posterior cingulate connectivity disconnects consciousness from the external environment. Neuropsychologia 56, 239–244 (2014).

    Article  PubMed  Google Scholar 

  225. Herbet, G., Lafargue, G. & Duffau, H. The dorsal cingulate cortex as a critical gateway in the network supporting conscious awareness. Brain 139, e23 (2016).

    Article  PubMed  Google Scholar 

  226. Fox, K. C. R. in Handbook of Spontaneous Thought: Mind-Wandering, Creativity, and Dreaming (eds Fox, K. C. R. & Christoff, K.) 165–179 (Oxford University Press, 2018).

  227. Parvizi, J. et al. Altered sense of self during seizures in the posteromedial cortex. Proc. Natl Acad. Sci. USA 118, e2100522118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Natu, V. S. et al. Stimulation of the posterior cingulate cortex impairs episodic memory encoding. J. Neurosci. 39, 7173–7182 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Read, M. L. & Lissaman, R. Commentary: stimulation of the posterior cingulate cortex impairs episodic memory encoding. Front. Hum. Neurosci. 14, 334 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Smallwood, J. et al. The default mode network in cognition: a topographical perspective. Nat. Rev. Neurosci. 22, 503–513 (2021).

    Article  CAS  PubMed  Google Scholar 

  232. Raut, R. V., Snyder, A. Z. & Raichle, M. E. Hierarchical dynamics as a macroscopic organizing principle of the human brain. Proc. Natl Acad. Sci. USA 117, 20890–20897 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Nelson, S. M. et al. A parcellation scheme for human left lateral parietal cortex. Neuron 67, 156–170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Nelson, S. M., McDermott, K. B. & Petersen, S. E. In favor of a ‘fractionation’ view of ventral parietal cortex: comment on Cabeza et al. Trends Cogn. Sci. 16, 399–400 (2012).

    Article  PubMed  Google Scholar 

  235. Cabeza, R., Ciaramelli, E. & Moscovitch, M. Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends Cogn. Sci. 16, 338–352 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Hutchinson, J. B., Uncapher, M. R. & Wagner, A. D. Posterior parietal cortex and episodic retrieval: convergent and divergent effects of attention and memory. Learn. Mem. 16, 343–356 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Hutchinson, J. B. et al. Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cereb. Cortex 24, 49–66 (2014).

    Article  PubMed  Google Scholar 

  238. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Vogt, B. A., Vogt, L., Farber, N. B. & Bush, G. Architecture and neurocytology of monkey cingulate gyrus. J. Comp. Neurol. 485, 218–239 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Laumann, T. O. et al. Functional system and areal organization of a highly sampled individual human brain. Neuron 87, 657–667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Haznedar, M. M. et al. Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. Am. J. Psychiatry 157, 1994–2001 (2000).

    Article  CAS  PubMed  Google Scholar 

  242. Kennedy, D. P. & Courchesne, E. Functional abnormalities of the default network during self- and other-reflection in autism. Soc. Cogn. Affect. Neurosci. 3, 177–190 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Kennedy, D. P., Redcay, E. & Courchesne, E. Failing to deactivate: resting functional abnormalities in autism. Proc. Natl Acad. Sci. USA 103, 8275–8280 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Nestor, P. G. et al. Neuropsychological disturbance in schizophrenia: a diffusion tensor imaging study. Neuropsychology 22, 246–254 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Fitzsimmons, J. et al. Cingulum bundle abnormalities and risk for schizophrenia. Schizophr. Res. 215, 385–391 (2020).

    Article  PubMed  Google Scholar 

  246. Mayberg, H. S. et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry 156, 675–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  247. Berman, M. G. et al. Depression, rumination and the default network. Soc. Cogn. Affect. Neurosci. 6, 548–555 (2011).

    Article  PubMed  Google Scholar 

  248. Cooney, R. E., Joormann, J., Eugene, F., Dennis, E. L. & Gotlib, I. H. Neural correlates of rumination in depression. Cogn. Affect. Behav. Neurosci. 10, 470–478 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Lozano, A. M. et al. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol. Psychiatry 64, 461–467 (2008).

    Article  PubMed  Google Scholar 

  250. Todd, T. P., Fournier, D. I. & Bucci, D. J. Retrosplenial cortex and its role in cue-specific learning and memory. Neurosci. Biobehav. Rev. 107, 713–728 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Morris, R., Paxinos, G. & Petrides, M. Architectonic analysis of the human retrosplenial cortex. J. Comp. Neurol. 421, 14–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  252. Ding, S. L. et al. Comprehensive cellular-resolution atlas of the adult human brain. J. Comp. Neurol. 524, 3127–3481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Van Essen, D. C. A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28, 635–662 (2005).

    Article  PubMed  Google Scholar 

  254. Zilles, K. & Palomero-Gallagher, N. Cyto-, myelo-, and receptor architectonics of the human parietal cortex. Neuroimage 14, S8–S20 (2001).

    Article  CAS  PubMed  Google Scholar 

  255. Nasr, S. et al. Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31, 13771–13785 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.L.F. is supported by NIH R01MH129439 and NIH R01MH116914; B.Y.H. is supported by NIH R01DA038615 and R01MH125377; S.R.H. is supported by NIH R01MH118257.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article and writing the article. B.L.F., S.R.K., S.R.H. and B.Y.H. contributed significantly to discussion of article content and reviewed and/or edited the article.

Corresponding author

Correspondence to Brett L. Foster.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Neurosynth: https://neurosynth.org/

Supplementary information

Glossary

Brodmann’s maps

Maps of distinct cytoarchitectural areas in the human cerebral cortex created by Korbinian Brodmann in 1909.

Connectivity hub

A node within a network that is connected to many other nodes.

Episodic memory

Conscious memory for prior lived experiences and events in the recent and remote past.

Executive control

Higher level cognitive functions allowing and supporting the control of other cognitive processes.

Familiarity

Memory recognition that lacks conscious details of past items or events.

Recollection

Memory retrieval involving conscious details of past events.

Reinstatement

The reoccurrence of brain activity patterns associated with a prior stimulus or behaviour.

Resting-state activity

Spontaneous physiological brain activity during the absence of explicitly instructed task requirements.

Saccade

Rapid and short movements of the eyes to a new point of visual focus.

Self-referential cognition

Cognitive processes focused on consideration of or in relation to oneself.

Temporal receptive window

The length of time before a neural response during which sensory information may affect that response.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Foster, B.L., Koslov, S.R., Aponik-Gremillion, L. et al. A tripartite view of the posterior cingulate cortex. Nat Rev Neurosci (2022). https://doi.org/10.1038/s41583-022-00661-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41583-022-00661-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing