Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Knowledge generalization and the costs of multitasking

Abstract

Humans are able to rapidly perform novel tasks, but show pervasive performance costs when attempting to do two things at once. Traditionally, empirical and theoretical investigations into the sources of such multitasking interference have largely focused on multitasking in isolation to other cognitive functions, characterizing the conditions that give rise to performance decrements. Here we instead ask whether multitasking costs are linked to the system’s capacity for knowledge generalization, as is required to perform novel tasks. We show how interrogation of the neurophysiological circuitry underlying these two facets of cognition yields further insights for both. Specifically, we demonstrate how a system that rapidly generalizes knowledge may induce multitasking costs owing to sharing of task contingencies between contexts in neural representations encoded in frontoparietal and striatal brain regions. We discuss neurophysiological insights suggesting that prolonged learning segregates such representations by refining the brain’s model of task-relevant contingencies, thereby reducing information sharing between contexts and improving multitasking performance while reducing flexibility and generalization. These proposed neural mechanisms explain why the brain shows rapid task understanding, multitasking limitations and practice effects. In short, multitasking limits are the price we pay for behavioural flexibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multitasking performance limits and practice specificity in the laboratory.
Fig. 2: Cortical nodes corresponding to knowledge generalization and multitasking.
Fig. 3: Overlapping frontal–parietal–stratial brain regions involved in knowledge generalization and multitasking.
Fig. 4: Proposed limits in the generalizability of practice effects.
Fig. 5: How practice improves multitasking performance.
Fig. 6: Practice separates neural representations, which supports improved multitasking performance but attenuates flexibility and generalizability.

Similar content being viewed by others

References

  1. Thorndike, E. L. The Fundamentals of Learning (Teachers College Bureau of Publications, 1932).

  2. Thorndike, E. L. Animal intelligence: an experimental study of the associative processes in animals. Psychol. Rev. Monogr. Suppl. 2, i–109 (1898).

    Article  Google Scholar 

  3. Bruce, R. W. Conditions of transfer of training. J. Exp. Psychol. 16, 343–361 (1933).

    Article  Google Scholar 

  4. Telford, C. W. The refractory phase of voluntary and associative responses. J. Exp. Psychol. 14, 1–36 (1931).

    Article  Google Scholar 

  5. Musslick, S. & Cohen, J. D. Rationalizing constraints on the capacity for cognitive control. Trends Cogn. Sci. 25, 757–775 (2021).

    Article  Google Scholar 

  6. Ravi, S., Musslick, S., Hamin, M., Willke, T. L. & Cohen, J. D. Navigating the trade-off between multi-task learning and learning to multitask in deep neural networks. arXiv https://doi.org/10.48550/arXiv.2007.10527 (2021).

    Article  Google Scholar 

  7. Petri, G. et al. Topological limits to the parallel processing capability of network architectures. Nat. Phys. 17, 646–651 (2021).

    Article  CAS  Google Scholar 

  8. Musslick, S. & Cohen, J. D. A mechanistic account of constraints on control-dependent processing: shared representation, conflict and persistence. in Proceedings of the 41st Annual Meeting of the Cognitive Science Society (Cognitive Science Society, 2019).

  9. Schneider, W. & Shiffrin, R. M. Controlled and automatic human information processing: I. Detection, search, and attention. Psychol. Rev. 84, 1–66 (1977).

    Article  Google Scholar 

  10. Shiffrin, R. M. & Schneider, W. Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychol. Rev. 84, 127–190 (1977).

    Article  Google Scholar 

  11. Hofstadter, D. in The Analogical Mind: Perspectives from Cognitive Science (eds Gentner, D., Holyoak, K. J. & Kokinov, B. N.) 499–538 (MIT Press, 2001).

  12. Hofstadter, D. R. Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of thought (Basic Books, 1995).

  13. French, R. M. The Subtlety of Sameness: a Theory and Computer Model of Analogy-Making (MIT Press, 1995).

  14. Pashler, H. Dual-task interference in simple tasks: data and theory. Psychol. Bull. 116, 220–244 (1994).

    Article  CAS  Google Scholar 

  15. Tombu, M. & Jolicœur, P. A central capacity sharing model of dual-task performance. J. Exp. Psychol. Hum. Percept. Perform. 29, 3–18 (2003).

    Article  Google Scholar 

  16. Duncan, J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14, 172–179 (2010).

    Article  Google Scholar 

  17. Badre, D., Bhandari, A., Keglovits, H. & Kikumoto, A. The dimensionality of neural representations for control. Curr. Opin. Behav. Sci. 38, 20–28 (2021).

    Article  Google Scholar 

  18. Bartolo, R., Saunders, R. C., Mitz, A. R. & Averbeck, B. B. Dimensionality, information and learning in prefrontal cortex. PLoS Comput. Biol. 16, e1007514 (2020).

    Article  CAS  Google Scholar 

  19. Beyeler, M., Rounds, E. L., Carlson, K. D., Dutt, N. & Krichmar, J. L. Neural correlates of sparse coding and dimensionality reduction. PLoS Comput. Biol. 15, e1006908 (2019).

    Article  CAS  Google Scholar 

  20. Shallice, T. et al. The domain of supervisory processes and temporal organization of behaviour. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351, 1405–1412 (1996).

    Article  CAS  Google Scholar 

  21. Shallice, T. & Burgess, P. W. Deficits in strategy application following frontal lobe damage in man. Brain 114, 727–741 (1991).

    Article  Google Scholar 

  22. Burgess, P. W., Dumontheil, I. & Gilbert, S. J. The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn. Sci. 11, 290–298 (2007).

    Article  Google Scholar 

  23. Strayer, D. L., Drews, F. A. & Crouch, D. J. A comparison of the cell phone driver and the drunk driver. Hum. Factors 48, 381–391 (2006).

    Article  Google Scholar 

  24. Strayer, D. L. & Johnston, W. A. Driven to distraction: dual-task studies of simulated driving and conversing on a cellular telephone. Psychol. Sci. 12, 462–466 (2001).

    Article  CAS  Google Scholar 

  25. Welford, A. T. The ‘psychological refractory period’ and the timing of high-speed performance — a review and a theory. Br. J. Psychol. 43, 2–19 (1952).

    Google Scholar 

  26. Kiesel, A. et al. Control and interference in task switching — a review. Psychol. Bull. 136, 849–874 (2010).

    Article  Google Scholar 

  27. Monsell, S. Task switching. Trends Cogn. Sci. 7, 134–140 (2003).

    Article  Google Scholar 

  28. Garner, K. & Dux, P. The neural basis of multitasking. in Handbook of Human Multitasking (eds Kiesel, A., Johannsen, L., Koch, I. & Müller, H.) (Springer, 2022).

  29. Strobach, T. & Torsten, S. Mechanisms of practice-related reductions of dual-task interference with simple tasks: data and theory. Adv. Cogn. Psychol. 13, 28–41 (2017).

    Article  Google Scholar 

  30. Maquestiaux, F., Laguë-Beauvais, M., Bherer, L. & Ruthruff, E. Bypassing the central bottleneck after single-task practice in the psychological refractory period paradigm: evidence for task automatization and greedy resource recruitment. Mem. Cogn. 36, 1262–1282 (2008).

    Article  Google Scholar 

  31. Ruthruff, E., Van Selst, M., Johnston, J. C. & Remington, R. How does practice reduce dual-task interference: integration, automatization, or just stage-shortening? Psychol. Res. 70, 125–142 (2006).

    Article  Google Scholar 

  32. Garner, K. G., Tombu, M. N. & Dux, P. E. The influence of training on the attentional blink and psychological refractory period. Atten. Percept. Psychophys. 76, 979–999 (2014).

    Article  CAS  Google Scholar 

  33. Tombu, M. & Jolicoeur, P. Virtually no evidence for virtually perfect time-sharing. J. Exp. Psychol. Hum. Percept. Perform. 30, 795–810 (2004).

    Article  Google Scholar 

  34. Strobach, T., Liepelt, R., Schubert, T. & Kiesel, A. Task switching: effects of practice on switch and mixing costs. Psychol. Res. 76, 74–83 (2012).

    Article  Google Scholar 

  35. Proctor, R. W. & Lu, C.-H. Processing irrelevant location information: practice and transfer effects in choice-reaction tasks. Mem. Cogn. 27, 63–77 (1999).

    Article  CAS  Google Scholar 

  36. Verghese, A., Mattingley, J. B., Palmer, P. E. & Dux, P. E. From eyes to hands: transfer of learning in the Simon task across motor effectors. Atten. Percept. Psychophys. 80, 193–210 (2018).

    Article  Google Scholar 

  37. Spelke, E., Hirst, W. & Neisser, U. Skills of divided attention. Cognition 4, 215–230 (1976).

    Article  Google Scholar 

  38. Garner, K. G., Matthews, N., Remington, R. W. & Dux, P. E. Transferability of training benefits differs across neural events: evidence from ERPs. J. Cogn. Neurosci. 27, 1–16 (2015).

    Article  Google Scholar 

  39. Strobach, T., Liepelt, R., Pashler, H., Frensch, P. A. & Schubert, T. Effects of extensive dual-task practice on processing stages in simultaneous choice tasks. Atten. Percept. Psychophys. 75, 900–920 (2013).

    Article  Google Scholar 

  40. Owen, A. M. et al. Putting brain training to the test. Nature 465, 775–778 (2010).

    Article  CAS  Google Scholar 

  41. Green, C. S. & Bavelier, D. Exercising your brain: a review of human brain plasticity and training-induced learning. Psychol. Aging 23, 692–701 (2008).

    Article  CAS  Google Scholar 

  42. Redick, T. S. The hype cycle of working memory training. Curr. Dir. Psychol. Sci. 28, 423–429 (2019).

    Article  Google Scholar 

  43. Redick, T. S. et al. No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. J. Exp. Psychol. Gen. 142, 359–379 (2013).

    Article  Google Scholar 

  44. Bender, A. D., Filmer, H. L., Naughtin, C. K. & Dux, P. E. Dynamic, continuous multitasking training leads to task-specific improvements but does not transfer across action selection tasks. Npj Sci. Learn. 2, 1–10 (2017).

    Article  Google Scholar 

  45. Strobach, T., Frensch, P. A. & Schubert, T. Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychol. 140, 13–24 (2012).

    Article  Google Scholar 

  46. Pashler, H. & Baylis, G. C. Procedural learning: I. Locus of practice effects in speeded choice tasks. J. Exp. Psychol. Learn. Mem. Cogn. 17, 20–32 (1991).

    Article  Google Scholar 

  47. Pashler, H. & Baylis, G. C. Procedural learning: II. Intertrial repetition effects in speeded-choice tasks. J. Exp. Psychol. Learn. Mem. Cogn. 17, 33–48 (1991).

    Article  Google Scholar 

  48. Vaidya, A. R., Jones, H. M., Castillo, J. & Badre, D. Neural representation of abstract task structure during generalization. eLife 10, e63226 (2021).

    Article  CAS  Google Scholar 

  49. Garner, K. G., Lynch, C. R. & Dux, P. E. Transfer of training benefits requires rules we cannot see (or hear). J. Exp. Psychol. Hum. Percept. Perform. 42, 1148–1157 (2016).

    Article  CAS  Google Scholar 

  50. Sternberg, S. The discovery of processing stages: extensions of Donders’ method. Acta Psychol. 30, 276–315 (1969).

    Article  Google Scholar 

  51. Zylberberg, A., Slezak, D. F., Roelfsema, P. R., Dehaene, S. & Sigman, M. The brain’s router: a cortical network model of serial processing in the primate brain. PLoS Comput. Biol. 6, e1000765 (2010).

    Article  Google Scholar 

  52. Hommel, B. Automatic stimulus-response translation in dual-task performance. J. Exp. Psychol. Hum. Percept. Perform. 24, 1368–1384 (1998).

    Article  CAS  Google Scholar 

  53. Navon, D. & Miller, J. Queuing or sharing? A critical evaluation of the single-bottleneck notion. Cogn. Psychol. 44, 193–251 (2002).

    Article  Google Scholar 

  54. Salvucci, D. D. & Taatgen, N. A. Threaded cognition: an integrated theory of concurrent multitasking. Psychol. Rev. 115, 101–130 (2008).

    Article  Google Scholar 

  55. Meyer, D. E. & Kieras, D. E. A computational theory of executive cognitive processes and multiple-task performance: part I. Basic mechanisms. Psychol. Rev. 104, 3–65 (1997).

    Article  CAS  Google Scholar 

  56. Meyer, D. E. & Kieras, D. E. A computational theory of executive cognitive processes and multiple-task performance: part 2. Accounts of psychological refractory-period phenomena. Psychol. Rev. 104, 749–791 (1997).

    Article  Google Scholar 

  57. Brady, M. J. & Kersten, D. Bootstrapped learning of novel objects. J. Vis. 3, 413–422 (2003).

    Article  Google Scholar 

  58. Thung, K.-H. & Wee, C.-Y. A brief review on multi-task learning. Multimed. Tools Appl. 77, 29705–29725 (2018).

    Article  Google Scholar 

  59. Caruana, R. Multitask learning. Mach. Learn. 28, 41–75 (1997).

    Article  Google Scholar 

  60. Dux, P. E. et al. Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex. Neuron 63, 127–138 (2009).

    Article  CAS  Google Scholar 

  61. Woolgar, A., Jackson, J. & Duncan, J. Coding of visual, auditory, rule, and response information in the brain: 10 years of multivoxel pattern analysis. J. Cogn. Neurosci. 28, 1433–1454 (2016).

    Article  Google Scholar 

  62. Woolgar, A., Thompson, R., Bor, D. & Duncan, J. Multi-voxel coding of stimuli, rules, and responses in human frontoparietal cortex. NeuroImage 56, 744–752 (2011).

    Article  Google Scholar 

  63. Stokes, M. G. et al. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78, 364–375 (2013).

    Article  CAS  Google Scholar 

  64. Garner, K. G. & Dux, P. E. Training conquers multitasking costs by dividing task representations in the frontoparietal-subcortical system. Proc. Natl Acad. Sci. USA 112, 14372–14377 (2015).

    Article  CAS  Google Scholar 

  65. Dux, P. E., Ivanoff, J., Asplund, C. L. & Marois, R. Isolation of a central bottleneck of information processing with time-resolved fMRI. Neuron 52, 1109–1120 (2006).

    Article  CAS  Google Scholar 

  66. Sigman, M. & Dehaene, S. Brain mechanisms of serial and parallel processing during dual-task performance. J. Neurosci. 28, 7585 (2008).

    Article  CAS  Google Scholar 

  67. Badre, D., Kayser, A. S. & D’Esposito, M. Frontal cortex and the discovery of abstract action rules. Neuron 66, 315–326 (2010).

    Article  CAS  Google Scholar 

  68. Bhandari, A. & Badre, D. Fronto-parietal, cingulo-opercular and striatal contributions to learning and implementing control policies. bioRxiv https://doi.org/10.1101/2020.05.10.086587 (2020).

    Article  Google Scholar 

  69. McDougle, S. D., Ballard, I. C., Baribault, B., Bishop, S. J. & Collins, A. G. E. Executive function assigns value to novel goal-congruent outcomes. Cereb. Cortex https://doi.org/10.1093/cercor/bhab205 (2021).

    Article  Google Scholar 

  70. Camilleri, J. A. et al. Definition and characterization of an extended multiple-demand network. NeuroImage 165, 138–147 (2018).

    Article  CAS  Google Scholar 

  71. Woolgar, A., Duncan, J., Manes, F. & Fedorenko, E. Fluid intelligence is supported by the multiple-demand system not the language system. Nat. Hum. Behav. 2, 200–204 (2018).

    Article  Google Scholar 

  72. Duncan, J., Assem, M. & Shashidhara, S. Integrated intelligence from distributed brain activity. Trends Cogn. Sci. 24, 838–852 (2020).

    Article  Google Scholar 

  73. Tschentscher, N., Mitchell, D. & Duncan, J. Fluid intelligence predicts novel rule implementation in a distributed frontoparietal control network. J. Neurosci. 37, 4841–4847 (2017).

    Article  CAS  Google Scholar 

  74. Spearman, C. ‘General intelligence,’ objectively determined and measured. Am. J. Psychol. 15, 201–293 (1904).

    Article  Google Scholar 

  75. Zylberberg, A., Dehaene, S., Roelfsema, P. R. & Sigman, M. The human Turing machine: a neural framework for mental programs. Trends Cogn. Sci. 15, 293–300 (2011).

    Google Scholar 

  76. Bowman, H. & Wyble, B. The simultaneous type, serial token model of temporal attention and working memory. Psychol. Rev. 114, 38–70 (2007).

    Article  Google Scholar 

  77. Dehaene, S., Kerszberg, M. & Changeux, J.-P. A neuronal model of a global workspace in effortful cognitive tasks. Proc. Natl Acad. Sci. USA 95, 14529–14534 (1998).

    Article  CAS  Google Scholar 

  78. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Article  CAS  Google Scholar 

  79. Achterberg, J. et al. A one-shot shift from explore to exploit in monkey prefrontal cortex. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.1338-21.2021 (2021).

    Article  Google Scholar 

  80. Lee, S. W., O’Doherty, J. P. & Shimojo, S. Neural computations mediating one-shot learning in the human brain. PLoS Biol. 13, e1002137 (2015).

    Article  Google Scholar 

  81. Ruge, H. & Wolfensteller, U. Functional integration processes underlying the instruction-based learning of novel goal-directed behaviors. NeuroImage 68, 162–172 (2013).

    Article  Google Scholar 

  82. Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn1919 (2006).

    Article  Google Scholar 

  83. Graybiel, A. M. & Grafton, S. T. The striatum: where skills and habits meet. Cold Spring Harb. Perspect. Biol. 7, a021691 (2015).

    Article  Google Scholar 

  84. Barnes, T. D., Kubota, Y., Hu, D., Jin, D. Z. & Graybiel, A. M. Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437, 1158–1161 (2005).

    Article  CAS  Google Scholar 

  85. Kimchi, E. Y. & Laubach, M. Dynamic encoding of action selection by the medial striatum. J. Neurosci. 29, 3148–3159 (2009).

    Article  CAS  Google Scholar 

  86. Balleine, B. W., Delgado, M. R. & Hikosaka, O. The role of the dorsal striatum in reward and decision-making. J. Neurosci. 27, 8161–8165 (2007).

    Article  CAS  Google Scholar 

  87. Haber, S. N. Corticostriatal circuitry. Dialogues Clin. Neurosci. 18, 7–21 (2016).

    Article  Google Scholar 

  88. Foster, N. N. et al. The mouse cortico–basal ganglia–thalamic network. Nature 598, 188–194 (2021).

    Article  CAS  Google Scholar 

  89. Averbeck, B. B., Lehman, J., Jacobson, M. & Haber, S. N. Estimates of projection overlap and zones of convergence within frontal-striatal circuits. J. Neurosci. 34, 9497–9505 (2014).

    Article  CAS  Google Scholar 

  90. Choi, E. Y., Tanimura, Y., Vage, P. R., Yates, E. H. & Haber, S. N. Convergence of prefrontal and parietal anatomical projections in a connectional hub in the striatum. NeuroImage 146, 821–832 (2017).

    Article  Google Scholar 

  91. Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    Article  CAS  Google Scholar 

  92. Ruan, J. et al. Cytoarchitecture, probability maps, and functions of the human supplementary and pre-supplementary motor areas. Brain Struct. Funct. 223, 4169–4186 (2018).

    Article  Google Scholar 

  93. Bozkurt, B. et al. Fiber connections of the supplementary motor area revisited: methodology of fiber dissection, DTI, and three dimensional documentation. J. Vis. Exp. https://doi.org/10.3791/55681 (2017).

    Article  Google Scholar 

  94. Balleine, B. W. & O’Doherty, J. P. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69 (2010).

    Article  Google Scholar 

  95. Burton, A. C., Nakamura, K. & Roesch, M. R. From ventral-medial to dorsal-lateral striatum: neural correlates of reward-guided decision-making. Neurobiol. Learn. Mem. 117, 51–59 (2015).

    Article  Google Scholar 

  96. Malvaez, M. & Wassum, K. M. Regulation of habit formation in the dorsal striatum. Curr. Opin. Behav. Sci. 20, 67–74 (2018).

    Article  Google Scholar 

  97. Shiflett, M. W., Brown, R. A. & Balleine, B. W. Acquisition and performance of goal-directed instrumental actions depends on ERK signaling in distinct regions of dorsal striatum in rats. J. Neurosci. 30, 2951–2959 (2010).

    Article  CAS  Google Scholar 

  98. Gourley, S. L. et al. The orbitofrontal cortex regulates outcome-based decision-making via the lateral striatum. Eur. J. Neurosci. 38, 2382–2388 (2013).

    Article  Google Scholar 

  99. Gremel, C. M. & Costa, R. M. Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat. Commun. 4, 2264 (2013).

    Article  Google Scholar 

  100. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action–outcome contingency in instrumental conditioning. Behav. Brain Res. 166, 189–196 (2006).

    Article  Google Scholar 

  101. Gahnstrom, C. J. & Spiers, H. J. Striatal and hippocampal contributions to flexible navigation in rats and humans. Brain Neurosci. Adv. 4, 2398212820979772 (2020).

    Article  Google Scholar 

  102. Hart, G., Bradfield, L. A., Fok, S. Y., Chieng, B. & Balleine, B. W. The bilateral prefronto-striatal pathway is necessary for learning new goal-directed actions. Curr. Biol. 28, 2218–2229.e7 (2018).

    Article  CAS  Google Scholar 

  103. Watanabe, K. & Funahashi, S. Neural mechanisms of dual-task interference and cognitive capacity limitation in the prefrontal cortex. Nat. Neurosci. 17, 601–611 (2014).

    Article  CAS  Google Scholar 

  104. Herath, P., Klingberg, T., Young, J., Amunts, K. & Roland, P. Neural correlates of dual task interference can be dissociated from those of divided attention: an fMRI study. Cereb. Cortex 11, 796–805 (2001).

    Article  CAS  Google Scholar 

  105. Collette, F. et al. Involvement of both prefrontal and inferior parietal cortex in dual-task performance. Brain Res. Cogn. Brain Res. 24, 237–251 (2005).

    Article  Google Scholar 

  106. Schubert, T. & Szameitat, A. J. Functional neuroanatomy of interference in overlapping dual tasks: an fMRI study. Brain Res. Cogn. Brain Res. 17, 733–746 (2003).

    Article  Google Scholar 

  107. Szameitat, A. J., Schubert, T., Müller, K. & Von Cramon, D. Y. Localization of executive functions in dual-task performance with fMRI. J. Cogn. Neurosci. 14, 1184–1199 (2002).

    Article  Google Scholar 

  108. Sigman, M. & Dehaene, S. Parsing a cognitive task: a characterization of the mind’s bottleneck. PLoS Biol. 3, e37 (2005).

    Article  Google Scholar 

  109. Marti, S., King, J.-R. & Dehaene, S. Time-resolved decoding of two processing chains during dual-task interference. Neuron 88, 1297–1307 (2015).

    Article  CAS  Google Scholar 

  110. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  CAS  Google Scholar 

  111. Koch, I., Gade, M., Schuch, S. & Philipp, A. M. The role of inhibition in task switching: a review. Psychon. Bull. Rev. 17, 1–14 (2010).

    Article  Google Scholar 

  112. Mayr, U. Inhibition of action rules. Psychon. Bull. Rev. 9, 93–99 (2002).

    Article  Google Scholar 

  113. Hommel, B., Müsseler, J., Aschersleben, G. & Prinz, W. The theory of event coding (TEC): a framework for perception and action planning. Behav. Brain Sci. 24, 849–878 (2001).

    Article  CAS  Google Scholar 

  114. Hommel, B. Theory of event coding (TEC) V2.0: representing and controlling perception and action. Atten. Percept. Psychophys. 81, 2139–2154 (2019).

    Article  Google Scholar 

  115. Hommel, B. Dual-task performance: theoretical analysis and an event-coding account. J. Cogn. 3, 29 (2020).

    Article  Google Scholar 

  116. Joohun Nam, A. & McClelland, J. What underlies rapid learning and systematic generalization in humans. arXiv https://doi.org/10.48550/arXiv.2107.06994 (2021).

    Article  Google Scholar 

  117. Cunningham, P. J., Regier, P. S. & Redish, A. D. Dorsolateral striatal task initiation bursts represent past experiences more than future action plans. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.3080-20.2021 (2021).

    Article  Google Scholar 

  118. Meer, M. A. A., van der, Johnson, A., Schmitzer-Torbert, N. C. & Redish, A. D. Triple dissociation of information processing in dorsal striatum, ventral striatum, and hippocampus on a learned spatial decision task. Neuron 67, 25–32 (2010).

    Article  Google Scholar 

  119. Yasuda, M., Yamamoto, S. & Hikosaka, O. Robust representation of stable object values in the oculomotor basal ganglia. J. Neurosci. 32, 16917–16932 (2012).

    Article  CAS  Google Scholar 

  120. Martiros, N., Burgess, A. A. & Graybiel, A. M. Inversely active striatal projection neurons and interneurons selectively delimit useful behavioral sequences. Curr. Biol. 28, 560–573.e5 (2018).

    Article  CAS  Google Scholar 

  121. Graybiel, A. M. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136 (1998).

    Article  CAS  Google Scholar 

  122. Desrochers, T. M., Amemori, K. & Graybiel, A. M. Habit learning by naive macaques is marked by response sharpening of striatal neurons representing the cost and outcome of acquired action sequences. Neuron 87, 853–868 (2015).

    Article  CAS  Google Scholar 

  123. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19, 181–189 (2004).

    Article  Google Scholar 

  124. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction 2nd edn (MIT Press, 2018).

  125. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    Article  CAS  Google Scholar 

  126. Lashley, K. S. The problem of serial order in behavior. in Cerebral Mechanisms in Behavior: The Hixon Symposium (ed. Jeffress, L. A.) 112–146 (Wiley, 1951).

  127. Bailey, K. R. & Mair, R. G. The role of striatum in initiation and execution of learned action sequences in rats. J. Neurosci. 26, 1016–1025 (2006).

    Article  CAS  Google Scholar 

  128. Dezfouli, A. & Balleine, B. W. Habits, action sequences and reinforcement learning. Eur. J. Neurosci. 35, 1036–1051 (2012).

    Article  Google Scholar 

  129. Logan, G. D. Toward an instance theory of automatization. Psychol. Rev. 95, 492–527 (1988).

    Article  Google Scholar 

  130. Lipton, D. M., Gonzales, B. J. & Citri, A. Dorsal striatal circuits for habits, compulsions and addictions. Front. Syst. Neurosci. 13, 28 (2019).

    Article  CAS  Google Scholar 

  131. Haber, S. N. The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 26, 317–330 (2003).

    Article  Google Scholar 

  132. Packard, M. G. & McGaugh, J. L. Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol. Learn. Mem. 65, 65–72 (1996).

    Article  CAS  Google Scholar 

  133. Wood, W., Mazar, A. & Neal, D. T. Habits and goals in human behavior: separate but interacting systems. Perspect. Psychol. Sci. https://doi.org/10.1177/1745691621994226 (2021).

    Article  Google Scholar 

  134. Hardwick, R. M., Forrence, A. D., Krakauer, J. W. & Haith, A. M. Time-dependent competition between goal-directed and habitual response preparation. Nat. Hum. Behav. 3, 1252–1262 (2019).

    Article  Google Scholar 

  135. Watson, P., Pavri, Y., Le, J. T., Pearson, D. & Pelley, M. L. Attentional capture by signals of reward persists following outcome devaluation. Learn. Mem. https://doi.org/10.31234/osf.io/2jmpb (2022).

    Article  Google Scholar 

  136. Thompson, K. G., Hanes, D. P., Bichot, N. P. & Schall, J. D. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J. Neurophysiol. 76, 4040–4055 (1996).

    Article  CAS  Google Scholar 

  137. Tan, Q., Wang, Z., Sasaki, Y. & Watanabe, T. Category-induced transfer of visual perceptual learning. Curr. Biol. 29, 1374–1378.e3 (2019).

    Article  CAS  Google Scholar 

  138. Logan, G. D. Simon-type effects: chronometric evidence for keypress schemata in typewriting. J. Exp. Psychol. Hum. Percept. Perform. 29, 741–757 (2003).

    Article  Google Scholar 

  139. Ahissar, M. & Hochstein, S. The reverse hierarchy theory of visual perceptual learning. Trends Cogn. Sci. 8, 457–464 (2004).

    Article  Google Scholar 

  140. Momennejad, I. et al. The successor representation in human reinforcement learning. Nat. Hum. Behav. 1, 680–692 (2017).

    Article  CAS  Google Scholar 

  141. Collins, A. G. E. & Frank, M. J. Cognitive control over learning: creating, clustering and generalizing task-set structure. Psychol. Rev. 120, 190–229 (2013).

    Article  Google Scholar 

  142. Pearl, J. Causality (Cambridge University Press, 2009).

  143. Pearl, J. The do calculus revisited. in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (eds de Freitas, N. & Murphy, K.) 3–11 (AUAI Press, 2012).

  144. Pearl, J. What is gained from past learning. J. Causal Inference https://doi.org/10.1515/jci-2018-0005 (2018).

    Article  Google Scholar 

  145. Sagiv, Y., Musslick, S., Niv, Y. & Cohen, J. D. Efficiency of learning vs. processing: towards a normative theory of multitasking. arXiv https://doi.org/10.48550/arXiv.2007.03124 (2020).

    Article  Google Scholar 

  146. Tucci, R. R. Introduction to Judea Pearl’s do-calculus. arXiv https://doi.org/10.48550/arXiv.1305.5506 (2013).

    Article  Google Scholar 

  147. Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E. & Pouget, A. Not noisy, just wrong: the role of suboptimal inference in behavioral variability. Neuron 74, 30–39 (2012).

    Article  CAS  Google Scholar 

  148. Findling, C., Skvortsova, V., Dromnelle, R., Palminteri, S. & Wyart, V. Computational noise in reward-guided learning drives behavioral variability in volatile environments. Nat. Neurosci. 22, 2066–2077 (2019).

    Article  CAS  Google Scholar 

  149. Brown, S. & Bennett, E. The role of practice and automaticity in temporal and nontemporal dual-task performance. Psychol. Res. 66, 80–89 (2002).

    Article  CAS  Google Scholar 

  150. Compton, B. J. & Logan, G. D. The transition from algorithm to retrieval in memory-based theories of automaticity. Mem. Cogn. 19, 151–158 (1991).

    Article  CAS  Google Scholar 

  151. Rickard, T. C. Bending the power law: a CMPL theory of strategy shifts and the automatization of cognitive skills. J. Exp. Psychol. Gen. 126, 288–311 (1997).

    Article  Google Scholar 

  152. Bajic, D. & Rickard, T. C. The temporal dynamics of strategy execution in cognitive skill learning. J. Exp. Psychol. Learn. Mem. Cogn. 35, 113–121 (2009).

    Article  Google Scholar 

  153. Jehee, J. F. M., Ling, S., Swisher, J. D., van Bergen, R. S. & Tong, F. Perceptual learning selectively refines orientation representations in early visual cortex. J. Neurosci. 32, 16747–16753 (2012).

    Article  CAS  Google Scholar 

  154. Zivari Adab, H. & Vogels, R. Practicing coarse orientation discrimination improves orientation signals in macaque cortical area V4. Curr. Biol. 21, 1661–1666 (2011).

    Article  CAS  Google Scholar 

  155. Cohen, D. & Nicolelis, M. A. L. Reduction of single-neuron firing uncertainty by cortical ensembles during motor skill learning. J. Neurosci. 24, 3574–3582 (2004).

    Article  CAS  Google Scholar 

  156. Bao, M., Yang, L., Rios, C., He, B. & Engel, S. A. Perceptual learning increases the strength of the earliest signals in visual cortex. J. Neurosci. 30, 15080–15084 (2010).

    Article  CAS  Google Scholar 

  157. Gold, J., Bennett, P. J. & Sekuler, A. B. Signal but not noise changes with perceptual learning. Nature 402, 176–178 (1999).

    Article  CAS  Google Scholar 

  158. Garner, K. G., Garrido, M. I. & Dux, P. E. Cognitive capacity limits are remediated by practice-induced plasticity between the putamen and pre-supplementary motor area. eNeuro 7, ENEURO.0139-20.2020 (2020).

    Article  Google Scholar 

  159. Li, Z. & Li, Z. Dual-task costs in memory recall precision reflect shared representational space. J. Exp. Psychol. Hum. Percept. Perform. 47, 460–478 (2021).

    Article  Google Scholar 

  160. Schacherer, J. & Hazeltine, E. Crosstalk, not resource competition, as a source of dual-task costs: Evidence from manipulating stimulus-action effect conceptual compatibility. Psychon. Bull. Rev. https://doi.org/10.3758/s13423-021-01903-2 (2021).

    Article  Google Scholar 

  161. Chen, H. & Wyble, B. Amnesia for object attributes: failure to report attended information that had just reached conscious awareness. Psychol. Sci. 26, 203–210 (2015).

    Article  Google Scholar 

  162. Crittenden, B. M. & Duncan, J. Task difficulty manipulation reveals multiple demand activity but no frontal lobe hierarchy. Cereb. Cortex 24, 532–540 (2014).

    Article  Google Scholar 

  163. Crittenden, B. M., Mitchell, D. J. & Duncan, J. Task encoding across the multiple demand cortex is consistent with a frontoparietal and cingulo-opercular dual networks distinction. J. Neurosci. 36, 6147–6155 (2016).

    Article  CAS  Google Scholar 

  164. Badre, D. Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes. Trends Cogn. Sci. 12, 193–200 (2008).

    Article  Google Scholar 

  165. Badre, D. & D’Esposito, M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat. Rev. Neurosci. 10, 659–669 (2009).

    Article  CAS  Google Scholar 

  166. Koechlin, E., Ody, C. & Kouneiher, F. The architecture of cognitive control in the human prefrontal cortex. Science 302, 1181–1185 (2003).

    Article  CAS  Google Scholar 

  167. Yin, S., Wang, T., Pan, W., Liu, Y. & Chen, A. Task-switching cost and intrinsic functional connectivity in the human brain: toward understanding individual differences in cognitive flexibility. PLoS ONE 10, e0145826 (2015).

    Article  Google Scholar 

  168. Burgess, P. W., Veitch, E., de Lacy Costello, A. & Shallice, T. The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia 38, 848–863 (2000).

    Article  CAS  Google Scholar 

  169. Gilbert, S. J. et al. Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. J. Cogn. Neurosci. 18, 932–948 (2006).

    Article  Google Scholar 

  170. Assem, M., Glasser, M. F., Van Essen, D. C. & Duncan, J. A domain-general cognitive core defined in multimodally parcellated human cortex. Cereb. Cortex 30, 4361–4380 (2020).

    Article  Google Scholar 

  171. Duncan, J. et al. Goal neglect and Spearman’s g: competing parts of a complex task. J. Exp. Psychol. Gen. 137, 131–148 (2008).

    Article  Google Scholar 

  172. Hartstra, E., Kühn, S., Verguts, T. & Brass, M. The implementation of verbal instructions: an fMRI study. Hum. Brain Mapp. 32, 1811–1824 (2011).

    Article  Google Scholar 

  173. Worringer, B. et al. Common and distinct neural correlates of dual-tasking and task-switching: a meta-analytic review and a neuro-cognitive processing model of human multitasking. Brain Struct. Funct. 224, 1845–1869 (2019).

    Article  Google Scholar 

  174. Takeuchi, H. et al. Effects of multitasking-training on gray matter structure and resting state neural mechanisms. Hum. Brain Mapp. 35, 3646–3660 (2014).

    Article  Google Scholar 

  175. Verghese, A., Garner, K. G., Mattingley, J. B. & Dux, P. E. Prefrontal cortex structure predicts training-induced improvements in multitasking performance. J. Neurosci. 36, 2638–2645 (2016).

    Article  CAS  Google Scholar 

  176. Stelzel, C. et al. Contribution of the lateral prefrontal cortex to cognitive-postural multitasking. Front. Psychol. 9, 1075 (2018).

    Article  Google Scholar 

  177. Marois, R. & Ivanoff, J. Capacity limits of information processing in the brain. Trends Cogn. Sci. 9, 296–305 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 796329 awarded to K.G.G. and ARC Discovery Projects grants DP180101885 and DP210101977 awarded to P.E.D. The authors thank D. Lloyd for his work on the graphical representations of the concepts in this Perspective. The authors also thank C. Nolan, H. Bowman, J. Mattingley, Y. Wards and A. Renton for providing helpful feedback and insightful commentary on previous drafts.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Kelly G. Garner or Paul E. Dux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Helen Slagter and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garner, K.G., Dux, P.E. Knowledge generalization and the costs of multitasking. Nat Rev Neurosci 24, 98–112 (2023). https://doi.org/10.1038/s41583-022-00653-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00653-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing