Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Quantifying postsynaptic receptor dynamics: insights into synaptic function

Abstract

The molecular composition of presynaptic and postsynaptic neuronal terminals is dynamic, and yet long-term stabilizations in postsynaptic responses are necessary for synaptic development and long-term plasticity. The need to reconcile these concepts is further complicated by learning- and memory-related plastic changes in the molecular make-up of synapses. Advances in single-particle tracking mean that we can now quantify the number and diffusive properties of specific synaptic molecules, while statistical thermodynamics provides a framework to analyse these molecular fluctuations. In this Review, we discuss the use of these approaches to gain quantitative descriptions of the processes underlying the turnover, long-term stability and plasticity of postsynaptic receptors and show how these can help us to understand the balance between local molecular turnover and synaptic structural identity and integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and dynamics of postsynaptic receptors at synapses.
Fig. 2: Super-resolved single-particle trajectory analysis.
Fig. 3: Synapse-specific temporal dynamics.
Fig. 4: Biophysical modelling of receptor–scaffold dynamics.

Similar content being viewed by others

References

  1. Frank, E. & Fischbach, G. D. Early events in neuromuscular junction formation in vitro. Induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J. Cell Biol. 83, 143–158 (1979).

    Article  CAS  Google Scholar 

  2. Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. Distribution of glycine receptors at central synapses: an immunoelectron microscopy study. J. Cell Biol. 101, 683–688 (1985).

    Article  CAS  Google Scholar 

  3. Peters, A., Palay, S. L. & Webster, H. deF. The Fine Structure of the Nervous System: Neurons and Their Supporting Cells (W. B. Sanders, 1976).

  4. Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

    Article  CAS  Google Scholar 

  5. Young, S. H. & Poo, M. M. Rapid lateral diffusion of extrajunctional acetylcholine receptors in the developing muscle membrane of Xenopus tadpole. J. Neurosci. 3, 225–231 (1983).

    Article  CAS  Google Scholar 

  6. Crick, F. Neurobiology: memory and molecular turnover. Nature 312, 101–101 (1984).

    Article  CAS  Google Scholar 

  7. Anderson, M. J. & Cohen, M. W. Nerve‐induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J. Physiol. 268, 757–773 (1977).

    Article  CAS  Google Scholar 

  8. Axelrod, D. et al. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc. Natl Acad. Sci. USA 73, 4594–4598 (1976).

    Article  CAS  Google Scholar 

  9. Rosenberg, M., Meier, J., Triller, A. & Vannier, C. Dynamics of glycine receptor insertion in the neuronal plasma membrane. J. Neurosci. 21, 5036–5044 (2001).

    Article  CAS  Google Scholar 

  10. Passafaro, M., Piëch, V. & Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4, 917–926 (2001).

    Article  CAS  Google Scholar 

  11. Meier, J., Vannier, C., Sergé, A., Triller, A. & Choquet, D. Fast and reversible trapping of surface glycine receptors by gephyrin. Nat. Neurosci. 4, 253–260 (2001). This was the first study to demonstrate neurotransmitter receptor diffusion in the plasma membrane. It also established that the interaction between receptors and scaffold proteins at the postsynaptic domain is reversible.

    Article  CAS  Google Scholar 

  12. Borgdorff, A. J. & Choquet, D. Regulation of AMPA receptor lateral movements. Nature 417, 649–653 (2002).

    Article  CAS  Google Scholar 

  13. Sergé, A., Fourgeaud, L., Hémar, A. & Choquet, D. Receptor activation and homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. J. Neurosci. 22, 3910–3920 (2002).

    Article  Google Scholar 

  14. Fornasiero, E. F. et al. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat. Commun. 9, 1–17 (2018).

    Article  CAS  Google Scholar 

  15. Ziv, N. E. & Brenner, N. Synaptic tenacity or lack thereof: spontaneous remodeling of synapses. Trends Neurosci. 41, 89–99 (2018).

    Article  CAS  Google Scholar 

  16. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Structure-stability-function relationships of dendritic spines. Trends Neurosci. 26, 360–368 (2003).

    Article  CAS  Google Scholar 

  17. Mongillo, G., Rumpel, S. & Loewenstein, Y. Intrinsic volatility of synaptic connections — a challenge to the synaptic trace theory of memory. Curr. Opin. Neurobiol. 46, 7–13 (2017).

    Article  CAS  Google Scholar 

  18. Ziff, E. B. Enlightening the postsynaptic density. Neuron 19, 1163–1174 (1997).

    Article  CAS  Google Scholar 

  19. Chen, X. et al. Organization of the core structure of the postsynaptic density. Proc. Natl Acad. Sci. USA 105, 4453–4458 (2008).

    Article  CAS  Google Scholar 

  20. Nusser, Z., Hájos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395, 172–177 (1998).

    Article  CAS  Google Scholar 

  21. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  22. Blanpied, T. A., Scott, D. B. & Ehlers, M. D. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36, 435–449 (2002).

    Article  CAS  Google Scholar 

  23. Tardin, C., Cognet, L., Bats, C., Lounis, B. & Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665 (2003).

    Article  CAS  Google Scholar 

  24. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003). Tardin et al. (2003) and Dahan et al. (2003) were the first studies to definitively show neurotransmitter receptor diffusion into and out of synapses.

    Article  CAS  Google Scholar 

  25. Choquet, D. & Triller, A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat. Rev. Neurosci. 4, 251–265 (2003).

    Article  CAS  Google Scholar 

  26. Triller, A. & Choquet, D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci. 28, 133–139 (2005).

    Article  CAS  Google Scholar 

  27. Charrier, C., Ehrensperger, M.-V., Dahan, M., Levi, S. & Triller, A. Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J. Neurosci. 26, 8502–8511 (2006).

    Article  CAS  Google Scholar 

  28. Nair, D. et al. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. 33, 13204–13224 (2013).

    Article  CAS  Google Scholar 

  29. Shinohara, Y. Quantification of postsynaptic density proteins: glutamate receptor subunits and scaffolding proteins. Hippocampus 22, 942–953 (2012).

    Article  CAS  Google Scholar 

  30. Specht, C. G. et al. Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 79, 308–321 (2013).

    Article  CAS  Google Scholar 

  31. Fukazawa, Y. & Shigemoto, R. Intra-synapse-type and inter-synapse-type relationships between synaptic size and AMPAR expression. Curr. Opin. Neurobiol. 22, 446–452 (2012).

    Article  CAS  Google Scholar 

  32. Goncalves, J. et al. Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses. Proc. Natl Acad. Sci. USA 117, 14503–14511 (2020).

    Article  CAS  Google Scholar 

  33. Ferreira, J. S. et al. Distance-dependent regulation of NMDAR nanoscale organization along hippocampal neuron dendrites. Proc. Natl Acad. Sci. USA 117, 24526–24533 (2020).

    Article  CAS  Google Scholar 

  34. Maynard, S. A. et al. Identification of a stereotypic molecular arrangement of endogenous glycine receptors at spinal cord synapses. Elife 10, e74441 (2021).

    Article  CAS  Google Scholar 

  35. Ladepeche, L. et al. Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors. Proc. Natl Acad. Sci. USA 110, 18005–18010 (2013).

    Article  CAS  Google Scholar 

  36. Chen, X. et al. PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proc. Natl Acad. Sci. USA 112, E6983–E6992 (2015).

    Article  CAS  Google Scholar 

  37. Racca, C., Stephenson, F. A., Streit, P., Roberts, J. D. B. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20, 2512–2522 (2000).

    Article  CAS  Google Scholar 

  38. Helm, M. S. et al. A large-scale nanoscopy and biochemistry analysis of postsynaptic dendritic spines. Nat. Neurosci. 24, 1151–1162 (2021).

    Article  CAS  Google Scholar 

  39. Yang, X., Le Corronc, H., Legendre, P., Triller, A. & Specht, C. G. Differential regulation of glycinergic and GABAergic nanocolumns at mixed inhibitory synapses. EMBO Rep. 22, e52154 (2021).

    Article  CAS  Google Scholar 

  40. Nakahata, Y. et al. Activation-dependent rapid postsynaptic clustering of glycine receptors in mature spinal cord neurons. eNeuro 4, ENEURO.0194-16.2017 (2017).

    Article  Google Scholar 

  41. Petrini, E. M. et al. Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP. Nat. Commun. 5, 3921 (2014).

    Article  CAS  Google Scholar 

  42. Ashby, M. C., Maier, S. R., Nishimune, A. & Henley, J. M. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J. Neurosci. 26, 7046–7055 (2006).

    Article  CAS  Google Scholar 

  43. Opazo, P. et al. CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron 67, 239–252 (2010).

    Article  CAS  Google Scholar 

  44. Constals, A. et al. Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from stargazin. Neuron 85, 787–803 (2015).

    Article  CAS  Google Scholar 

  45. Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205 (2008). This was the first study to show that AMPAR diffusion at the PSD can shape synaptic transmission via lateral diffusion of desensitized AMPARs out of the synapse to enable recovery from synaptic depression.

    Article  CAS  Google Scholar 

  46. Groc, L. et al. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein reelin. J. Neurosci. 27, 10165–10175 (2007).

    Article  CAS  Google Scholar 

  47. Renner, M., Schweizer, C., Bannai, H., Triller, A. & Lévi, S. Diffusion barriers constrain receptors at synapses. PLoS ONE 7, e43032 (2012).

    Article  CAS  Google Scholar 

  48. Bannai, H. et al. Activity-dependent tuning of inhibitory neurotransmission based on GABAAR diffusion dynamics. Neuron 62, 670–682 (2009).

    Article  CAS  Google Scholar 

  49. Hoze, N. et al. Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging. Proc. Natl Acad. Sci. USA 109, 17052–17057 (2012).

    Article  CAS  Google Scholar 

  50. Masson, J.-B. et al. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys. J. 106, 74–83 (2014). This was the first application of Bayesian inference methods to synapses, where trapping of GlyRs with GPHN scaffolds at inhibitory synapses was analysed.

    Article  CAS  Google Scholar 

  51. Choquet, D., Sainlos, M. & Sibarita, J. B. Advanced imaging and labelling methods to decipher brain cell organization and function. Nat. Rev. Neurosci. 22, 237–255 (2021).

    Article  CAS  Google Scholar 

  52. Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Prim. 1, 1–27 (2021).

    Google Scholar 

  53. Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods 11, 281–289 (2014).

    Article  CAS  Google Scholar 

  54. Saxton, M. J. Single-particle tracking: connecting the dots. Nat. Methods 5, 671–672 (2008).

    Article  CAS  Google Scholar 

  55. Sergé, A., Bertaux, N., Rigneault, H. & Marguet, D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods 5, 687–694 (2008).

    Article  Google Scholar 

  56. Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    Article  CAS  Google Scholar 

  57. Kerr, J. M. & Blanpied, T. A. Subsynaptic AMPA receptor distribution is acutely regulated by actin-driven reorganization of the postsynaptic density. J. Neurosci. 32, 658–673 (2012).

    Article  CAS  Google Scholar 

  58. Masson, J. B. et al. Inferring maps of forces inside cell membrane microdomains. Phys. Rev. Lett. 102, 048103 (2009).

    Article  Google Scholar 

  59. Schütz, G. J., Schindler, H. & Schmidt, T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73, 1073 (1997).

    Article  Google Scholar 

  60. El Beheiry, M., Dahan, M. & Masson, J.-B. InferenceMAP: mapping of single-molecule dynamics with Bayesian inference. Nat. Methods 12, 594–595 (2015).

    Article  CAS  Google Scholar 

  61. Persson, F., Lindén, M., Unoson, C. & Elf, J. Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10, 265–269 (2013).

    Article  Google Scholar 

  62. Manzo, C. & Garcia-Parajo, M. F. A review of progress in single particle tracking: from methods to biophysical insights. Rep. Prog. Phys. 78, 124601 (2015).

    Article  Google Scholar 

  63. Türkcan, S., Alexandrou, A. & Masson, J. B. A Bayesian inference scheme to extract diffusivity and potential fields from confined single-molecule trajectories. Biophys. J. 102, 2288–2298 (2012).

    Article  Google Scholar 

  64. Coffey, W. T., Kalmykov, Y. P. & Waldron, J. T. The Langevin Equation (World Scientific, 2004).

  65. Vijayabaskar, M. S. Introduction to hidden Markov models and its applications in biology. Methods Mol. Biol. 1552, 1–12 (2017).

    Article  CAS  Google Scholar 

  66. Monnier, N. et al. Inferring transient particle transport dynamics in live cells. Nat. Methods 12, 838–840 (2015).

    Article  CAS  Google Scholar 

  67. Verdier, H. et al. Learning physical properties of anomalous random walks using graph neural networks. J. Phys. A Math. Theor. 54, 23 (2021).

    Article  Google Scholar 

  68. Rösch, T. C., Oviedo-Bocanegra, L. M., Fritz, G. & Graumann, P. L. SMTracker: a tool for quantitative analysis, exploration and visualization of single-molecule tracking data reveals highly dynamic binding of B. subtilis global repressor AbrB throughout the genome. Sci. Rep. 8, 15747 (2018).

    Article  Google Scholar 

  69. Hansen, A. S. et al. Robust model-based analysis of single-particle tracking experiments with Spot-On. Elife 7, e33125 (2018).

    Article  Google Scholar 

  70. Laurent, F. et al. TRamWAy: mapping physical properties of individual biomolecule random motion in large-scale single-particle tracking experiments. Bioinformatics 38, 3149–3150 (2022).

    Article  CAS  Google Scholar 

  71. Lévi, S. et al. Homeostatic regulation of synaptic GlyR numbers driven by lateral diffusion. Neuron 59, 261–273 (2008).

    Article  Google Scholar 

  72. Morise, J. et al. AMPA receptors in the synapse turnover by monomer diffusion. Nat. Commun. 10, 1–18 (2019).

    Article  CAS  Google Scholar 

  73. Lisman, J. & Raghavachari, S. A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci. STKE 2006, re11 (2006).

    Article  Google Scholar 

  74. Chirila, A. M. et al. Long-term potentiation of glycinergic synapses triggered by interleukin 1β. Proc. Natl Acad. Sci. USA 111, 8263–8268 (2014).

    Article  CAS  Google Scholar 

  75. Compans, B. et al. NMDAR-dependent long-term depression is associated with increased short term plasticity through autophagy mediated loss of PSD-95. Nat. Commun. 12, 1–18 (2021).

    Article  Google Scholar 

  76. Hausrat, T. J. et al. Radixin regulates synaptic GABAA receptor density and is essential for reversal learning and short-term memory. Nat. Commun. 6, 6872 (2015).

    Article  CAS  Google Scholar 

  77. Battaglia, S. et al. Activity-dependent inhibitory synapse scaling is determined by gephyrin phosphorylation and subsequent regulation of GABAA receptor diffusion. eNeuro 5, ENEURO.0203-17.2017 (2018). Using super-resolution imaging and SPT, the authors demonstrate how phosphorylation of a scaffold protein can affect its clustering at synapses and subsequent diffusion trapping of neurotransmitter receptors. This mechanism is shown to be implicated in synaptic scaling.

    Article  Google Scholar 

  78. Ferreira, J. S., Kellermayer, B., Carvalho, A. L. & Groc, L. Interplay between NMDA receptor dynamics and the synaptic proteasome. Eur. J. Neurosci. 54, 6000–6011 (2021).

    Article  CAS  Google Scholar 

  79. de Luca, E. et al. Inter-synaptic lateral diffusion of GABAA receptors shapes inhibitory synaptic currents. Neuron 95, 63–69.e5 (2017).

    Article  Google Scholar 

  80. Polenghi, A. et al. Kainate receptor activation shapes short-term synaptic plasticity by controlling receptor lateral mobility at glutamatergic synapses. Cell Rep. 31, 107735 (2020).

    Article  CAS  Google Scholar 

  81. Maingret, F. & Groc, L. Characterization of the functional cross-talk between surface GABAA and dopamine D5 receptors. Int. J. Mol. Sci. 22, 4867 (2021).

    Article  CAS  Google Scholar 

  82. Cantaut-Belarif, Y. et al. Microglia control the glycinergic but not the GABAergic synapses via prostaglandin E2 in the spinal cord. J. Cell Biol. 216, 2979–2989 (2017).

    Article  CAS  Google Scholar 

  83. Aloisi, E. et al. Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nat. Commun. 8, 1–14 (2017).

    Article  CAS  Google Scholar 

  84. Penn, A. C. et al. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. Nature 549, 384–388 (2017).

    Article  CAS  Google Scholar 

  85. Ribeiro, L. F. et al. Ligand-independent activity of the ghrelin receptor modulates AMPA receptor trafficking and supports memory formation. Sci. Signal. 14, eabb1953 (2021).

    Article  CAS  Google Scholar 

  86. Saffman, P. G. & Delbrueck, M. Brownian motion in biological membranes. Proc. Natl Acad. Sci. 72, 3111–3113 (1975).

    Article  CAS  Google Scholar 

  87. Saxton, M. J. & Jacobson, K. Single-particle tracking:applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997). In this seminal review, Saxton and Jacobson comprehensively lay out the arguments for the importance of following single molecules to characterize their diffusion dynamics in the membrane.

    Article  CAS  Google Scholar 

  88. Ritchie, K. et al. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys. J. 88, 2266–2277 (2005).

    Article  CAS  Google Scholar 

  89. Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993).

    Article  CAS  Google Scholar 

  90. Bouchaud, J. P. & Georges, A. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990).

    Article  Google Scholar 

  91. Metzler, R., Jeon, J. H., Cherstvy, A. G. & Barkai, E. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128–24164 (2014). This review provides a very thorough and accessible introduction to the theory of anomalous diffusion.

    Article  CAS  Google Scholar 

  92. Höfling, F. & Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 76, 046602 (2013).

    Article  Google Scholar 

  93. Santamaria, F., Wils, S., De Schutter, E. & Augustine, G. J. Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52, 635–648 (2006).

    Article  CAS  Google Scholar 

  94. Santamaria, F., Wils, S., De Schutter, E. & Augustine, G. J. The diffusional properties of dendrites depend on the density of dendritic spines. Eur. J. Neurosci. 34, 561–568 (2011).

    Article  Google Scholar 

  95. Krapf, D. Mechanisms underlying anomalous diffusion in the plasma membrane. Curr. Top. Membr. 75, 167–207 (2015).

    Article  CAS  Google Scholar 

  96. Renner, M. L., Cognet, L., Lounis, B., Triller, A. & Choquet, D. The excitatory postsynaptic density is a size exclusion diffusion environment. Neuropharmacology 56, 30–36 (2009).

    Article  CAS  Google Scholar 

  97. Cherstvy, A. G. & Metzler, R. Ergodicity breaking, ageing, and confinement in generalized diffusion processes with position and time dependent diffusivity. J. Stat. Mech. Theory Exp. 2015, P05010 (2015).

    Article  Google Scholar 

  98. Schulz, J. H. P., Barkai, E. & Metzler, R. Aging effects and population splitting in single-particle trajectory averages. Phys. Rev. Lett. 110, 020602 (2013).

    Article  Google Scholar 

  99. MacGillavry, H. D., Song, Y., Raghavachari, S. & Blanpied, T. A. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78, 615–622 (2013).

    Article  CAS  Google Scholar 

  100. Pennacchietti, F. et al. Nanoscale molecular reorganization of the inhibitory postsynaptic density is a determinant of GABAergic synaptic potentiation. J. Neurosci. 37, 1747–1756 (2017).

    Article  CAS  Google Scholar 

  101. Earnshaw, B. A. & Bressloff, P. C. Biophysical model of AMPA receptor trafficking and its regulation during long-term potentiation/long-term depression. J. Neurosci. 26, 12362–12373 (2006). This article provides the first biophysical model of AMPAR trafficking at dendritic spines, including exocytotic and endocytotic pathways and exchange between synaptic domains and the extrasynaptic membrane via lateral diffusion.

    Article  CAS  Google Scholar 

  102. Bressloff, P. C. & Earnshaw, B. A. Diffusion-trapping model of receptor trafficking in dendrites. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75, 041915 (2007).

    Article  CAS  Google Scholar 

  103. Earnshaw, B. A. & Bressloff, P. C. Modeling the role of lateral membrane diffusion in AMPA receptor trafficking along a spiny dendrite. J. Comput. Neurosci. 25, 366–389 (2008).

    Article  CAS  Google Scholar 

  104. Holcman, D. & Triller, A. Modeling synaptic dynamics driven by receptor lateral diffusion. Biophys. J. 91, 2405–2415 (2006).

    Article  CAS  Google Scholar 

  105. Brown, F. L. H., Leitner, D. M., McCammon, J. A. & Wilson, K. R. Lateral diffusion of membrane proteins in the presence of static and dynamic corrals: suggestions for appropriate observables. Biophys. J. 78, 2257–2269 (2000).

    Article  CAS  Google Scholar 

  106. Bressloff, P. C. & Earnshaw, B. A. A dynamic corral model of receptor trafficking at a synapse. Biophys. J. 96, 1786–1802 (2009).

    Article  CAS  Google Scholar 

  107. Becker, M. F. P. & Tetzlaff, C. The biophysical basis underlying the maintenance of early phase long-term potentiation. PLoS Comput. Biol. 17, e1008813 (2021).

    Article  CAS  Google Scholar 

  108. Santamaria, F., Gonzalez, J., Augustine, G. J. & Raghavachari, S. Quantifying the effects of elastic collisions and non-covalent binding on glutamate receptor trafficking in the post-synaptic density. PLoS Comput. Biol. 6, e1000780 (2010).

    Article  Google Scholar 

  109. Li, T. P., Song, Y., MacGillavry, H. D., Blanpied, T. A. & Raghavachari, S. Protein crowding within the postsynaptic density can impede the escape of membrane proteins. J. Neurosci. 36, 4276–4295 (2016).

    Article  CAS  Google Scholar 

  110. Kokolaki, M. L., Fauquier, A. & Renner, M. Molecular crowding and diffusion-capture in synapses. iScience 23, 101382 (2020).

    Article  CAS  Google Scholar 

  111. Czöndör, K. et al. Unified quantitative model of AMPA receptor trafficking at synapses. Proc. Natl Acad. Sci. USA 109, 3522–3527 (2012).

    Article  Google Scholar 

  112. Kusters, R., Kapitein, L. C., Hoogenraad, C. C. & Storm, C. Shape-induced asymmetric diffusion in dendritic spines allows efficient synaptic AMPA receptor trapping. Biophys. J. 105, 2743–2750 (2013).

    Article  CAS  Google Scholar 

  113. Adrian, M., Kusters, R., Storm, C., Hoogenraad, C. & Kapitein, L. Probing the interplay between dendritic spine morphology and membrane-bound diffusion. Biophys. J. 113, 2261–2270 (2017).

    Article  CAS  Google Scholar 

  114. Laurent, F. et al. Mapping spatio-temporal dynamics of single biomolecules in living cells. Phys. Biol. 17, 015003 (2019).

    Article  Google Scholar 

  115. Ferretti, F., Chardès, V., Mora, T., Walczak, A. M. & Giardina, I. Building general Langevin models from discrete datasets. Phys. Rev. X 10, 031018 (2020).

    CAS  Google Scholar 

  116. Brückner, D. B., Ronceray, P. & Broedersz, C. P. Inferring the dynamics of underdamped stochastic systems. Phys. Rev. Lett. 125, 058103 (2020).

    Article  Google Scholar 

  117. Frishman, A. & Ronceray, P. Learning force fields from stochastic trajectories. Phys. Rev. X 10, 021009 (2020).

    CAS  Google Scholar 

  118. Sekimoto, K. & Triller, A. Compatibility between itinerant synaptic receptors and stable postsynaptic structure. Phys. Rev. E 79, 031905 (2009). In this article, it is proposed for the first time that the difference in synaptic and extrasynaptic receptor concentrations arises by a phase-separation mechanism driven by an effective free energy that takes into account receptor–scaffold protein interactions, highlighting the highly cooperative behaviour of the proteins involved.

    Article  Google Scholar 

  119. Zeng, M. et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163–1175.e12 (2016).

    Article  CAS  Google Scholar 

  120. Bai, G., Wang, Y. & Zhang, M. Gephyrin-mediated formation of inhibitory postsynaptic density sheet via phase separation. Cell Res. 31, 312–325 (2021).

    Article  CAS  Google Scholar 

  121. Hosokawa, T. et al. CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation. Nat. Neurosci. 24, 777–785 (2021).

    Article  CAS  Google Scholar 

  122. Haselwandter, C. A., Calamai, M., Kardar, M., Triller, A. & Azeredo da Silveira, R. Formation and stability of synaptic receptor domains. Phys. Rev. Lett. 106, 238104 (2011).

    Article  Google Scholar 

  123. Haselwandter, C., Kardar, M., Triller, A. & da Silveira, R. Self-assembly and plasticity of synaptic domains through a reaction-diffusion mechanism. Phys. Rev. E. Stat. Nonlinear Soft Matter Phys. 92, 032705 (2015).

    Article  Google Scholar 

  124. Ranft, J., Almeida, L. G., Rodriguez, P. C., Triller, A. & Hakim, V. An aggregation-removal model for the formation and size determination of post-synaptic scaffold domains. PLoS Comput. Biol. 13, e1005516 (2017).

    Article  Google Scholar 

  125. Hakim, V. & Ranft, J. Lifetime of a structure evolving by cluster aggregation and particle loss, and application to postsynaptic scaffold domains. Phys. Rev. E 101, 012411 (2020).

    Article  CAS  Google Scholar 

  126. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 237, 37–72 (1952).

    Article  Google Scholar 

  127. Turner, M. S., Sens, P. & Socci, N. D. Nonequilibrium raft-like membrane domains under continuous recycling. Phys. Rev. Lett. 95, 168301 (2005).

    Article  Google Scholar 

  128. Weber, C. A., Zwicker, D., Jülicher, F. & Lee, C. F. Physics of active emulsions. Rep. Prog. Phys. 82, 064601 (2019).

    Article  CAS  Google Scholar 

  129. Chapdelaine, T., Hakim, V., Triller, A., Ranft, J. & Specht, C. G. Reciprocal stabilization of glycine receptors and gephyrin scaffold proteins at inhibitory synapses. Biophys. J. 120, 805–817 (2021).

    Article  CAS  Google Scholar 

  130. Kasai, H., Ziv, N. E., Okazaki, H., Yagishita, S. & Toyoizumi, T. Spine dynamics in the brain, mental disorders and artificial neural networks. Nat. Rev. Neurosci. 22, 407–422 (2021).

    Article  CAS  Google Scholar 

  131. Liu, Y. T. et al. Mesophasic organization of GABAA receptors in hippocampal inhibitory synapses. Nat. Neurosci. 23, 1589–1596 (2020).

    Article  CAS  Google Scholar 

  132. Markova, O., Alberts, J., Munro, E. & Lenne, P. Bond flexibility and low valence promote finite clusters of self-aggregating particles. Phys. Rev. Lett. 109, 078101 (2012).

    Article  Google Scholar 

  133. Markova, O., Alberts, J., Munro, E. & Lenne, P. Clustering of low-valence particles: structure and kinetics. Phys. Rev. E. Stat. Nonlinear Soft Matter Phys. 90, 022301 (2014).

    Article  Google Scholar 

  134. Magee, J. C. & Grienberger, C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43, 95–117 (2020).

    Article  CAS  Google Scholar 

  135. Macpherson, L. J. et al. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation. Nat. Commun. 6, 10024 (2015).

    Article  CAS  Google Scholar 

  136. Biermann, B. et al. Imaging of molecular surface dynamics in brain slices using single-particle tracking. Nat. Commun. 5, 3024 (2014).

    Article  CAS  Google Scholar 

  137. Hines, A. D. & van Swinderen, B. Tracking single molecule dynamics in the adult drosophila brain. eNeuro 8, ENEURO.0057-21.2021 (2021).

    Article  Google Scholar 

  138. Patching, S. G. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim. Biophys. Acta Biomembr. 1838, 43–55 (2014).

    Article  CAS  Google Scholar 

  139. Kostrz, D. et al. A modular DNA scaffold to study protein–protein interactions at single-molecule resolution. Nat. Nanotechnol. 14, 988–993 (2019).

    Article  CAS  Google Scholar 

  140. Zhu, H. & Gouaux, E. Architecture and assembly mechanism of native glycine receptors. Nature 599, 513–517 (2021).

    Article  CAS  Google Scholar 

  141. Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol. 36, 460–468 (2018).

    Article  CAS  Google Scholar 

  142. Nehme, E. et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. Nat. Methods 17, 734–740 (2020).

    Article  CAS  Google Scholar 

  143. Kellermayer, B. et al. Differential nanoscale topography and functional role of GluN2-NMDA receptor subtypes at glutamatergic synapses. Neuron 100, 106–119.e7 (2018).

    Article  CAS  Google Scholar 

  144. Crosby, K. C. et al. Nanoscale subsynaptic domains underlie the organization of the inhibitory synapse. Cell Rep. 26, 3284–3297.e3 (2019).

    Article  CAS  Google Scholar 

  145. El Beheiry, M. et al. A primer on the Bayesian approach to high-density single-molecule trajectories analysis. Biophys. J. 110, 1209–1215 (2016).

    Article  CAS  Google Scholar 

  146. Tang, A. H. et al. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536, 210–214 (2016).

    Article  CAS  Google Scholar 

  147. Haas, K. T. et al. Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. Elife 7, e31755 (2018).

    Article  Google Scholar 

  148. Hruska, M., Henderson, N., Le Marchand, S. J., Jafri, H. & Dalva, M. B. Synaptic nanomodules underlie the organization and plasticity of spine synapses. Nat. Neurosci. 21, 671–682 (2018).

    Article  CAS  Google Scholar 

  149. Siddig, S. et al. Super-resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones. Sci. Adv. 6, eaay7193 (2020).

    Article  CAS  Google Scholar 

  150. Biederer, T., Kaeser, P. S. & Blanpied, T. A. Transcellular nanoalignment of synaptic function. Neuron 96, 680–696 (2017).

    Article  CAS  Google Scholar 

  151. Ehrensperger, M. V., Hanus, C., Vannier, C., Triller, A. & Dahan, M. Multiple association states between glycine receptors and gephyrin identified by SPT analysis. Biophys. J. 92, 3706 (2007).

    Article  CAS  Google Scholar 

  152. Calamai, M. et al. Gephyrin oligomerization controls GlyR mobility and synaptic clustering. J. Neurosci. 29, 7639–7648 (2009).

    Article  CAS  Google Scholar 

  153. Lee, S. H. et al. Super-resolution imaging of synaptic and extra-synaptic AMPA receptors with different-sized fluorescent probes. Elife 6, e27744 (2017).

    Article  Google Scholar 

  154. Statman, A., Kaufman, M., Minerbi, A., Ziv, N. E. & Brenner, N. Synaptic size dynamics as an effectively stochastic process. PLoS Comput. Biol. 10, e1003846 (2014).

    Article  Google Scholar 

  155. Rubinski, A. & Ziv, N. E. Remodeling and tenacity of inhibitory synapses: relationships with network activity and neighboring excitatory synapses. PLoS Comput. Biol. 11, e1004632 (2015).

    Article  Google Scholar 

  156. Berry, K. P. & Nedivi, E. Spine dynamics: are they all the same? Neuron 96, 43–55 (2017).

    Article  CAS  Google Scholar 

  157. Benna, M. K. & Fusi, S. Computational principles of synaptic memory consolidation. Nat. Neurosci. 19, 1697–1706 (2016).

    Article  CAS  Google Scholar 

  158. Fusi, S., Drew, P. J. & Abbott, L. F. Cascade models of synaptically stored memories. Neuron 45, 599–611 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank V. Hakim for discussions on the biophysics of synapses, and for comments on the manuscript. This work was supported by the French Agence Nationale de la Recherche (Syntrack and Synaptune to A.T.) and the European Research Council (ERC Advanced NVS and ERC Synergy MICROCOPS to A.T.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, and reviewed and/or edited the manuscript before submission. S.A.M. and J.R. wrote the article.

Corresponding authors

Correspondence to Jonas Ranft or Antoine Triller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks J.-B. Masson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Active zone

The site of neurotransmitter release at the presynaptic terminal.

Affinity trapping

The trapping of a molecule in a particular cellular location because of its affinity for its binding partner.

Bayesian inference

A method of statistical inference in which Bayes’s theorem is used to determine the probability that a hypothesis can describe a process (such as the value of a parameter in a model) based on new observations and a given prior probability for the hypothesis (note that a ‘flat’ prior can be used, which assigns equal initial probability to all possible hypotheses).

Blinking

The cycling of fluorophores between light and dark states, enabling the fluorophore to be detected several times.

Brownian motion

The random motion of diffusing particles caused by microscopic collisions with surrounding molecules at finite temperature, first observed by Robert Brown in 1828.

Confined diffusion

Diffusive motion that is confined to a spatial domain of finite size, which manifests itself as a saturation of the mean squared displacement over time.

Continuous-time random walks

A variant of a random walk in which the waiting times between successive steps are drawn from a continuous probability distribution. When the waiting time distribution becomes very broad and heavy tailed, the corresponding continuous-time random walks become subdiffusive.

Deep learning

A class of machine learning that uses multilayer artificial neural networks and that extracts features from a dataset. In imaging, this has been used to reduce imaging time and reconstruct images from undersampled data.

Desensitization

A form of downregulation where an activated receptor decreases its response to an agonist and is hence uncoupled from its signalling cascade.

Diffusion coefficients

The diffusion coefficient is the proportionality constant between the mean squared displacement of a particle and the duration for which the diffusion is observed, as defined for pure diffusion (where the mean squared displacement scales linearly with time).

DNA-PAINT constructs

Oligonucleotides used for single-particle tracking. Reversible hybridization occurs between a docking oligonucleotide strand that is attached to the protein of interest and a fluorophore-conjugated imager strand, enabling single-molecule localization microscopy.

Dwell times

The dwell time is the time for which a receptor stays in the postsynaptic domain after entering from (and before exiting the synapse into) the extrasynaptic space.

Effective potential energies

The effective potential energy is the potential energy that accounts best for the forces inferred (from high-density trajectories) to be acting on the diffusing particles when the forces are proportional to the gradient of the potential energy.

Ergodicity

A property of a dynamical system in which a trajectory visits all of the available phase space such that time averages along trajectories and ensemble averages give the same result.

Fluorescence recovery after photobleaching

A method to determine the kinetics of diffusion of fluorescently labelled molecules by bleaching a small population of the molecules and measuring the time taken for new fluorescent molecules to diffuse into the bleached spot.

Hidden Markov models

(HMMs). Statistical models in which the process being analysed is assumed to be Markovian; that is, its evolution is determined only by the current state of the system but is influenced by an unobserved ‘hidden’ process.

Inference methods

Statistical analyses used to infer the properties of an underlying population that are not directly measurable from a limited number of measurements. This is typically achieved by maximizing the likelihood of the data under the assumption of a given model under certain constraints.

Lateral diffusion

The movement of molecules within the plasma membrane.

Molecular crowding

The situation in which a high concentration of proteins in a localized region of the membrane affects molecule movement in that region by steric hindrance.

Nanobodies

Single-domain antibodies with a molecular mass of 12–15 kDa that are able to selectively bind an antigen.

Phase separation

The generation of two distinct phases from a single homogeneous mixture.

Point spread function

The degree of spreading (blurring) of a point source, such as a fluorophore. Gaussian fitting enables determination of the position of the point source.

Postsynaptic density

(PSD). The electron-dense network of molecules located beneath the postsynaptic membrane of excitatory synapses.

Proteasome

A protein complex that degrades misfolded or damaged proteins.

Quantum dots

Nanometre-sized semiconductors with optoelectronic properties that change as a function of their size. Illuminated by ultraviolet light, they are bright and can be used to track a molecule’s movement for relatively long periods.

Random walk

A conceptualization of diffusive motion in which a ‘walker’ takes sequentially random steps in different directions. For the prototypical random walk, step lengths l are constant and steps occur at constant time steps τ, leading to a diffusion coefficient proportional to l2/τ.

Scaffold proteins

Essential components of the postsynaptic density of excitatory synapses and the postsynaptic domain of inhibitory synapses, involved in binding, clustering and trafficking of postsynaptic receptors.

SPT photoactivated localization microscopy

A fluorescent single-molecule localization microscopy technique using a fluorescent protein attached to a protein of interest.

Subdiffusion

Random, diffusive motion of particles with a sublinear, power-law time dependence of the mean squared displacement. The origins of subdiffusive behaviour can be manifold; for example, subdiffusive behaviour can be caused by transient trapping of particles.

Super-resolution fluorescence microscopy

A series of techniques that enable imaging of fluorescently labelled proteins with resolutions higher than the diffraction limit of light (approximately 200 nm).

Statistical thermodynamics

The description of physical systems that relates the statistics of particles at the microscopic scale (for example, kinetic energies of gas particles) to thermodynamic observables at the macroscopic scale (for example, the pressure of the gas).

Trajectories

The sequences of recorded positions of particles as they move through space.

Ubiquitination

An enzymatic post-translational modification in which a ubiquitin molecule is attached to a substrate protein. This modification regulates the degradation of proteins.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maynard, S.A., Ranft, J. & Triller, A. Quantifying postsynaptic receptor dynamics: insights into synaptic function. Nat Rev Neurosci 24, 4–22 (2023). https://doi.org/10.1038/s41583-022-00647-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00647-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing