Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders

Abstract

There is increasing appreciation that non-neuronal cells contribute to the initiation, progression and pathology of diverse neurodegenerative disorders. This Review focuses on the role of astrocytes in disorders including Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis. The important roles astrocytes have in supporting neuronal function in the healthy brain are considered, along with studies that have demonstrated how the physiological properties of astrocytes are altered in neurodegenerative disorders and may explain their contribution to neurodegeneration. Further, the question of whether in neurodegenerative disorders with specific genetic mutations these mutations directly impact on astrocyte function, and may suggest a driving role for astrocytes in disease initiation, is discussed. A summary of how astrocyte transcriptomic and proteomic signatures are altered during the progression of neurodegenerative disorders and may relate to functional changes is provided. Given the central role of astrocytes in neurodegenerative disorders, potential strategies to target these cells for future therapeutic avenues are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Astrocyte physiological alterations associated with neurodegeneration progression.
Fig. 2: Astrocyte and neuron expression of genes linked to risk of NDs.
Fig. 3: Astrocyte molecular phenotypes transition in ageing and disease.
Fig. 4: Therapeutic strategies to target astrocytes in neurodegenerative disorders.

Similar content being viewed by others

References

  1. Allen, N. J. Role of glia in developmental synapse formation. Curr. Opin. Neurobiol. 23, 1027–1033 (2013).

    Article  CAS  Google Scholar 

  2. Allen, N. J. & Eroglu, C. Cell biology of astrocyte-synapse interactions. Neuron 96, 697–708 (2017).

    Article  CAS  Google Scholar 

  3. Chung, W.-S., Allen, N. J. & Eroglu, C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol. 7, a020370 (2015).

    Article  Google Scholar 

  4. Khakh, B. S. & Sofroniew, M. V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18, 942–952 (2015).

    Article  CAS  Google Scholar 

  5. Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article  CAS  Google Scholar 

  6. Allen, N. J. et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486, 410–414 (2012).

    Article  CAS  Google Scholar 

  7. Chung, W.-S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400 (2013).

    Article  CAS  Google Scholar 

  8. Kucukdereli, H. et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc. Natl Acad. Sci. USA 108, E440–E449 (2011).

    Article  CAS  Google Scholar 

  9. Blanco-Suarez, E., Liu, T.-F., Kopelevich, A. & Allen, N. J. Astrocyte-secreted chordin-like 1 drives synapse maturation and limits plasticity by increasing synaptic GluA2 AMPA receptors. Neuron 100, 1116–1132.e1113 (2018).

    Article  CAS  Google Scholar 

  10. Weber, B. & Barros, L. F. The astrocyte: powerhouse and recycling center. Cold Spring Harb. Perspect. Biol. 7, a020396 (2015).

    Article  Google Scholar 

  11. Profaci, C. P., Munji, R. N., Pulido, R. S. & Daneman, R. The blood-brain barrier in health and disease: Important unanswered questions. J. Exp. Med. 217, e20190062 (2020).

    Article  Google Scholar 

  12. Araque, A. et al. Gliotransmitters travel in time and space. Neuron 81, 728–739 (2014).

    Article  CAS  Google Scholar 

  13. Boisvert, M., Erikson, G., Shokhirev, M. & Allen, N. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22, 269–285 (2018).

    Article  CAS  Google Scholar 

  14. Clarke, L. E. et al. Normal aging induces A1-like astrocyte reactivity. Proc. Natl Acad. Sci. USA 115, E1896–E1905 (2018).

    Article  CAS  Google Scholar 

  15. Orre, M. et al. Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol. Aging 35, 1–14 (2014).

    Article  CAS  Google Scholar 

  16. Diaz-castro, B., Gangwani, M. R., Yu, X., Coppola, G. & Khakh, B. S. Astrocyte molecular signatures in Huntington’s disease. Sci. Transl. Med. 11, eaaw8546 (2019).

    Article  CAS  Google Scholar 

  17. Al-Dalahmah, O. et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol. Commun. 8, 19 (2020).

    Article  CAS  Google Scholar 

  18. Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020).

    Article  CAS  Google Scholar 

  19. Lau, S.-F., Cao, H., Fu, A. K. Y. & Ip, N. Y. Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 117, 25800–25809 (2020).

    Article  CAS  Google Scholar 

  20. Leng, K. et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat. Neurosci. 24, 276–287 (2021).

    Article  CAS  Google Scholar 

  21. Jiang, R., Diaz-Castro, B., Looger, L. L. & Khakh, B. S. Dysfunctional calcium and glutamate signaling in striatal astrocytes from Huntington’s disease model mice. J. Neurosci. 36, 3453–3470 (2016).

    Article  CAS  Google Scholar 

  22. Sonninen, T. M. et al. Metabolic alterations in Parkinson’s disease astrocytes. Sci. Rep. 10, 14474 (2020).

    Article  CAS  Google Scholar 

  23. Cassina, P. et al. Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J. Neurosci. 28, 4115–4122 (2008).

    Article  CAS  Google Scholar 

  24. Bae, J. R. & Kim, S. H. Synapses in neurodegenerative diseases. BMB Rep. 50, 237–246 (2017).

    Article  CAS  Google Scholar 

  25. Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325 (2021).

    Article  CAS  Google Scholar 

  26. Williamson, M. R., Fuertes, C. J. A., Dunn, A. K., Drew, M. R. & Jones, T. A. Reactive astrocytes facilitate vascular repair and remodeling after stroke. Cell Rep. 35, 109048 (2021).

    Article  CAS  Google Scholar 

  27. Liu, Z. et al. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 62, 2022–2033 (2014).

    Article  Google Scholar 

  28. Kraft, A. W. et al. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J. 27, 187–198 (2013).

    Article  CAS  Google Scholar 

  29. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  Google Scholar 

  30. Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012).

    Article  CAS  Google Scholar 

  31. Huang, A. Y. S. et al. Region-specific transcriptional control of astrocyte function oversees local circuit activities. Neuron 106, 992–1008.e1009 (2020).

    Article  CAS  Google Scholar 

  32. Tsai, H.-h et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362 (2012).

    Article  CAS  Google Scholar 

  33. Bayer, T. A. Proteinopathies, a core concept for understanding and ultimately treating degenerative disorders? Eur. Neuropsychopharmacol. 25, 713–724 (2015).

    Article  CAS  Google Scholar 

  34. Serio, A. et al. Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc. Natl Acad. Sci. USA 110, 4697–4702 (2013).

    Article  CAS  Google Scholar 

  35. Beach, T. G. & McGeer, E. G. Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer’s disease visual cortex. Brain Res. 463, 357–361 (1988).

    Article  CAS  Google Scholar 

  36. Bosson, A. et al. TRPA1 channels promote astrocytic Ca2+ hyperactivity and synaptic dysfunction mediated by oligomeric forms of amyloid- β peptide. Mol. Neurodegener. 12, 53 (2017).

    Article  Google Scholar 

  37. Perez-Nievas, B. G. & Serrano-Pozo, A. Deciphering the astrocyte reaction in Alzheimer’s disease. Front. Aging Neurosci. 10, 114 (2018).

    Article  Google Scholar 

  38. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  Google Scholar 

  39. Amiry-Moghaddam, M. & Ottersen, O. P. The molecular basis of water transport in the brain. Nat. Rev. Neurosci. 4, 991–1001 (2003).

    Article  CAS  Google Scholar 

  40. Caron, N. S. et al. Mutant huntingtin is cleared from the brain via active mechanisms in Huntington disease. J. Neurosci. 41, 780–796 (2021).

    Article  CAS  Google Scholar 

  41. Tong, X. et al. Astrocyte Kir4. 1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci. 17, 694–703 (2014).

    Article  CAS  Google Scholar 

  42. Hoshi, A. et al. Characteristics of aquaporin expression surrounding senile plaques and cerebral amyloid angiopathy in Alzheimer disease. J. Neuropathol. Exp. Neurol. 71, 750–759 (2012).

    Article  CAS  Google Scholar 

  43. Xu, Z. et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol. Neurodegener. 10, 58 (2015).

    Article  CAS  Google Scholar 

  44. Castellano, J. M. et al. Human apoE isoforms differentially regulate brain amyloid- b peptide clearance. Sci. Transl. Med. 3, 89ra57 (2011).

    Article  CAS  Google Scholar 

  45. Streubel-Gallasch, L. et al. Parkinson’s disease–associated LRRK2 interferes with astrocyte-mediated alpha-synuclein clearance. Mol. Neurobiol. 58, 3119–3140 (2021).

    Article  CAS  Google Scholar 

  46. Verkhratsky, A. & Nedergaard, M. Physiology of astroglia. Physiological Rev. 98, 239–389 (2018).

    Article  CAS  Google Scholar 

  47. Bindocci, E. et al. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. Science 356, eaai8185 (2017).

    Article  Google Scholar 

  48. Reichenbach, A., Derouiche, A. & Kirchhoff, F. Morphology and dynamics of perisynaptic glia. Brain Res. Rev. 63, 11–25 (2010).

    Article  Google Scholar 

  49. Kawamata, H. et al. Abnormal intracellular calcium signaling and SNARE- dependent exocytosis contributes to SOD1G93A astrocyte- mediated toxicity in amyotrophic lateral sclerosis. J. Neurosci. 34, 2331–2348 (2014).

    Article  CAS  Google Scholar 

  50. Martorana, F., Brambilla, L., Valori, C. F. & Bergamaschi, C. The BH4 domain of Bcl-X L rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulating intracellular calcium signals. Hum. Mol. Genet. 21, 826–840 (2012).

    Article  CAS  Google Scholar 

  51. Bosson, A., Boisseau, S., Buisson, A., Savasta, M. & Albrieux, M. Disruption of dopaminergic transmission remodels tripartite synapse morphology and astrocytic calcium activity within substantia nigra pars reticulata. Glia 63, 673–683 (2015).

    Article  Google Scholar 

  52. Paumier, A. et al. Astrocyte–neuron interplay is critical for Alzheimer’s disease pathogenesis and is rescued by TRPA1 channel blockade. Brain 145, 388–405 (2021).

    Article  Google Scholar 

  53. Panatier, A. et al. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146, 785–798 (2011).

    Article  CAS  Google Scholar 

  54. Reichenbach, N. et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer’s disease model. J. Exp. Med. 215, 1649–1663 (2018).

    Article  CAS  Google Scholar 

  55. Danbolt, N. C. Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001).

    Article  CAS  Google Scholar 

  56. Pajarillo, E., Rizor, A., Lee, J., Aschner, M. & Lee, E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology 161, 107559 (2019).

    Article  CAS  Google Scholar 

  57. Iovino, L. et al. Trafficking of the glutamate transporter is impaired in LRRK2-related Parkinson’s disease. Acta Neuropathol. 144, 81–106 (2022).

    Article  CAS  Google Scholar 

  58. Zhang, Y. et al. Generation of a novel mouse model of Parkinson’s disease via targeted knockdown of glutamate transporter GLT-1 in the substantia nigra. ACS Chem. Neurosci. 11, 406–417 (2020).

    Article  Google Scholar 

  59. Ren, C. et al. Induction of Parkinsonian-like changes via targeted downregulation of astrocytic glutamate transporter GLT-1 in the striatum. J. Parkinsons Dis. 12, 295–314 (2022).

    Article  CAS  Google Scholar 

  60. Olney, J. W. Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. J. Neuropathol. Exp. Neurol. 30, 75–90 (1971).

    Article  CAS  Google Scholar 

  61. Bogaert, E., d’Ydewalle, C. & Van Den Bosch, L. Amyotrophic lateral sclerosis and excitotoxicity: from pathological mechanism to therapeutic target. CNS Neurol. Disord. Drug. Targets 9, 297–304 (2010).

    Article  CAS  Google Scholar 

  62. Hynd, M. R., Scott, H. L. & Dodd, P. R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int. 45, 583–595 (2004).

    Article  CAS  Google Scholar 

  63. Iovino, L., Tremblay, M. E. & Civiero, L. Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J. Pharmacol. Sci. 144, 151–164 (2020).

    Article  CAS  Google Scholar 

  64. Sepers, M. D. & Raymond, L. A. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease. Drug. Discov. Today 19, 990–996 (2014).

    Article  CAS  Google Scholar 

  65. Saura, C. A., Parra-Damas, A. & Enriquez-Barreto, L. Gene expression parallels synaptic excitability and plasticity changes in Alzheimer’s disease. Front. Cell. Neurosci. 9, 318 (2015).

    Article  Google Scholar 

  66. Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  Google Scholar 

  67. Esquerda-Canals, G., Montoliu-Gaya, L., Güell-Bosch, J. & Villegas, S. Mouse models of Alzheimer’s disease. J. Alzheimer’s Dis. 57, 1171–1183 (2017).

    Article  CAS  Google Scholar 

  68. Henstridge, C. M., Tzioras, M. & Paolicelli, R. C. Glial contribution to excitatory and inhibitory synapse loss in neurodegeneration. Front. Cell. Neurosci. 13, 63 (2019).

    Article  CAS  Google Scholar 

  69. Talantova, M. et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc. Natl Acad. Sci. USA 110, E2518–E2527 (2013).

    Article  CAS  Google Scholar 

  70. Trudler, D. et al. α-Synuclein oligomers induce glutamate release from astrocytes and excessive extrasynaptic NMDAR activity in neurons, thus contributing to synapse loss. J. Neurosci. 41, 2264–2273 (2021).

    Article  CAS  Google Scholar 

  71. Hardingham, G. E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696 (2010).

    Article  CAS  Google Scholar 

  72. Shrivastava, A. N. et al. β-Amyloid and ATP-induced diffusional trapping of astrocyte and neuronal metabotropic glutamate type-5 receptors. Glia 61, 1673–1686 (2013).

    Article  Google Scholar 

  73. Jo, S. et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat. Med. 20, 886–896 (2014).

    Article  CAS  Google Scholar 

  74. Di Castro, M. A. et al. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat. Neurosci. 14, 1276–1284 (2011).

    Article  Google Scholar 

  75. Minelli, A. et al. Cellular and subcellular localization of Na+–Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell Calcium 41, 221–234 (2007).

    Article  CAS  Google Scholar 

  76. Kucheryavykh, Y. V. et al. Downregulation of Kir4. 1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia 55, 274–281 (2007).

    Article  CAS  Google Scholar 

  77. Anzilotti, S. et al. Preconditioning, induced by sub-toxic dose of the neurotoxin L-BMAA, delays ALS progression in mice and prevents Na+/Ca2+ exchanger 3 downregulation. Cell Death Dis. 9, 206 (2018).

    Article  Google Scholar 

  78. Pannaccione, A. et al. A new concept: Aβ1–42 generates a hyperfunctional proteolytic NCX3 fragment that delays caspase-12 activation and neuronal death. J. Neurosci. 32, 10609–10617 (2012).

    Article  CAS  Google Scholar 

  79. Kelley, K. W. et al. Kir4.1-dependent astrocyte-fast motor neuron interactions are required for peak strength. Neuron 98, 306–319.e307 (2018).

    Article  CAS  Google Scholar 

  80. Tang, B. L. Glucose, glycolysis, and neurodegenerative diseases. J. Cell Physiol. 235, 7653–7662 (2020).

    Article  CAS  Google Scholar 

  81. Bélanger, M., Allaman, I. & Magistretti, P. J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724–738 (2011).

    Article  Google Scholar 

  82. Suzuki, A. et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144, 810–823 (2011).

    Article  CAS  Google Scholar 

  83. Yang, J. et al. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc. Natl Acad. Sci. USA 111, 12228–12233 (2014).

    Article  CAS  Google Scholar 

  84. Finsterwald, C., Magistretti, P. J. & Lengacher, S. Astrocytes: new targets for the treatment of neurodegenerative diseases. Curr. Pharm. Des. 21, 3570–3581 (2015).

    Article  CAS  Google Scholar 

  85. Allen, J. A., Halverson-tamboli, R. A. & Rasenick, M. M. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8, 128–140 (2007).

    Article  CAS  Google Scholar 

  86. Pfrieger, F. W. & Ungerer, N. Cholesterol metabolism in neurons and astrocytes. Prog. Lipid Res. 50, 357–371 (2011).

    Article  CAS  Google Scholar 

  87. Reiman, E. M. et al. Correlations between apolipoprotein E4 gene dose and brain-imaging measurements of regional hypometabolism. Proc. Natl Acad. Sci. USA 102, 8299–8302 (2005).

    Article  CAS  Google Scholar 

  88. Williams, H. C. et al. APOE alters glucose flux through central carbon pathways in astrocytes. Neurobiol. Dis. 136, 104742 (2020).

    Article  CAS  Google Scholar 

  89. Larramona-Arcas, R. et al. Sex-dependent calcium hyperactivity due to lysosomal-related dysfunction in astrocytes from APOE4 versus APOE3 gene targeted replacement mice. Mol. Neurodegener. 15, 35 (2020).

    Article  CAS  Google Scholar 

  90. Jeong, W., Lee, H., Cho, S. & Seo, J. ApoE4-induced cholesterol dysregulation and its brain cell type-specific implications in the pathogenesis of Alzheimer’s disease. Mol. Cell 42, 739–746 (2019).

    CAS  Google Scholar 

  91. Valenza, M. et al. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington’s disease. Cell Death Differ. 22, 690–702 (2015).

    Article  CAS  Google Scholar 

  92. Birolini, G. et al. SREBP2 gene therapy targeting striatal astrocytes ameliorates Huntington’s disease phenotypes. Brain 144, 3175–3190 (2021).

    Article  Google Scholar 

  93. Hartmann, H., Ho, W. Y., Chang, J.-C. & Ling, S.-C. Cholesterol dyshomeostasis in amyotrophic lateral sclerosis: cause, consequence, or epiphenomenon? FEBS J. https://doi.org/10.1111/febs.16175 (2021).

    Article  Google Scholar 

  94. Jin, U., Park, S. J. & Park, S. M. Cholesterol metabolism in the brain and its association with Parkinson’s disease. Exp. Neurobiol. 28, 554–567 (2019).

    Article  Google Scholar 

  95. Brenner, M. et al. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat. Genet. 27, 117–120 (2001).

    Article  CAS  Google Scholar 

  96. Gusella, J. et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306, 234–238 (1983).

    Article  CAS  Google Scholar 

  97. Ridge, P. G., Mukherjee, S., Crane, P. K. & Kauwe, J. S. K. Alzheimer’s disease: analyzing the missing heritability. PLoS One 8, e79771 (2013).

    Article  CAS  Google Scholar 

  98. Fu, M. H. et al. Recessively-inherited adult-onset Alexander disease caused by a homozygous mutation in the GFAP gene. Mov. Disord. 35, 1662–1667 (2020).

    Article  CAS  Google Scholar 

  99. Ciammola, A. et al. A novel mutation of GFAP causing adult-onset Alexander disease. Front. Neurol. 10, 1124 (2019).

    Article  Google Scholar 

  100. Gomi, H. et al. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14, 29–41 (1995).

    Article  CAS  Google Scholar 

  101. Tian, R. et al. Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes. J. Neuropathol. Exp. Neurol. 69, 335–345 (2010).

    Article  CAS  Google Scholar 

  102. Hagemann, T. L. et al. Antisense therapy in a rat model of Alexander disease reverses GFAP pathology, white matter deficits, and motor impairment. Sci. Transl. Med. 13, eabg4711 (2021).

    Article  CAS  Google Scholar 

  103. Acuña, A. I. et al. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice. Nat. Commun. 4, 2917 (2013).

    Article  Google Scholar 

  104. Al-Ramahi, I. et al. High-throughput functional analysis distinguishes pathogenic, nonpathogenic, and compensatory transcriptional changes in neurodegeneration. Cell Syst. 7, 28–40.e24 (2018).

    Article  CAS  Google Scholar 

  105. Ochaba, J. et al. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc. Natl Acad. Sci. USA 111, 16889–16894 (2014).

    Article  CAS  Google Scholar 

  106. Virlogeux, A. et al. Reconstituting corticostriatal network on-a-chip reveals the contribution of the presynaptic compartment to Huntington’s disease. Cell Rep. 22, 110–122 (2018).

    Article  CAS  Google Scholar 

  107. Maiuri, T. et al. Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex. Hum. Mol. Genet. 26, 395–406 (2017).

    CAS  Google Scholar 

  108. Bradford, J. et al. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc. Natl Acad. Sci. USA 106, 22480–22485 (2009).

    Article  CAS  Google Scholar 

  109. Benraiss, A. et al. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat. Commun. 7, 11758 (2016).

    Article  Google Scholar 

  110. Wood, T. E. et al. Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington’s disease mouse model. Hum. Mol. Genet. 28, 487–500 (2019).

    CAS  Google Scholar 

  111. Choi, I. et al. PINK1 deficiency attenuates astrocyte proliferation through mitochondrial dysfunction, reduced AKT and increased p38 MAPK activation, and downregulation of EGFR. Glia 61, 800–812 (2013).

    Article  Google Scholar 

  112. de Rus Jacquet, A. et al. The LRRK2 G2019S mutation alters astrocyte-to-neuron communication via extracellular vesicles and induces neuron atrophy in a human iPSC-derived model of Parkinson’s disease. eLife 10, e73062 (2021).

    Article  Google Scholar 

  113. Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615–622 (2007).

    Article  CAS  Google Scholar 

  114. Szebényi, K. et al. Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nat. Neurosci. 24, 1542–1554 (2021).

    Article  Google Scholar 

  115. Zhao, C. et al. Mutant C9orf72 human iPSC-derived astrocytes cause non-cell autonomous motor neuron pathophysiology. Glia 68, 1046–1064 (2019).

    Article  Google Scholar 

  116. Birger, A. et al. Human iPSC-derived astrocytes from ALS patients with mutated C9ORF72 show increased oxidative stress and neurotoxicity. EBioMedicine 50, 274–289 (2019).

    Article  CAS  Google Scholar 

  117. Kia, A., McAvoy, K., Krishnamurthy, K., Trotti, D. & Pasinelli, P. Astrocytes expressing ALS-linked mutant FUS induce motor neuron death through release of tumor necrosis factor-alpha. Glia 66, 1016–1033 (2016).

    Article  Google Scholar 

  118. Arredondo, C. et al. Excessive release of inorganic polyphosphate by ALS/FTD astrocytes causes non-cell-autonomous toxicity to motoneurons. Neuron 110, 1656–1670.e1612 (2022).

    Article  CAS  Google Scholar 

  119. Chavez-Gutiérrez, L. et al. The mechanism of γ-secretase dysfunction in familial Alzheimer disease. EMBO J. 31, 2261–2274 (2012).

    Article  Google Scholar 

  120. Van Cauwenberghe, C., Van Broeckhoven, C. & Sleegers, K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet. Med. 18, 421–430 (2016).

    Article  Google Scholar 

  121. Liao, M. C. et al. Single-cell detection of secreted Aβ and sAPPα from human IPSC-derived neurons and astrocytes. J. Neurosci. 36, 1730–1746 (2016).

    Article  CAS  Google Scholar 

  122. Bertram, L. & Tanzi, R. E. Genome-wide association studies in Alzheimer’s disease. Hum. Mol. Genet. 18, 137–145 (2009).

    Article  Google Scholar 

  123. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

    Article  CAS  Google Scholar 

  124. Strittmatter, W. J. et al. Apolipoprotein E: High-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993).

    Article  CAS  Google Scholar 

  125. Fagan, A. M. et al. Unique lipoproteins secreted by primary astrocytes from wild type, apoE (-/-), and human apoE transgenic mice. J. Biol. Chem. 274, 30001–30007 (1999).

    Article  CAS  Google Scholar 

  126. Kim, J., Basak, J. M. & Holtzman, D. M. The role of apolipoprotein E in Alzheimer’s disease. Neuron 63, 287–303 (2009).

    Article  CAS  Google Scholar 

  127. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527 (2017).

    Article  Google Scholar 

  128. Shinohara, M. et al. Apoe2 is associated with longevity independent of Alzheimer’s disease. eLife 9, e62199 (2020).

    Article  CAS  Google Scholar 

  129. Lin, Y. T. et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98, 1141–1154.e1147 (2018).

    Article  CAS  Google Scholar 

  130. Tcw, J. et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell 185, 2213–2233.e2225 (2022).

    Article  CAS  Google Scholar 

  131. Zhao, J. et al. APOE ϵ4/ϵ4 diminishes neurotrophic function of human iPSC-derived astrocytes. Hum. Mol. Genet. 26, 2690–2700 (2017).

    Article  CAS  Google Scholar 

  132. Zheng, J. Y. et al. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer’s disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling. Neurobiol. Aging 54, 112–132 (2017).

    Article  CAS  Google Scholar 

  133. Taga, M. et al. BIN1 protein isoforms are differentially expressed in astrocytes, neurons, and microglia: neuronal and astrocyte BIN1 are implicated in tau pathology. Mol. Neurodegener. 15, 44 (2020).

    Article  CAS  Google Scholar 

  134. Chen, F. et al. Clusterin secreted from astrocyte promotes excitatory synaptic transmission and ameliorates Alzheimer’s disease neuropathology. Mol. Neurodegener. 16, 5 (2021).

    Article  Google Scholar 

  135. Bugiani, O. et al. Frontotemporal dementia and corticobasal degeneration in a family with P301S mutation in tau. J. Neuropathol. Exp. Neurol. 58, 667–677 (1991).

    Article  Google Scholar 

  136. Hutton, M. et al. Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  Google Scholar 

  137. Alonso, A. D. C., Mederlyova, A., Novak, M., Grundke-Iqbal, I. & Iqbal, K. Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J. Biol. Chem. 279, 34873–34881 (2004).

    Article  Google Scholar 

  138. Sidoryk-Wegrzynowicz, M. et al. Astrocytes in mouse models of tauopathies acquire early deficits and lose neurosupportive functions. Acta Neuropathol. Commun. 5, 89 (2017).

    Article  Google Scholar 

  139. Wang, P. & Ye, Y. Filamentous recombinant human Tau activates primary astrocytes via an integrin receptor complex. Nat. Commun. 12, 95 (2021).

    Article  CAS  Google Scholar 

  140. Perea, J. R. et al. Extracellular monomeric tau is internalized by astrocytes. Front. Neurosci. 13, 442 (2019).

    Article  Google Scholar 

  141. Kovacs, G. G. Astroglia and tau: new perspectives. Front. Aging Neurosci. 12, 96 (2020).

    Article  CAS  Google Scholar 

  142. Litvinchuk, A. et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron 100, 1337–1353.e1335 (2018).

    Article  CAS  Google Scholar 

  143. Berchtold, N. C. et al. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol. Aging 34, 1653–1661 (2013).

    Article  CAS  Google Scholar 

  144. Bai, B. et al. Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron 105, 975–991.e977 (2020).

    Article  CAS  Google Scholar 

  145. Johnson, E. C. B. et al. Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat. Neurosci. 25, 213–225 (2022).

    Article  CAS  Google Scholar 

  146. Galea, E. et al. Multi-transcriptomic analysis points to early organelle dysfunction in human astrocytes in Alzheimer’s disease. Neurobiol. Dis. 166, 105655 (2022).

    Article  CAS  Google Scholar 

  147. Sadick, J. S. et al. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease. Neuron 110, 1788–1805.e1710 (2022).

    Article  CAS  Google Scholar 

  148. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  CAS  Google Scholar 

  149. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  CAS  Google Scholar 

  150. Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 (2019).

    Article  CAS  Google Scholar 

  151. Orre, M. et al. Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction. Neurobiol. Aging 35, 2746–2760 (2014).

    Article  CAS  Google Scholar 

  152. Sun, S. et al. Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant sod1-mediated ALS. Proc. Natl Acad. Sci. USA 112, E6993–E7002 (2015).

    Article  CAS  Google Scholar 

  153. SantaCruz, K. S., Yazlovitskaya, E., Collins, J., Johnson, J. & DeCarli, C. Regional NAD(P)H:quinone oxidoreductase activity in Alzheimer’s disease. Neurobiol. Aging 25, 63–69 (2004).

    Article  CAS  Google Scholar 

  154. Jiwaji, Z. et al. Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to Tau and Aß pathology. Nat. Commun. 13, 135 (2022).

    Article  CAS  Google Scholar 

  155. Ceyzériat, K. et al. Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer’s disease. Acta Neuropathol. Commun. 6, 104 (2018).

    Article  Google Scholar 

  156. Reichenbach, N. et al. Inhibition of Stat3‐mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol. Med. 11, e9665 (2019).

    Article  Google Scholar 

  157. Guillemaud, O. et al. Complex roles for reactive astrocytes in the triple transgenic mouse model of Alzheimer disease. Neurobiol. Aging 90, 135–146 (2020).

    Article  CAS  Google Scholar 

  158. Guttenplan, K. A. et al. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat. Commun. 11, 3753 (2020).

    Article  CAS  Google Scholar 

  159. Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021).

    Article  CAS  Google Scholar 

  160. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425–436 (2021).

    Article  CAS  Google Scholar 

  161. Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science 364, 89–93 (2019).

    Article  CAS  Google Scholar 

  162. Johnson, E. C. B. et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 26, 769–780 (2020).

    Article  CAS  Google Scholar 

  163. Swarup, V. et al. Identification of conserved proteomic networks in neurodegenerative dementia. Cell Rep. 31, 107807 (2020).

    Article  CAS  Google Scholar 

  164. Wan, Y. W. et al. Meta-analysis of the Alzheimer’s disease human brain transcriptome and functional dissection in mouse models. Cell Rep. 32, 107908 (2020).

    Article  CAS  Google Scholar 

  165. Xiong, F., Ge, W. & Ma, C. Quantitative proteomics reveals distinct composition of amyloid plaques in Alzheimer’s disease. Alzheimer’s Dement. 15, 429–440 (2019).

    Article  Google Scholar 

  166. Hinz, F. I., Dieterich, D. C. & Schuman, E. M. Teaching old NCATs new tricks: using non-canonical amino acid tagging to study neuronal plasticity. Curr. Opin. Chem. Biol. 17, 738–746 (2013).

    Article  CAS  Google Scholar 

  167. Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).

    Article  CAS  Google Scholar 

  168. Lee, H.-G., Wheeler, M. A. & Quintana, F. J. Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug. Discov. 21, 339–358 (2022).

    Article  CAS  Google Scholar 

  169. Vossel, K. A. et al. Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann. Neurol. 80, 858–870 (2016).

    Article  CAS  Google Scholar 

  170. Horvath, A. A. et al. Subclinical epileptiform activity accelerates the progression of Alzheimer’s disease: a long-term EEG study. Clin. Neurophysiol. 132, 1982–1989 (2021).

    Article  Google Scholar 

  171. Souza Monteiro de Araujo, D., Nassini, R., Geppetti, P. & De Logu, F. TRPA1 as a therapeutic target for nociceptive pain. Expert. Opin. Ther. Targets 24, 997–1008 (2020).

    Article  CAS  Google Scholar 

  172. Rajani, V., Zhang, Y., Revill, A. L. & Funk, G. D. The role of P2Y1 receptor signaling in central respiratory control. Respir. Physiol. Neurobiol. 226, 3–10 (2016).

    Article  CAS  Google Scholar 

  173. Onur, T. S. et al. Downregulation of glial genes involved in synaptic function mitigates Huntington’s disease pathogenesis. eLife 10, e64564 (2021).

    Article  CAS  Google Scholar 

  174. Moruno-Manchon, J. F. et al. Sphingosine kinase 1-associated autophagy differs between neurons and astrocytes. Cell Death Dis. 9, 521 (2018).

    Article  Google Scholar 

  175. Laug, D. et al. Nuclear factor I-A regulates diverse reactive astrocyte responses after CNS injury. J. Clin. Invest. 129, 4408–4418 (2019).

    Article  Google Scholar 

  176. Chisholm, N. C. et al. Histone methylation patterns in astrocytes are influenced by age following ischemia. Epigenetics 10, 142–152 (2015).

    Article  Google Scholar 

  177. Liu, G., Yin, K., Zhang, Q., Gao, C. & Qiu, J. L. Modulating chromatin accessibility by transactivation and targeting proximal dsgRNAs enhances Cas9 editing efficiency in vivo. Genome Biol. 20, 145 (2019).

    Article  Google Scholar 

  178. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  Google Scholar 

  179. Esposito, G. et al. Autologous transplantation of intestine-isolated glia cells improves neuropathology and restores cognitive deficits in β amyloid-induced neurodegeneration. Sci. Rep. 6, 22605 (2016).

    Article  CAS  Google Scholar 

  180. Qian, H. et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 582, 550–556 (2020).

    Article  CAS  Google Scholar 

  181. Zhou, H. et al. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 181, 590–603.e516 (2020).

    Article  CAS  Google Scholar 

  182. Wang, L. L. et al. Revisiting astrocyte to neuron conversion with lineage tracing in vivo. Cell 184, 5465–5481.e5416 (2021).

    Article  CAS  Google Scholar 

  183. Bocchi, R., Masserdotti, G. & Götz, M. Direct neuronal reprogramming: fast forward from new concepts toward therapeutic approaches. Neuron 110, 366–393 (2022).

    Article  CAS  Google Scholar 

  184. Heinrich, C. et al. Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Rep. 3, 1000–1014 (2014).

    Article  CAS  Google Scholar 

  185. Gitter, B. D., Cox, L. M., Rydel, R. E. & May, P. C. Amyloid beta peptide potentiates cytokine secretion by interleukin-1 beta-activated human astrocytoma cells. Proc. Natl Acad. Sci. 92, 10738–10741 (1995).

    Article  CAS  Google Scholar 

  186. Selkoe, D. J. Alzheimer’s disease. Cold Spring Harb. Perspect. Biol. 3, a004457 (2011).

    Article  Google Scholar 

  187. Selkoe, D. J. Treatments for Alzheimer’s disease emerge. Science 373, 624–626 (2021).

    Article  CAS  Google Scholar 

  188. Simpson, I. A., Chundu, K. R., Davies-Hill, T., Honer, W. G. & Davies, P. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann. Neurol. 35, 546–551 (1994).

    Article  CAS  Google Scholar 

  189. Simpson, J. E. et al. Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol. Aging 31, 578–590 (2010).

    Article  CAS  Google Scholar 

  190. Wilcock, D. M., Vitek, M. P. & Colton, C. A. Vascular amyloid alters astrocytic water and potassium channels in mouse models and humans with Alzheimer’s disease. Neuroscience 159, 1055–1069 (2009).

    Article  CAS  Google Scholar 

  191. Haidet-Phillips, A. M. et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat. Biotechnol. 29, 824–828 (2011).

    Article  CAS  Google Scholar 

  192. Hardiman, O. et al. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 3, 17071 (2017).

    Article  Google Scholar 

  193. Izrael, M., Slutsky, S. G. & Revel, M. Rising stars: astrocytes as a therapeutic target for ALS disease. Front. Neurosci. 14, 824 (2020).

    Article  Google Scholar 

  194. Rothstein, J. D., Martin, L. J. & Kuncl, R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326, 1464–1468 (1992).

    Article  CAS  Google Scholar 

  195. Schiffer, D., Cordera, S., Cavalla, P. & Migheli, A. Reactive astrogliosis of the spinal cord in amyotrophic lateral sclerosis. J. Neurological Sci. 139, 27–33 (1996).

    Article  Google Scholar 

  196. Wyant, K. J., Ridder, A. J. & Dayalu, P. Huntington’s disease — update on treatments. Curr. Neurol. Neurosci. Rep. 17, 33 (2017).

    Article  Google Scholar 

  197. Ascherio, A. & Schwarzschild, M. A. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 15, 1257–1272 (2016).

    Article  Google Scholar 

  198. Miyazaki, I. & Asanuma, M. Neuron-astrocyte interactions in Parkinson’s disease. Cells 9, 2623 (2020).

    Article  CAS  Google Scholar 

  199. Tysnes, O.-B. & Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm. 124, 901–905 (2017).

    Article  Google Scholar 

  200. Wakabayashi, K., Hayashi, S., Yoshimoto, M., Kudo, H. & Takahashi, H. NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol. 99, 14–20 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of N.J.A. is supported by the CZI Neurodegeneration Network. A.N.B. is supported by NINDS 1F32NS117776-01A1.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and made substantial contributions to discussion of the content. A.N.B., A.P. and T.S.O. wrote the article, and N.J.A. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Nicola J. Allen.

Ethics declarations

Competing interest

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks L. Civiero and the other anonymous reviewers for their contribution to the peer review of this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mutations

Alterations in the sequence of DNA, which if within a coding portion of a gene can change the resulting protein product.

NG2 glia

Oligodendrocyte progenitor cells expressing NG2.

Photothrombotic stroke

Stroke model using occlusion of small cerebral vessels.

Single cell assay for transposase-accessible chromatin using sequencing

An assay that determines chromatin accessibility across the genome.

Single-nucleotide polymorphisms

Alterations to individual nucleotides in the DNA sequence.

Variants

Differences in DNA sequence between individuals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandebura, A.N., Paumier, A., Onur, T.S. et al. Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders. Nat Rev Neurosci 24, 23–39 (2023). https://doi.org/10.1038/s41583-022-00641-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00641-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing