Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiregion neuronal activity: the forest and the trees

Abstract

The past decade has witnessed remarkable advances in the simultaneous measurement of neuronal activity across many brain regions, enabling fundamentally new explorations of the brain-spanning cellular dynamics that underlie sensation, cognition and action. These recently developed multiregion recording techniques have provided many experimental opportunities, but thoughtful consideration of methodological trade-offs is necessary, especially regarding field of view, temporal acquisition rate and ability to guarantee cellular resolution. When applied in concert with modern optogenetic and computational tools, multiregion recording has already made possible fundamental biological discoveries — in part via the unprecedented ability to perform unbiased neural activity screens for principles of brain function, spanning dozens of brain areas and from local to global scales.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A spectrum of methods for multiregion recording.
Fig. 2: Approaches for analysing multiregion recording data.
Fig. 3: New perspectives arising from multiregion recording.

References

  1. The Event Horizon Telescope Collaboration. et al. First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019).

    Article  Google Scholar 

  2. Galilei, G. Sidereus Nuncius (Univ. Chicago Press, 1610).

  3. Adrian, E. D. The Basis of Sensation (WW Norton & Co, 1928).

  4. Brock, L. G., Coombs, J. S. & Eccles, J. C. The recording of potentials from motoneurones with an intracellular electrode. J. Physiol. 117, 431–460 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Woodbury, J. W. & Patton, H. D. in Cold Spring Harbor Symposia on Quantitative Biology vol. 17, 185–188 (Cold Spring Harbor Laboratory Press, 1952).

  6. Ren, C. & Komiyama, T. Characterizing cortex-wide dynamics with wide-field calcium imaging. J. Neurosci. 41, 4160–4168 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, T. H. & Schnitzer, M. J. Fluorescence imaging of large-scale neural ensemble dynamics. Cell 185, 9–41 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Urai, A. E., Doiron, B., Leifer, A. M. & Churchland, A. K. Large-scale neural recordings call for new insights to link brain and behavior. Nat. Neurosci. 25, 11–19 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information flow during flexible sensorimotor decisions. Science 348, 1352–1355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hernández, A. et al. Procedure for recording the simultaneous activity of single neurons distributed across cortical areas during sensory discrimination. Proc. Natl Acad. Sci. USA 105, 16785–16790 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hernández, A. et al. Decoding a perceptual decision process across cortex. Neuron 66, 300–314 (2010).

    Article  PubMed  Google Scholar 

  12. Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat. Neurosci. 25, 252–263 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014). This study uses viral anterograde tracing in mice to systematically map mesoscale connectivity between brain regions and produce a foundational brain atlas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han, Y. et al. The logic of single-cell projections from visual cortex. Nature 556, 51–56 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown, C. E., Aminoltejari, K., Erb, H., Winship, I. R. & Murphy, T. H. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J. Neurosci. 29, 1719–1734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferezou, I. et al. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56, 907–923 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Santos, L., Opris, I., Fuqua, J., Hampson, R. E. & Deadwyler, S. A. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain. J. Neurosci. Methods 205, 368–374 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Allen, W. E. et al. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science 364, eaav3932 (2019).

    Article  CAS  Google Scholar 

  19. Engel, T. A. & Steinmetz, N. A. New perspectives on dimensionality and variability from large-scale cortical dynamics. Curr. Opin. Neurobiol. 58, 181–190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schneider, D. M. Reflections of action in sensory cortex. Curr. Opin. Neurobiol. 64, 53–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019). This study uses eight simultaneously deployed Neuropixels probes to discover brainwide activity driven by spontaneous facial movements, including in the primary visual cortex.

    Article  CAS  Google Scholar 

  23. Kauvar, I. V. et al. Cortical observation by synchronous multifocal optical sampling reveals widespread population encoding of actions. Neuron 107, 351–367.e19 (2020). This article introduces and applies COSMOS, a method for recording near cellular resolution activity at video rates from thousands of neuronal sources spanning the mouse dorsal cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schneider, D. M., Nelson, A. & Mooney, R. A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature 513, 189–194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saxena, S. & Cunningham, J. P. Towards the neural population doctrine. Curr. Opin. Neurobiol. 55, 103–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Dong, H. W. The Allen Reference Atlas: A Digital Color Brain Atlas of the C57Bl/6J Male Mouse (Wiley, 2008).

  27. Paxinos, G. & Franklin, K. B. J. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates (Academic, 2019).

  28. Swanson, L. Brain Maps: Structure of the Rat Brain (Gulf Professional Publishing, 2004).

  29. Zingg, B. et al. Neural networks of the mouse neocortex. Cell https://doi.org/10.1016/j.cell.2014.02.023 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jones, A. R., Overly, C. C. & Sunkin, S. M. The Allen Brain Atlas: 5 years and beyond. Nat. Rev. Neurosci. 10, 821–828 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Q. et al. The Allen mouse brain common coordinate framework: a 3D reference atlas. Cell 181, 936–953.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021). This study uses six simultaneously deployed Neuropixels probes to establish the hierarchical nature of functional connectivity in the mouse visual system.

    CAS  PubMed  Google Scholar 

  34. Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. da Silva, J. A., Tecuapetla, F., Paixão, V. & Costa, R. M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554, 244–248 (2018).

    Article  PubMed  Google Scholar 

  37. Carus-Cadavieco, M. et al. Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking. Nature 542, 232–236 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Senzai, Y., Fernandez-Ruiz, A. & Buzsáki, G. Layer-specific physiological features and interlaminar interactions in the primary visual cortex of the mouse. Neuron 101, 500–513.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Couto, J. et al. Chronic, cortex-wide imaging of specific cell populations during behavior. Nat. Protoc. 16, 3241–3263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dockès, J. et al. NeuroQuery, comprehensive meta-analysis of human brain mapping. eLife 9, e53385 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tervo, D. G. R. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fenno, L. E. et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat. Methods 11, 763–772 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Andalman, A. S. et al. Neuronal dynamics regulating brain and behavioral state transitions. Cell 177, 970–985.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lovett-Barron, M. et al. Ancestral circuits for the coordinated modulation of brain state. Cell 171, 1411–1423.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, S. et al. Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. Science 370, eabb2494 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Allen, W. E. et al. Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron 94, 891–907.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lima, S. Q., Hromádka, T., Znamenskiy, P. & Zador, A. M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS ONE 4, e6099 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wolff, S. B. E. et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 509, 453–458 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Herrera, C. G. et al. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat. Neurosci. 19, 290–298 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Juavinett, A. L., Bekheet, G. & Churchland, A. K. Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice. eLife 8, e47188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schoonover, C. E., Ohashi, S. N., Axel, R. & Fink, A. J. P. Representational drift in primary olfactory cortex. Nature 594, 541–546 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chung, J. E. et al. High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays. Neuron 101, 21–31.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Cardin, J. A., Crair, M. C. & Higley, M. J. Mesoscopic imaging: shining a wide light on large-scale neural dynamics. Neuron 108, 33–43 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grinvald, A. & Hildesheim, R. VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874–885 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Mohajerani, M. H. et al. Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat. Neurosci. 16, 1426–1435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dana, H. et al. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS ONE 9, e108697 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wekselblatt, J. B., Flister, E. D., Piscopo, D. M. & Niell, C. M. Large-scale imaging of cortical dynamics during sensory perception and behavior. J. Neurophysiol. 115, 2852–2866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Ratzlaff, E. H. & Grinvald, A. A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J. Neurosci. Methods 36, 127–137 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, C. K. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13, 325–328 (2016). This article introduces a technique for simultaneously recording cell type-specific neural activity from seven regions throughout the brain.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Valley, M. T. et al. Separation of hemodynamic signals from GCaMP fluorescence measured with wide-field imaging. J. Neurophysiol. 123, 356–366 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Daigle, T. L. et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174, 465–480.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gerfen, C. R., Paletzki, R. & Heintz, N. GENSAT BAC Cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80, 1368–1383 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Matho, K. S. et al. Genetic dissection of the glutamatergic neuron system in cerebral cortex. Nature 598, 182–187 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Callaway, E. M. et al. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article  CAS  Google Scholar 

  73. Fenno, L. E. et al. Comprehensive dual- and triple-feature intersectional single-vector delivery of diverse functional payloads to cells of behaving mammals. Neuron 107, 836–853.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harris, J. et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front. Neural Circuits https://doi.org/10.3389/fncir.2014.00076 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Waters, J. Sources of widefield fluorescence from the brain. eLife 9, e59841 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lohani, S. et al. Dual color mesoscopic imaging reveals spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. Preprint at bioRxiv https://doi.org/10.1101/2020.12.09.418632 (2020).

    Article  Google Scholar 

  77. Sabatini, B. L. & Tian, L. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108, 17–32 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Shen, Y., Nasu, Y., Shkolnikov, I., Kim, A. & Campbell, R. E. Engineering genetically encoded fluorescent indicators for imaging of neuronal activity: progress and prospects. Neurosci. Res. 152, 3–14 (2020).

    Article  PubMed  Google Scholar 

  79. Steinmetz, N. A. et al. Aberrant cortical activity in multiple GCaMP6-expressing transgenic mouse lines. eNeuro 4, ENEURO.0207-17.2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Heffley, W. et al. Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nat. Neurosci. 21, 1431–1441 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ackman, J. B., Burbridge, T. J. & Crair, M. C. Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490, 219–225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, Y., Turan, Z. & Meister, M. Functional architecture of motion direction in the mouse superior colliculus. Curr. Biol. 30, 3304–3315.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Scott, B. B. et al. Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope. Neuron 100, 1045–1058.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rynes, M. L. et al. Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice. Nat. Methods 18, 417–425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lake, E. M. R. et al. Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI. Nat. Methods 17, 1262–1271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Murphy, T. H. et al. High-throughput automated home-cage mesoscopic functional imaging of mouse cortex. Nat. Commun. 7, 11611 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Murphy, T. H. et al. Automated task training and longitudinal monitoring of mouse mesoscale cortical circuits using home cages. eLife 9, e55964 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kim, T. H. et al. Long-term optical access to an estimated one million neurons in the live mouse cortex. Cell Rep. 17, 3385–3394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ghanbari, L. et al. Cortex-wide neural interfacing via transparent polymer skulls. Nat. Commun. 10, 1500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Freeman, J. et al. Mapping brain activity at scale with cluster computing. Nat. Methods 11, 941–950 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Kim, C. K. et al. Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping. Front. Neural Circuits 8, 138 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Vladimirov, N. et al. Light-sheet functional imaging in fictively behaving zebrafish. Nat. Methods 11, 883–884 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Chen, Y. et al. Soma-targeted imaging of neural circuits by ribosome tethering. Neuron 107, 454–469.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shemesh, O. A. et al. Precision calcium imaging of dense neural populations via a cell-body-targeted calcium indicator. Neuron 107, 470–486.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lim, S. T., Antonucci, D. E., Scannevin, R. H. & Trimmer, J. S. A novel targeting signal for proximal clustering of the Kv2.1 K+ channel in hippocampal neurons. Neuron 25, 385–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Cramer, S. W. et al. Through the looking glass: a review of cranial window technology for optical access to the brain. J. Neurosci. Methods 354, 109100 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Fan, J. et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nat. Photonics 13, 809–816 (2019).

    Article  CAS  Google Scholar 

  98. Broxton, M. et al. Wave optics theory and 3-D deconvolution for the light field microscope. Opt. Express 21, 25418–25439 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Nöbauer, T. et al. Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy. Nat. Methods 14, 811–818 (2017).

    Article  PubMed  Google Scholar 

  100. Voleti, V. et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nat. Methods 16, 1054–1062 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chang, C.-P. (Jonathan) & Holy, T. E. in Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics vol. 11629, 20–28 (SPIE, 2021).

  102. Kumar, M., Kishore, S., Nasenbeny, J., McLean, D. L. & Kozorovitskiy, Y. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging. Opt. Express 26, 13027–13041 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xue, Y., Davison, I. G., Boas, D. A. & Tian, L. Single-shot 3D wide-field fluorescence imaging with a Computational Miniature Mesoscope. Sci. Adv. 6, eabb7508 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ebrahimi, S. et al. Emergent reliability in sensory cortical coding and inter-area communication. Nature https://doi.org/10.1038/s41586-022-04724-y (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lütcke, H. et al. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front. Neural Circuits 4, 9 (2010).

    PubMed  PubMed Central  Google Scholar 

  108. Schulz, K. et al. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat. Methods 9, 597–602 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Stroh, A. et al. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 77, 1136–1150 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Pisanello, M. et al. The three-dimensional signal collection field for fiber photometry in brain tissue. Front. Neurosci. 13, 82 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Marshall, J. D. et al. Cell-type-specific optical recording of membrane voltage dynamics in freely moving mice. Cell 167, 1650–1662.e15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pisano, F. et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nat. Methods 16, 1185–1192 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Sych, Y., Chernysheva, M., Sumanovski, L. T. & Helmchen, F. High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nat. Methods 16, 553–560 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Siegle, J. H. et al. Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology. eLife 10, e69068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wei, Z. et al. A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology. PLoS Comput. Biol. 16, e1008198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Abdelfattah, A. S. et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365, 699–704 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Jin, L. et al. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75, 779–785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Piatkevich, K. D. et al. Population imaging of neural activity in awake behaving mice. Nature 574, 413–417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu, Y., Zou, P. & Cohen, A. E. Voltage imaging with genetically encoded indicators. Curr. Opin. Chem. Biol. 39, 1–10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Villette, V. et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell 179, 1590–1608.e23 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Adam, Y. et al. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 569, 413–417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fan, L. Z. et al. All-optical synaptic electrophysiology probes mechanism of ketamine-induced disinhibition. Nat. Methods 15, 823–831 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fan, L. Z. et al. All-optical electrophysiology reveals the role of lateral inhibition in sensory processing in cortical layer 1. Cell 180, 521–535.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14, 352–360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Marshel, J. H. et al. Cortical layer–specific critical dynamics triggering perception. Science 365, eaaw5202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wu, J. et al. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nat. Methods 17, 287–290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Carandini, M. et al. Imaging the awake visual cortex with a genetically encoded voltage indicator. J. Neurosci. 35, 53–63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Platisa, J. et al. Voltage imaging using transgenic mouse lines expressing the GEVI ArcLight in two olfactory cell types. Preprint at bioRxiv https://doi.org/10.1101/2020.08.26.268904 (2020).

    Article  Google Scholar 

  132. Platisa, J. et al. High-speed low-light in vivo two-photon voltage imaging of large neuronal populations. Preprint at bioRxiv https://doi.org/10.1101/2021.12.07.471668 (2021).

    Article  Google Scholar 

  133. Gottschalk, S. et al. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat. Biomed. Eng. 3, 392–401 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rabut, C. et al. Ultrasound technologies for imaging and modulating neural activity. Neuron 108, 93–110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Lecoq, J. et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging. Nat. Neurosci. 17, 1825–1829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wagner, M. J. et al. Shared cortex-cerebellum dynamics in the execution and learning of a motor task. Cell 177, 669–682.e24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sofroniew, N. J., Flickinger, D., King, J. & Svoboda, K. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife 5, e14472 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Stirman, J. N., Smith, I. T., Kudenov, M. W. & Smith, S. L. Wide field-of-view, multi-region two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotechnol. 34, 857–862 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen, J. L., Voigt, F. F., Javadzadeh, M., Krueppel, R. & Helmchen, F. Long-range population dynamics of anatomically defined neocortical networks. eLife 5, e14679 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Condylis, C. et al. Context-dependent sensory processing across primary and secondary somatosensory cortex. Neuron 106, 515–525.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yu, C.-H., Stirman, J. N., Yu, Y., Hira, R. & Smith, S. L. Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry. Nat. Commun. 12, 6639 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Clough, M. et al. Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds. Nat. Commun. 12, 6638 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lu, R. et al. Rapid mesoscale volumetric imaging of neural activity with synaptic resolution. Nat. Methods 17, 291–294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Demas, J. et al. High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy. Nat. Methods 18, 1103–1111 (2021). This article introduces light beads microscopy, a two-photon method that enables cellular resolution imaging from hundreds of thousands of neurons at rates of a few hertz.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rumyantsev, O. I. et al. Fundamental bounds on the fidelity of sensory cortical coding. Nature 580, 100–105 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, T. et al. Kilohertz two-photon brain imaging in awake mice. Nat. Methods 16, 1119–1122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yang, S. J. et al. Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing. Opt. Express 23, 32573 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Barson, D. et al. Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits. Nat. Methods 17, 107–113 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Zong, W. et al. Large-scale two-photon calcium imaging in freely moving mice. Cell 185, 1240–1256.e30 (2021).

    Article  Google Scholar 

  151. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Voigts, J., Newman, J. P., Wilson, M. A. & Harnett, M. T. An easy-to-assemble, robust, and lightweight drive implant for chronic tetrode recordings in freely moving animals. J. Neural Eng. 17, 026044 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Varol, E. et al. Decentralized motion inference and registration of neuropixel data. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 1085–1089 (IEEE, 2021).

  154. Luo, T. Z. et al. An approach for long-term, multi-probe Neuropixels recordings in unrestrained rats. eLife 9, e59716 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jensen, K. H. R. & Berg, R. W. CLARITY-compatible lipophilic dyes for electrode marking and neuronal tracing. Sci. Rep. 6, 32674 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Vázquez-Guardado, A., Yang, Y., Bandodkar, A. J. & Rogers, J. A. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 23, 1522–1536 (2020).

    Article  PubMed  Google Scholar 

  157. Wang, X. et al. A parylene neural probe array for multi-region deep brain recordings. J. Microelectromech. Syst. 29, 499–513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu, X. et al. Multimodal neural recordings with Neuro-FITM uncover diverse patterns of cortical–hippocampal interactions. Nat. Neurosci. 24, 886–896 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Clancy, K. B., Orsolic, I. & Mrsic-Flogel, T. D. Locomotion-dependent remapping of distributed cortical networks. Nat. Neurosci. 22, 778–786 (2019). In this study, the authors simultaneously use single-neuron recordings and OEG to describe how locomotion influences the relationship between single-neuron firing and cortex-wide activity patterns.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Peters, A. J., Fabre, J. M. J., Steinmetz, N. A., Harris, K. D. & Carandini, M. Striatal activity topographically reflects cortical activity. Nature 591, 420–425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kleinfeld, D. et al. Can one concurrently record electrical spikes from every neuron in a mammalian brain? Neuron 103, 1005–1015 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Trautmann, E. et al. Accurate estimation of neural population dynamics without spike sorting. Neuron 103, 292–308.e4 (2019). This article illustrates how many popular population-level analyses of neural activity can successfully be applied to multi-unit electrophysiology data that lack single-cell resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ecker, A. S. et al. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587–590 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Dacre, J. et al. A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation. Neuron 109, 2326–2338.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang, W. et al. Coordination of escape and spatial navigation circuits orchestrates versatile flight from threats. Neuron 109, 1848–1860.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Adrian, E. D. The impulses produced by sensory nerve endings. J. Physiol. 61, 49–72 (1926).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sherrington, C. The Integrative Action of the Nervous System (Charles Scribner’s Sons, 1906).

  169. Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chichilnisky, E. J. A simple white noise analysis of neuronal light responses. Netw. Comput. Neural Syst. 12, 199–213 (2001).

    Article  CAS  Google Scholar 

  171. Schwartz, O., Pillow, J. W., Rust, N. C. & Simoncelli, E. P. Spike-triggered neural characterization. J. Vis. 6, 13–13 (2006).

    Article  Google Scholar 

  172. Pillow, J. W. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, 995–999 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P. & Brown, E. N. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol. 93, 1074–1089 (2005).

    Article  PubMed  Google Scholar 

  174. Kang, B. & Druckmann, S. Approaches to inferring multi-regional interactions from simultaneous population recordings. Curr. Opin. Neurobiol. 65, 108–119 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Keeley, S. L., Zoltowski, D. M., Aoi, M. C. & Pillow, J. W. Modeling statistical dependencies in multi-region spike train data. Curr. Opin. Neurobiol. 65, 194–202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yates, J. L., Park, I. M., Katz, L. N., Pillow, J. W. & Huk, A. C. Functional dissection of signal and noise in MT and LIP during decision-making. Nat. Neurosci. 20, 1285–1292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Benjamin, A. S. et al. Modern machine learning as a benchmark for fitting neural responses. Front. Comput. Neurosci. 12, 56 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Linderman, S., Adams, R. P. & Pillow, J. W. Bayesian latent structure discovery from multi-neuron recordings. in Advances in Neural Information Processing Systems Vol. 29 (NIPS, 2016).

  179. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  180. Vesuna, S. et al. Deep posteromedial cortical rhythm in dissociation. Nature 586, 87–94 (2020). Using multiregion recording techniques, the authors reveal a unique oscillatory firing pattern in the retrosplenial cortex that relates to a dissociation-like behavioural state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Harris, K. D. Nonsense correlations in neuroscience. Preprint at bioRxiv https://doi.org/10.1101/2020.11.29.402719 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Meijer, G. Neurons in the mouse brain correlate with cryptocurrency price: a cautionary tale. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/fa4wz (2021).

    Article  Google Scholar 

  183. Zagha, E. et al. The importance of accounting for movement when relating neuronal activity to sensory and cognitive processes. J. Neurosci. 42, 1375–1382 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gao, P. et al. A theory of multineuronal dimensionality, dynamics and measurement. Preprint at bioRxiv https://doi.org/10.1101/214262 (2017).

    Article  Google Scholar 

  187. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D. High-dimensional geometry of population responses in visual cortex. Nature 571, 361–365 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yu, B. M. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102, 614–635 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Long-term stability of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260–270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Linderman, S. et al. Bayesian learning and inference in recurrent switching linear dynamical systems. in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics 914–922 (PMLR, 2017).

  191. Linderman, S., Nichols, A., Blei, D., Zimmer, M. & Paninski, L. Hierarchical recurrent state space models reveal discrete and continuous dynamics of neural activity in C. elegans. Preprint at bioRxiv https://doi.org/10.1101/621540 (2019).

    Article  Google Scholar 

  192. Humphries, M. D. Strong and weak principles of neural dimension reduction. Preprint at https://doi.org/10.48550/arXiv.2011.08088 (2021).

  193. Gollisch, T. & Meister, M. Rapid neural coding in the retina with relative spike latencies. Science 319, 1108–1111 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Maimon, G. & Assad, J. A. Beyond Poisson: increased spike-time regularity across primate parietal cortex. Neuron 62, 426–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population dynamics. Annu. Rev. Neurosci. 43, 249–275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ames, K. C., Ryu, S. I. & Shenoy, K. V. Neural dynamics of reaching following incorrect or absent motor preparation. Neuron 81, 438–451 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Elsayed, G. F. & Cunningham, J. P. Structure in neural population recordings: an expected byproduct of simpler phenomena? Nat. Neurosci. 20, 1310–1318 (2017). In this study, the authors develop a statistical framework for testing whether population-level structure in neuronal firing patterns is explainable by simpler features of single-neuron responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Li, N., Daie, K., Svoboda, K. & Druckmann, S. Robust neuronal dynamics in premotor cortex during motor planning. Nature 532, 459–464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Geladi, P. & Kowalski, B. R. Partial least-squares regression: a tutorial. Anal. Chim. Acta 185, 1–17 (1986).

    Article  CAS  Google Scholar 

  200. Remedios, R. et al. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. Nature 550, 388–392 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kobak, D. et al. Demixed principal component analysis of neural population data. eLife 5, 614–635 (2016).

    Article  Google Scholar 

  202. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Williams, A. H. et al. Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis. Neuron 98, 1099–1115.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sani, O. G., Abbaspourazad, H., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification. Nat. Neurosci. 24, 140–149 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Sani, O. G., Pesaran, B. & Shanechi, M. M. Where is all the nonlinearity: flexible nonlinear modeling of behaviorally relevant neural dynamics using recurrent neural networks. Preprint at bioRxiv https://doi.org/10.1101/2021.09.03.458628 (2021).

    Article  Google Scholar 

  206. Scangos, K. W., Makhoul, G. S., Sugrue, L. P., Chang, E. F. & Krystal, A. D. State-dependent responses to intracranial brain stimulation in a patient with depression. Nat. Med. 27, 229–231 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Semedo, J. D., Gokcen, E., Machens, C. K., Kohn, A. & Yu, B. M. Statistical methods for dissecting interactions between brain areas. Curr. Opin. Neurobiol. 65, 59–69 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kohn, A. et al. Principles of corticocortical communication: proposed schemes and design considerations. Trends Neurosci. 43, 725–737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Hahn, G., Ponce-Alvarez, A., Deco, G., Aertsen, A. & Kumar, A. Portraits of communication in neuronal networks. Nat. Rev. Neurosci. 20, 117–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Zandvakili, A. & Kohn, A. Coordinated neuronal activity enhances corticocortical communication. Neuron 87, 827–839 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Buzsáki, G. & Wang, X.-J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A. Cortical areas interact through a communication subspace. Neuron 102, 249–259.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Keller, E. L. Participation of medial pontine reticular formation in eye movement generation in monkey. J. Neurophysiol. 37, 316–332 (1974).

    Article  CAS  PubMed  Google Scholar 

  216. Kupfermann, I. & Weiss, K. R. The command neuron concept. Behav. Brain Sci. 1, 3–10 (1978).

    Article  Google Scholar 

  217. Darlington, T. R. & Lisberger, S. G. Mechanisms that allow cortical preparatory activity without inappropriate movement. eLife 9, e50962 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Bassett, D. S., Zurn, P. & Gold, J. I. On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 19, 566–578 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Xie, M. E. et al. High-fidelity estimates of spikes and subthreshold waveforms from 1-photon voltage imaging in vivo. Cell Rep. 35, 108954 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Keshtkaran, M. R. et al. A large-scale neural network training framework for generalized estimation of single-trial population dynamics. Preprint at bioRxiv https://doi.org/10.1101/2021.01.13.426570 (2021).

    Article  Google Scholar 

  222. Pandarinath, C. et al. Latent factors and dynamics in motor cortex and their application to brain–machine interfaces. J. Neurosci. 38, 9390–9401 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15, 805–815 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Sylwestrak, E. L. et al. Cell type-specific population-dynamics of diverse reward computations. Cell 185, 3568–3587.e27 (2022). In this study, the authors collect multiregion neural recording data during a reward-seeking behaviour, model the data with an RNN model called LFADS and then use the model to describe how a population of genetically defined neurons in the medial habenula integrated reward history over time.

    Article  CAS  PubMed  Google Scholar 

  225. Aitken, K. et al. The geometry of integration in text classification RNNs. Preprint at https://doi.org/10.48550/arXiv.2010.15114 (2020).

  226. Maheswaranathan, N., Williams, A. H., Golub, M. D., Ganguli, S. & Sussillo, D. Universality and individuality in neural dynamics across large populations of recurrent networks. Preprint at https://doi.org/10.48550/arXiv.1907.08549 (2019).

  227. McIntosh, L., Maheswaranathan, N., Nayebi, A., Ganguli, S. & Baccus, S. Deep learning models of the retinal response to natural scenes. Adv. Neural Inf. Process. Syst. 29, 1369–1377 (2016).

    PubMed  PubMed Central  Google Scholar 

  228. Sussillo, D. & Barak, O. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput. 25, 626–649 (2013).

    Article  PubMed  Google Scholar 

  229. Sauerbrei, B. A. et al. Cortical pattern generation during dexterous movement is input-driven. Nature 577, 386–391 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Perich, M. G. et al. Inferring brain-wide interactions using data-constrained recurrent neural network models. Preprint at bioRxiv https://doi.org/10.1101/2020.12.18.423348 (2021). This article describes current-based decomposition, an algorithm that uses RNN models to quantify interregional interactions in multiregion neural datasets.

    Article  Google Scholar 

  231. Perich, M. G. & Rajan, K. Rethinking brain-wide interactions through multi-region ‘network of networks’ models. Curr. Opin. Neurobiol. 65, 146–151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lo, C.-C. & Wang, X.-J. Cortico–basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat. Neurosci. 9, 956–963 (2006).

    Article  CAS  PubMed  Google Scholar 

  233. Pinto, L. et al. Task-dependent changes in the large-scale dynamics and necessity of cortical regions. Neuron 104, 810–824 (2019). This study uses OEG and optogenetics to relate cognitive task complexity to cortical engagement — and then analyses this effect in more detail by reproducing qualitative features of the dataset using a multiregion RNN model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Hattori, R. & Komiyama, T. Context-dependent persistency as a coding mechanism for robust and widely distributed value coding. Neuron https://doi.org/10.1016/j.neuron.2021.11.001 (2021).

    Article  PubMed  Google Scholar 

  235. Javadzadeh, M. & Hofer, S. B. Dynamic causal communication channels between neocortical areas. Preprint at bioRxiv https://doi.org/10.1101/2021.06.28.449892 (2021).

    Article  Google Scholar 

  236. Gokcen, E. et al. Disentangling the flow of signals between populations of neurons. Nat. Comput. Sci 2, 512–525 (2022).

    Article  Google Scholar 

  237. Allen, W. E. et al. Thirst-associated preoptic neurons encode an aversive motivational drive. Science 357, 1149–1155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Orsolic, I., Rio, M., Mrsic-Flogel, T. D. & Znamenskiy, P. Mesoscale cortical dynamics reflect the interaction of sensory evidence and temporal expectation during perceptual decision-making. Neuron 109, 1861–1875.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Xiao, D. et al. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons. eLife 6, e19976 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. https://doi.org/10.1038/nn.2682 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Deisseroth, K. From microbial membrane proteins to the mysteries of emotion. Cell 184, 5279–5285 (2021).

    Article  CAS  PubMed  Google Scholar 

  242. Cardin, J. A. Functional flexibility in cortical circuits. Curr. Opin. Neurobiol. 58, 175–180 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Gilad, A., Gallero-Salas, Y., Groos, D. & Helmchen, F. Behavioral strategy determines frontal or posterior location of short-term memory in neocortex. Neuron 99, 814–828.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  244. Clancy, K. B. & Mrsic-Flogel, T. D. The sensory representation of causally controlled objects. Neuron 109, 677–689.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Jacobs, E. A. K., Steinmetz, N. A., Peters, A. J., Carandini, M. & Harris, K. D. Cortical state fluctuations during sensory decision making. Curr. Biol. 30, 4944–4955.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Colgin, L. L. Oscillations and hippocampal–prefrontal synchrony. Curr. Opin. Neurobiol. 21, 467–474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Park, A. J. et al. Reset of hippocampal–prefrontal circuitry facilitates learning. Nature 591, 615–619 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Sigurdsson, T., Stark, K. L., Karayiorgou, M., Gogos, J. A. & Gordon, J. A. Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464, 763–767 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Ferenczi, E. A. et al. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science https://doi.org/10.1126/science.aac9698 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Mimica, B., Dunn, B. A., Tombaz, T., Bojja, V. P. T. N. C. S. & Whitlock, J. R. Efficient cortical coding of 3D posture in freely behaving rats. Science 362, 584–589 (2018).

    Article  CAS  PubMed  Google Scholar 

  251. Cramer, J. V. et al. In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease. Neuroimage 199, 570–584 (2019).

    Article  CAS  PubMed  Google Scholar 

  252. Hultman, R. et al. Brain-wide electrical spatiotemporal dynamics encode depression vulnerability. Cell 173, 166–180.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Wang, X. et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat. Commun. 7, 11459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Buccino, A. P. et al. SpikeInterface, a unified framework for spike sorting. eLife 9, e61834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Chung, J. E. et al. A fully automated approach to spike sorting. Neuron 95, 1381–1394.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Lee, J. et al. YASS: yet another spike sorter. Preprint at bioRxiv https://doi.org/10.1101/151928 (2017).

    Article  Google Scholar 

  257. Magland, J. et al. SpikeForest, reproducible web-facing ground-truth validation of automated neural spike sorters. eLife 9, e55167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Yger, P. et al. A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo. eLife 7, e34518 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Hazan, L., Zugaro, M. & Buzsáki, G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J. Neurosci. Methods 155, 207–216 (2006).

    Article  PubMed  Google Scholar 

  260. Giovannucci, A. et al. CaImAn an open source tool for scalable calcium imaging data analysis. eLife 8, e38173 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Mukamel, E. A., Nimmerjahn, A. & Schnitzer, M. J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63, 747–760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2017).

    Article  Google Scholar 

  263. Greenberg, D. S. Accurate action potential inference from a calcium sensor protein through biophysical modeling. Preprint at bioRxiv https://doi.org/10.1101/479055 (2018).

    Article  Google Scholar 

  264. Pnevmatikakis, E. A., Merel, J., Pakman, A. & Paninski, L. Bayesian spike inference from calcium imaging data. in Signals, Systems and Computers, 2013 Asilomar Conference on 349–353 (IEEE, 2013).

  265. Vogelstein, J. et al. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol. 104, 3691–3704 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Zhou, P. et al. EASE: EM-assisted source extraction from calcium imaging data. Preprint at bioRxiv https://doi.org/10.1101/2020.03.25.007468 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Berens, P. et al. Community-based benchmarking improves spike rate inference from two-photon calcium imaging data. PLoS Comput. Biol. 14, e1006157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Rupprecht, P. et al. A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging. Nat. Neurosci. 24, 1324–1337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Song, A., Gauthier, J. L., Pillow, J. W., Tank, D. W. & Charles, A. S. Neural anatomy and optical microscopy (NAOMi) simulation for evaluating calcium imaging methods. J. Neurosci. Methods 358, 109173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Zhou, P. et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. eLife 7, e28728 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Lu, J. et al. MIN1PIPE: a miniscope 1-photon-based calcium imaging signal extraction pipeline. Cell Rep. 23, 3673–3684 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Friedrich, J., Giovannucci, A. & Pnevmatikakis, E. A. Online analysis of microendoscopic 1-photon calcium imaging data streams. PLoS Comput. Biol. 17, e1008565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Cardin, J. A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5, 247–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Kim, K. et al. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nat. Commun. 11, 2063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Chen, R. et al. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161–164 (2021).

    Article  CAS  PubMed  Google Scholar 

  276. Kishi, K. E. et al. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell 185, 672–689.e23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Inoue, M. et al. Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics. Cell 177, 1346–1360.e24 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.A.M. is supported by an NIH NINDS Pathway to Independence Award (K99/NS116122), an A.P. Giannini Fellowship and a Stanford School of Medicine Dean’s Fellowship. I.V.K. is a Merck Awardee of the Life Science Research Foundation and a Wu Tsai Stanford Neurosciences Institute Interdisciplinary Scholar. K.D. is supported by NIMH, NIDA, the NIH BRAIN Initiative, the National Science Foundation NeuroNex programme, the NOMIS Foundation, the Else Kröner Fresenius Foundation, the Gatsby Foundation and the AE Foundation. The authors also thank W. Allen, S. Bradbury, M. Inoue, C. Kim, J. Kochalka, B. Midler, A. Mitra, S. Quirin, E. Richman, S. Vesuna and other current and former members of the Deisseroth laboratory for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of the manuscript.

Corresponding author

Correspondence to Karl Deisseroth.

Ethics declarations

Competing interests

The authors declare no competing financial interests,

Peer review

Peer review information

Nature Reviews Neuroscience thanks D. Peterka and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machado, T.A., Kauvar, I.V. & Deisseroth, K. Multiregion neuronal activity: the forest and the trees. Nat Rev Neurosci 23, 683–704 (2022). https://doi.org/10.1038/s41583-022-00634-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00634-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing