Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How mechanisms of stem cell polarity shape the human cerebral cortex

Abstract

Apical–basal progenitor cell polarity establishes key features of the radial and laminar architecture of the developing human cortex. The unique diversity of cortical stem cell populations and an expansion of progenitor population size in the human cortex have been mirrored by an increase in the complexity of cellular processes that regulate stem cell morphology and behaviour, including their polarity. The study of human cells in primary tissue samples and human stem cell-derived model systems (such as cortical organoids) has provided insight into these processes, revealing that protein complexes regulate progenitor polarity by controlling cell membrane adherence within appropriate cortical niches and are themselves regulated by cytoskeletal proteins, signalling molecules and receptors, and cellular organelles. Studies exploring how cortical stem cell polarity is established and maintained are key for understanding the features of human brain development and have implications for neurological dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Progenitor types and division programmes in the developing human cortex.
Fig. 2: Subcellular structures and organelles regulating progenitor polarity.
Fig. 3: Human-specific regulation of the cytoskeleton in outer radial glial cells.

References

  1. Geschwind, D. H. & Rakic, P. Cortical evolution: judge the brain by its cover. Neuron 80, 633–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chou, F.-S., Li, R. & Wang, P.-S. Molecular components and polarity of radial glial cells during cerebral cortex development. Cell. Mol. Life Sci. 75, 1027–1041 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Arai, Y. & Taverna, E. Neural progenitor cell polarity and cortical development. Front. Cell. Neurosci. 11, 384 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Götz, M. & Huttner, W. B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  PubMed  Google Scholar 

  5. Mira, H. & Morante, J. Neurogenesis from embryo to adult — lessons from flies and mice. Front. Cell Dev. Biol. 8, 533 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, H. O. & Norden, C. Mechanisms controlling arrangements and movements of nuclei in pseudostratified epithelia. Trends Cell Biol. 23, 141–150 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Sauer, F. C. Mitosis in the neural tube. J. Comp. Neurol. 62, 377–405 (1935).

    Article  Google Scholar 

  9. Subramanian, L., Bershteyn, M., Paredes, M. F. & Kriegstein, A. R. Dynamic behaviour of human neuroepithelial cells in the developing forebrain. Nat. Commun. 8, 14167 (2017). This study identifies changes in mitotic behaviour between primary human neuroepithelial cells and radial glial cells, which impact the morphology and polarity of the radial glial scaffold.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kosodo, Y. et al. Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J. 27, 3151–3163 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eze, U. C., Bhaduri, A., Haeussler, M., Nowakowski, T. J. & Kriegstein, A. R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat. Neurosci. 24, 584–594 (2021). This work transcriptionally characterizes primary human neuroepithelial cells from first-trimester cortical tissue and shows that there is distinct marker gene expression in different subpopulations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kriegstein, A. R. & Götz, M. Radial glia diversity: a matter of cell fate. Glia 43, 37–43 (2003).

    Article  PubMed  Google Scholar 

  13. Tabata, H. & Nakajima, K. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci. 23, 9996–10001 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rakic, P. Elusive radial glial cells: historical and evolutionary perspective. Glia 43, 19–32 (2003).

    Article  PubMed  Google Scholar 

  15. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001). This study shows that cortical neurons arise from radial glial cells and, post differentiation, migrate towards the cortical plate along radial fibres to establish columns of excitatory neurons.

    Article  CAS  PubMed  Google Scholar 

  16. Malatesta, P., Hartfuss, E. & Götz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Hansen, D. V., Lui, J. H., Parker, P. R. L. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010). This study identifies oRG cells in the oSVZ within human cortical tissue and demonstrates their role as neuronal progenitors.

    Article  CAS  PubMed  Google Scholar 

  18. Bayatti, N. et al. A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb. Cortex 18, 1536–1548 (2008).

    Article  PubMed  Google Scholar 

  19. Fietz, S. A. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 13, 690–699 (2010). This study identifies basally expanded neurogenic progenitor cells in the oSVZ of the primary developing human cortex and demonstrates their maintenance by integrin signalling.

    Article  CAS  PubMed  Google Scholar 

  20. Smart, I. H. M., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    Article  PubMed  Google Scholar 

  21. Miyata, T. et al. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131, 3133–3145 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Noctor, S. C., Martínez-Cerdeño, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Hoerder-Suabedissen, A. & Molnár, Z. Development, evolution and pathology of neocortical subplate neurons. Nat. Rev. Neurosci. 16, 133–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Luskin, M. B. & Shatz, C. J. Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. J. Neurosci. 5, 1062–1075 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shitamukai, A., Konno, D. & Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31, 3683–3695 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vaid, S. et al. A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex. Development 145, dev169276 (2018).

    Article  PubMed  Google Scholar 

  28. Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015). This work transcriptionally characterizes oRG cells in primary human cortical tissue using single-cell RNA sequencing, in which identified marker genes are utilized to identify cell types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ostrem, B. E. L., Lui, J. H., Gertz, C. C. & Kriegstein, A. R. Control of outer radial glial stem cell mitosis in the human brain. Cell Rep. 8, 656–664 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalebic, N. et al. Neocortical expansion due to increased proliferation of basal progenitors is linked to changes in their morphology. Cell Stem Cell 24, 535–550 (2019). This study shows that basal progenitors in the human and ferret cortex have increased levels of PALMDELPHIN (compared with the mouse), which potentially regulates process growth and multipolar orientation and is hypothesized to contribute to human cortical expansion.

    Article  CAS  PubMed  Google Scholar 

  31. Nowakowski, T. J., Pollen, A. A., Sandoval-Espinosa, C. & Kriegstein, A. R. Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron 91, 1219–1227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. LaMonica, B. E., Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex. Nat. Commun. 4, 1665 (2013).

    Article  PubMed  Google Scholar 

  33. Attardo, A., Calegari, F., Haubensak, W., Wilsch-Bräuninger, M. & Huttner, W. B. Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS ONE 3, e2388 (2008). This study shows that the loss of apical–basal polarity in the transition from vRG cells to IPCs restricts the cell division type and leads to neuronal production.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Arnold, S. J. et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 22, 2479–2484 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lv, X. et al. TBR2 coordinates neurogenesis expansion and precise microcircuit organization via Protocadherin 19 in the mammalian cortex. Nat. Commun. 10, 3946 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pebworth, M.-P., Ross, J., Andrews, M., Bhaduri, A. & Kriegstein, A. R. Human intermediate progenitor diversity during cortical development. Proc. Natl Acad. Sci. USA 118, e2019415118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Betizeau, M. et al. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80, 442–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, J., Magescas, J., Fetter, R. D., Feldman, J. L. & Shen, K. Inherited apicobasal polarity defines the key features of axon–dendrite polarity in a sensory neuron. Curr. Biol. 31, 3768–3783 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Takano, T., Funahashi, Y. & Kaibuchi, K. Neuronal polarity: positive and negative feedback signals. Front. Cell Dev. Biol. 7, 69 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rash, B. G. et al. Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum. Proc. Natl Acad. Sci. USA 116, 7089–7094 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang, W. et al. Origins and proliferative states of human oligodendrocyte precursor. Cells Cell 182, 594–608 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Allen, D. E. et al. Fate mapping of neural stem cell niches reveals distinct origins of human cortical astrocytes. Science 376, 1441–1446 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Marshall, J. J. & Mason, J. O. Mouse vs man: organoid models of brain development & disease. Brain Res. 1724, 146427 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Subramanian, L., Calcagnotto, M. E. & Paredes, M. F. Cortical malformations: lessons in human brain development. Front. Cell. Neurosci. 13, 576 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl Acad. Sci. Usa. 110, 20284–20289 (2013). This foundational study establishes regionally specified cortical organoid-like aggregates from human embryonic stem cells for the study of human neural development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Otani, T., Marchetto, M. C., Gage, F. H., Simons, B. D. & Livesey, F. J. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18, 467–480 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013). This pioneering study develops cerebral organoid models for the study of human neural development and disease.

    Article  CAS  PubMed  Google Scholar 

  48. Mariani, J. et al. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 109, 12770–12775 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bershteyn, M. et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20, 435–449 (2017). Using induced PSC lines derived from patients with Miller–Dieker syndrome differentiated into cortical organoids, this study identifies changes in neuroepithelial and radial glial cell division types, mitotic behaviour and migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kosodo, Y. et al. Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. EMBO J. 30, 1690–1704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Benito-Kwiecinski, S. et al. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 184, 2084–2102 (2021). Using cerebral organoids, this study observes neuroepithelial cell morphology and polarity differences between human and non-human primate species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Andrews, M. G., Subramanian, L. & Kriegstein, A. R. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. eLife 9, 58737 (2020). This study identifies the role of mTOR signalling, a risk factor for many comorbid neurodevelopmental disorders, in the morphology and basal process orientation of oRG cells in human cortical primary tissue and organoids.

    Article  Google Scholar 

  53. López-Tobón, A. et al. Human cortical organoids expose a differential function of GSK3 on cortical neurogenesis. Stem Cell Rep. 13, 847–861 (2019). This study uses organoids to evaluate the influence of GSK3, a risk gene for neurodevelopmental disease; when GSK3 is inhibited, altered radial glial cell polarity and organization are observed.

    Article  Google Scholar 

  54. Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Andrews, M. G. & Nowakowski, T. J. Human brain development through the lens of cerebral organoid models. Brain Res. 1725, 146470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arellano, J. I., Morozov, Y. M., Micali, N. & Rakic, P. Radial glial cells: new views on old questions. Neurochem. Res. 46, 2512–2524 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reillo, I., de Juan Romero, C., García-Cabezas, M. Á. & Borrell, V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21, 1674–1694 (2011).

    Article  PubMed  Google Scholar 

  58. Borrell, V. & Götz, M. Role of radial glial cells in cerebral cortex folding. Curr. Opin. Neurobiol. 27, 39–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Wilsch-Bräuninger, M., Peters, J., Paridaen, J. T. M. L. & Huttner, W. B. Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination. Development 139, 95–105 (2012).

    Article  PubMed  Google Scholar 

  60. Farquhar, M. G. & Palade, G. E. Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Veeraval, L., O’Leary, C. J. & Cooper, H. M. Adherens junctions: guardians of cortical development. Front. Cell Dev. Biol. 8, 6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Aaku-Saraste, E., Hellwig, A. & Huttner, W. B. Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure–remodeling of the neuroepithelium prior to neurogenesis. Dev. Biol. 180, 664–679 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Weigmann, A., Corbeil, D., Hellwig, A. & Huttner, W. B. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl Acad. Sci. USA 94, 12425–12430 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakaya, Y., Sukowati, E. W., Wu, Y. & Sheng, G. RhoA and microtubule dynamics control cell–basement membrane interaction in EMT during gastrulation. Nat. Cell Biol. 10, 765–775 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Haubst, N., Georges-Labouesse, E., De Arcangelis, A., Mayer, U. & Götz, M. Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development 133, 3245–3254 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Colognato, H. & ffrench-Constant, C. Mechanisms of glial development. Curr. Opin. Neurobiol. 14, 37–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kosodo, Y. & Huttner, W. B. Basal process and cell divisions of neural progenitors in the developing brain. Dev. Growth Differ. 51, 251–261 (2009).

    Article  PubMed  Google Scholar 

  68. Graus-Porta, D. et al. β1-Class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31, 367–379 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Zihni, C., Mills, C., Matter, K. & Balda, M. S. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 17, 564–580 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Harris, T. J. C. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 11, 502–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Campbell, H. K., Maiers, J. L. & DeMali, K. A. Interplay between tight junctions & adherens junctions. Exp. Cell Res. 358, 39–44 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hartsock, A. & Nelson, W. J. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 1778, 660–669 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Hakanen, J., Ruiz-Reig, N. & Tissir, F. Linking cell polarity to cortical development and malformations. Front. Cell. Neurosci. 13, 244 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rašin, M.-R. et al. Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat. Neurosci. 10, 819–827 (2007).

    Article  PubMed  Google Scholar 

  75. Bultje, R. S. et al. Mammalian Par3 regulates progenitor cell asymmetric division via Notch signaling in the developing neocortex. Neuron 63, 189–202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Suzuki, I. K. et al. Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell 173, 1370–1384 (2018). This study highlights a human-specific gene, NOTCH2NL, which regulates radial glial progenitor proliferation and a subsequent increase in neuron numbers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Florio, M. et al. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. eLife 7, e32332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect Notch signaling and cortical neurogenesis. Cell 173, 1356–1369 (2018). This study shows that NOTCH2NL regulates Notch signalling and increases expansion of the cortical progenitor pool, with implications for human cortical expansion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, H. S. et al. Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40, 1105–1118 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Klezovitch, O., Fernandez, T. E., Tapscott, S. J. & Vasioukhin, V. Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev. 18, 559–571 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xie, Z., Hur, S. K., Zhao, L., Abrams, C. S. & Bankaitis, V. A. A golgi lipid signaling pathway controls apical golgi distribution and cell polarity during neurogenesis. Dev. Cell 44, 725–740 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rash, B. G. et al. Metabolic regulation and glucose sensitivity of cortical radial glial cells. Proc. Natl Acad. Sci. USA 115, 10142–10147 (2018). This study shows that appropriate metabolic regulation and trafficking of mitochondria into radial glial processes for energy is required to maintain radial glial cell morphology and radial scaffold integrity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sheen, V. L. et al. Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nat. Genet. 36, 69–76 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Bezanilla, M., Gladfelter, A. S., Kovar, D. R. & Lee, W.-L. Cytoskeletal dynamics: a view from the membrane. J. Cell Biol. 209, 329–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gertz, C. C., Lui, J. H., LaMonica, B. E., Wang, X. & Kriegstein, A. R. Diverse behaviors of outer radial glia in developing ferret and human cortex. J. Neurosci. 34, 2559–2570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsai, J.-W., Lian, W.-N., Kemal, S., Kriegstein, A. R. & Vallee, R. B. Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat. Neurosci. 13, 1463–1471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xie, Z. et al. Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron 56, 79–93 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347, 1465–1470 (2015). This study shows that alterations in the Rho GTPase ARHGAP11B increase the numbers of basal progenitors by altering the cell polarity and proliferation of oRG cells.

    Article  CAS  PubMed  Google Scholar 

  89. Kalebic, N. et al. Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex. eLife 7, e41241 (2018). This work, with gain-of-function studies using ferret cortical tissue, shows that ARHGAP11B increases the numbers of basal progenitors by altering cell polarity and proliferation of oRG cells.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Xing, L. et al. Expression of human-specific ARHGAP11B in mice leads to neocortex expansion and increased memory flexibility. EMBO J. 40, e107093 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743–756.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lehtinen, M. K. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893–905 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Higginbotham, H. et al. Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat. Neurosci. 16, 1000–1007 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nakagawa, N. et al. APC sets the Wnt tone necessary for cerebral cortical progenitor development. Genes Dev. 31, 1679–1692 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Guo, J. et al. Developmental disruptions underlying brain abnormalities in ciliopathies. Nat. Commun. 6, 7857 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Chau, K. F. et al. Progressive differentiation and instructive capacities of amniotic fluid and cerebrospinal fluid proteomes following neural tube closure. Dev. Cell 35, 789–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Feng, L. & Heintz, N. Differentiating neurons activate transcription of the brain lipid-binding protein gene in radial glia through a novel regulatory element. Development 121, 1719–1730 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Hartfuss, E. et al. Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 130, 4597–4609 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Siegenthaler, J. A. et al. Retinoic acid from the meninges regulates cortical neuron generation. Cell 139, 597–609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Long, K. R. & Huttner, W. B. How the extracellular matrix shapes neural development. Open. Biol. 9, 180216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pilaz, L.-J., Lennox, A. L., Rouanet, J. P. & Silver, D. L. Dynamic mRNA transport and local translation in radial glial progenitors of the developing brain. Curr. Biol. 26, 3383–3392 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pilaz, L.-J. & Silver, D. L. Moving messages in the developing brain-emerging roles for mRNA transport and local translation in neural stem cells. FEBS Lett. 591, 1526–1539 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lennox, A. L. et al. Pathogenic DDX3X mutations impair RNA metabolism and neurogenesis during fetal cortical development. Neuron 106, 404–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vitali, I. et al. Progenitor hyperpolarization regulates the sequential generation of neuronal subtypes in the developing neocortex. Cell 174, 1264–1276 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Elias, L. A. B. & Kriegstein, A. R. Gap junctions: multifaceted regulators of embryonic cortical development. Trends Neurosci. 31, 243–250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bittman, K., Owens, D. F., Kriegstein, A. R. & LoTurco, J. J. Cell coupling and uncoupling in the ventricular zone of developing neocortex. J. Neurosci. 17, 7037–7044 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sutor, B. & Hagerty, T. Involvement of gap junctions in the development of the neocortex. Biochim. Biophys. Acta 1719, 59–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. LoTurco, J. J., Owens, D. F., Heath, M. J., Davis, M. B. & Kriegstein, A. R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Javaherian, A. & Kriegstein, A. A stem cell niche for intermediate progenitor cells of the embryonic cortex. Cereb. Cortex 19, i70–i77 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Stubbs, D. et al. Neurovascular congruence during cerebral cortical development. Cereb. Cortex 19, i32–i41 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gertz, C. C. & Kriegstein, A. R. Neuronal migration dynamics in the developing ferret cortex. J. Neurosci. 35, 14307–14315 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rakic, P. Experimental manipulation of cerebral cortical areas in primates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 331, 291–294 (1991).

    Article  CAS  PubMed  Google Scholar 

  114. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  115. Suter, B., Nowakowski, R. S., Bhide, P. G. & Caviness, V. S. Navigating neocortical neurogenesis and neuronal specification: a positional information system encoded by neurogenetic gradients. J. Neurosci. 27, 10777–10784 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Delgado, R. N. & Lim, D. A. Maintenance of positional identity of neural progenitors in the embryonic and postnatal telencephalon. Front. Mol. Neurosci. 10, 373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rakic, P. The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res. Rev. 55, 204–219 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Rakic, P. Neuronal migration and contact guidance in the primate telencephalon. Postgrad. Med. J. 54, 25–40 (1978). This study shows that radial glial cells form the radial scaffold, upon which neurons migrate, and newborn neurons localize to radial positions to form cortical columns.

    PubMed  Google Scholar 

  120. de Juan Romero, C., Bruder, C., Tomasello, U., Sanz-Anquela, J. M. & Borrell, V. Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly. EMBO J. 34, 1859–1874 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Florio, M. & Huttner, W. B. Neural progenitors, neurogenesis and the evolution of the neocortex. Development 141, 2182–2194 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Herculano-Houzel, S. The evolution of human capabilities and abilities. Cerebrum 2018, cer-05-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Llinares-Benadero, C. & Borrell, V. Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nat. Rev. Neurosci. 20, 161–176 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Van Essen, D. C. A 2020 view of tension-based cortical morphogenesis. Proc. Natl Acad. Sci. USA 117, 32868–32879 (2020).

    Article  PubMed Central  Google Scholar 

  125. Shinmyo, Y. et al. Localized astrogenesis regulates gyrification of the cerebral cortex. Sci. Adv. 8, eabi5209 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jayaraman, D., Bae, B.-I. & Walsh, C. A. The genetics of primary microcephaly. Annu. Rev. Genomics Hum. Genet. 19, 177–200 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nat. Genet. 32, 316–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Bond, J. et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 37, 353–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Jackson, A. P. et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet. 71, 136–142 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhong, X., Pfeifer, G. P. & Xu, X. Microcephalin encodes a centrosomal protein. Cell Cycle 5, 457–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Zhong, X., Liu, L., Zhao, A., Pfeifer, G. P. & Xu, X. The abnormal spindle-like, microcephaly-associated (ASPM) gene encodes a centrosomal protein. Cell Cycle 4, 1227–1229 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Johnson, M. B. et al. Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size. Nature 556, 370–375 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, W. et al. Modeling microcephaly with cerebral organoids reveals a WDR62–CEP170–KIF2A pathway promoting cilium disassembly in neural progenitors. Nat. Commun. 10, 2612 (2019). Using organoids, this study evaluates the role of WDR62 in cilium assembly and localization and identifies a contribution to appropriate radial glial proliferation.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Iefremova, V. et al. An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller–Dieker syndrome. Cell Rep. 19, 50–59 (2017). This study using organoids derived from patients with Miller–Dieker syndrome identifies alterations in vRG cell division and adhesion, which is regulated by B-catenin signalling, and shows that these phenotypes can be rescued by replacing this signalling.

    Article  CAS  PubMed  Google Scholar 

  135. Cornell, B. & Toyo-Oka, K. 14-3-3 proteins in brain development: neurogenesis, neuronal migration and neuromorphogenesis. Front. Mol. Neurosci. 10, 318 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Reiner, O. et al. Isolation of a Miller–Dicker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364, 717–721 (1993).

    Article  CAS  PubMed  Google Scholar 

  137. Tsai, J.-W., Chen, Y., Kriegstein, A. R. & Vallee, R. B. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935–945 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lo Nigro, C. et al. Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller–Dieker syndrome. Hum. Mol. Genet. 6, 157–164 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Mirzaa, G. M. et al. Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol. 73, 836–845 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Li, Y. et al. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20, 385–396 (2017).

    Article  PubMed  Google Scholar 

  141. Foerster, P. et al. mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development 144, 201–210 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Jossin, Y. et al. Llgl1 connects cell polarity with cell–cell adhesion in embryonic neural stem cells. Dev. Cell 41, 481–495 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, L. et al. Cdc42 deficiency causes Sonic hedgehog-independent holoprosencephaly. Proc. Natl Acad. Sci. USA 103, 16520–16525 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Baburamani, A. A. et al. Assessment of radial glia in the frontal lobe of fetuses with Down syndrome. Acta Neuropathol. Commun. 8, 141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cappello, S. et al. A radial glia-specific role of RhoA in double cortex formation. Neuron 73, 911–924 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Ferland, R. J. et al. Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum. Mol. Genet. 18, 497–516 (2009). Using post-mortem patient tissue and mouse models, this study shows that neuronal migration occurs normally but that there are alterations in cellular adhesion and vesicle trafficking in the VZ in periventricular heterotopia.

    Article  CAS  PubMed  Google Scholar 

  147. Carabalona, A. et al. A glial origin for periventricular nodular heterotopia caused by impaired expression of Filamin-A. Hum. Mol. Genet. 21, 1004–1017 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Homan, C. C. et al. PCDH19 regulation of neural progenitor cell differentiation suggests asynchrony of neurogenesis as a mechanism contributing to PCDH19 girls clustering epilepsy. Neurobiol. Dis. 116, 106–119 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. D’Gama, A. M. et al. Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias. Cell Rep. 21, 3754–3766 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lim, J. S. et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 21, 395–400 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Møller, R. S. et al. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol. Genet. 2, e118 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Muneer, A. Wnt and GSK3 signaling pathways in bipolar disorder: clinical and therapeutic implications. Clin. Psychopharmacol. Neurosci. 15, 100–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Singh, K. K. et al. Common DISC1 polymorphisms disrupt Wnt/GSK3β signaling and brain development. Neuron 72, 545–558 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mao, Y. et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/βa-catenin signaling. Cell 136, 1017–1031 (2009). This study shows that deletion of DISC1, a risk factor gene for neuropsychiatric disorders, in mice impairs GSK3β function and alters neural progenitor division and differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Singh, K. K. et al. Dixdc1 is a critical regulator of DISC1 and embryonic cortical development. Neuron 67, 33–48 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Katsu, T. et al. The human frizzled-3 (FZD3) gene on chromosome 8p21, a receptor gene for Wnt ligands, is associated with the susceptibility to schizophrenia. Neurosci. Lett. 353, 53–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Yoon, K.-J. et al. Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell 15, 79–91 (2014). This study demonstrates the capacity to study cellular alterations associated with human neuropsychiatric disorders by using induced PSC models and identifies disruption to radial glial polarity and complex expression in cells with a 15q11.2 mutation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Barnat, M. et al. Huntington’s disease alters human neurodevelopment. Science 369, 787–793 (2020). This study identifies differences in progenitor cell polarity in primary human cortical tissue carrying the Huntington mutation during neurogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mehta, S. R. et al. Human Huntington’s disease iPSC-derived cortical neurons display altered transcriptomics, morphology, and maturation. Cell Rep. 25, 1081–1096 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Nagano, T., Morikubo, S. & Sato, M. Filamin A and FILIP (filamin A-interacting protein) regulate cell polarity and motility in neocortical subventricular and intermediate zones during radial migration. J. Neurosci. 24, 9648–9657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sarkisian, M. R. et al. MEKK4 signaling regulates filamin expression and neuronal migration. Neuron 52, 789–801 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rakic, P. Guidance of neurons migrating to the fetal monkey neocortex. Brain Res. 33, 471–476 (1971).

    Article  CAS  PubMed  Google Scholar 

  163. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. McConnell, S. K. Migration and differentiation of cerebral cortical neurons after transplantation into the brains of ferrets. Science 229, 1268–1271 (1985).

    Article  CAS  PubMed  Google Scholar 

  165. Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tkachenko, L. A., Zykin, P. A., Nasyrov, R. A. & Krasnoshchekova, E. I. Distinctive features of the human marginal zone and Cajal–Retzius cells: comparison of morphological and immunocytochemical features at midgestation. Front. Neuroanat. 10, 26 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83 (1972).

    Article  CAS  PubMed  Google Scholar 

  168. Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Kriegstein laboratory for invaluable discussions about human cortical development. This article was supported by National Institutes of Health (NIH) awards U01MH114825 and R35NS097305 to A.R.K. and K99MH125329 to M.G.A., and a Brain & Behaviour Research Foundation Young Investigator Grant to M.G.A.

Author information

Authors and Affiliations

Authors

Contributions

M.G.A., L.S. and J.S. researched data for the article and wrote the article. All authors contributed substantially to discussion of content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Arnold R. Kriegstein.

Ethics declarations

Competing interests

A.R.K. is a co-founder, consultant and member of the Board of Neurona Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks M. Lancaster, P. Rakic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Stem cells

A collective term for neuroepithelial cells and radial glial cells; multipotent cells that give rise to other progenitor cells and various neuronal and glial cell types.

Progenitor cells

Multipotent cells (such as intermediate progenitor cells) that differentiate into postmitotic cell types.

Neuroepithelial cells

Pseudostratified stem cells that establish the developing neocortex through their polar morphology.

Cell cycle

A process of cell division, in which one cell becomes two; composed of stages that include cell growth (G1 phase, G2 phase), DNA synthesis (S phase) and mitosis/cytokinesis (M phase).

Symmetric division

Cell division in which a parent cell gives rise to two identical daughter cells. This type of division can be self-renewing.

Radial glial scaffold

A structure in the developing cerebral cortex that has an apical–basal orientation and is composed of the basal processes of radial glial cells. The scaffold is required to support neurons as they migrate through the developing cortex to reach their laminar position. Progenitor polarity is essential for scaffold integrity.

Ventricular zone

(VZ). A progenitor zone located on the apical side of the developing cortex in close proximity to the lateral ventricle. The VZ is usually defined as the zone of interkinetic nuclear migration of radial glia.

Asymmetric division

Cell division in which a parent cell gives rise to two different daughter cells. This can be a differentiating division.

Horizontal divisions

Cell divisions in which there is a horizontal plane of cytokinesis. These divisions are typically asymmetric.

Pluripotent stem cell

(PSC). A cell that has the potential to become any other cell type in the body. There are two types of PSC: embryonic stem cells are derived from the inner cell mass of blastocyst and induced PSCs are reprogrammed from somatic cells.

Cerebral organoids

Three-dimensional neural structures resembling the developing cerebrum that spontaneously differentiate from pluripotent stem cells without manipulation of developmental signalling molecules.

Primary cilium

A slim microtubule-based organelle that is present in most eukaryotic cells. The primary cilium is made up of nine microtubule bundles (called an axoneme) and has a ciliary membrane. In neuroepithelial cells and radial glial cells, the primary cilia extend into the ventricular space.

Macrocephaly

A cortical malformation in which the cortex is larger than normal, identified by an increase in head circumference.

Microcephaly

A cortical malformation in which the cortex is smaller than normal.

Delamination

A process in which epithelial cells lose contact with their neighbours and move out of the epithelial sheet. In the developing cerebral cortex, this occurs when neuroepithelial cells and radial glial cells lose junctional contacts and/or retract their cellular processes and then migrate into a different position in the developing cortex.

Cerebrospinal fluid

(CSF). A fluid that contains the necessary nutrients for brain health. CSF is produced by the choroid plexus and flows through the ventricles. During development, radial glial apical and basal endfeet are exposed to CSF.

Developmental niches

Uniquely defined extracellular micro-environments that are clearly distinguished from other parts of the cortex.

Gyrencephaly

The characteristic folding of the cerebral cortex, resulting in increased cortical surface area.

Megalencephaly

A cortical malformation in which the brain is atypically large or heavy, defined by an increase in brain tissue.

Lissencephaly

A cortical malformation in which the brain is smooth and does not have appropriate gyrification.

Heterotopias

Cortical malformations in which neural cells are in the incorrect position.

Centrosome

A cellular structure that comprises microtubules and is involved in cell division.

Deep-layer neurons

Subcortically projecting excitatory neurons that reside in cortical layers V and VI.

Hydrocephalus

A condition in which there is increased cerebrospinal fluid volume in the ventricles.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andrews, M.G., Subramanian, L., Salma, J. et al. How mechanisms of stem cell polarity shape the human cerebral cortex. Nat Rev Neurosci 23, 711–724 (2022). https://doi.org/10.1038/s41583-022-00631-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00631-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing