Abstract
The hypothalamus is an evolutionarily conserved endocrine interface that, among other roles, links central homeostatic control to adaptive bodily responses by releasing hormones and neuropeptides from its many neuronal subtypes. In its preoptic, anterior, tuberal and mammillary subdivisions, a kaleidoscope of magnocellular and parvocellular neuroendocrine command neurons, local-circuit neurons, and neurons that project to extrahypothalamic areas are intermingled in partially overlapping patches of nuclei. Molecular fingerprinting has produced data of unprecedented mass and depth to distinguish and even to predict the synaptic and endocrine competences, connectivity and stimulus selectivity of many neuronal modalities. These new insights support eminent studies from the past century but challenge others on the molecular rules that shape the developmental segregation of hypothalamic neuronal subtypes and their use of morphogenic cues for terminal differentiation. Here, we integrate single-cell RNA sequencing studies with those of mouse genetics and endocrinology to describe key stages of hypothalamus development, including local neurogenesis, the direct terminal differentiation of glutamatergic neurons, transition cascades for GABAergic and GABAergic cell-derived dopamine cells, waves of local neuronal migration, and sequential enrichment in neuropeptides and hormones. We particularly emphasize how transcription factors determine neuronal identity and, consequently, circuit architecture, and whether their deviations triggered by environmental factors and hormones provoke neuroendocrine illnesses.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kreier, F. & Swaab, D. F. in History of Neurology vol. 95, 335–360 (Elsevier, 2009).
Pickford, M. Neural control of the pituitary gland. By G.W. Harris, F.R.S., Sc.D., M.D., Fitzmary Professor of Physiology, Institute of Psychiatry, Maudsley Hospital. Edward Arnold (publishers) Ltd. 1955. pp. 298. 30s. Q. J. Exp. Physiol. Cogn. Med. Sci. 41, 355–356 (1956).
Woolley, D. W., Merrifield, R. B., Ressler, C. & Du Vigneaud, V. Strepogenin activity of synthetic peptides related to oxytocin. Proc. Soc. Exp. Biol. Med. 89, 669–673 (1955).
Acher, R., Chauvet, J & Olivry, G. Sur l’existence éventuelle d’une hormone unique neurohypophysaire I. Relations entre l’ocytocine, la vasopressine et la protéine de van dyke extraites de la neurohypophyse du boeuf. Biochim. Biophys. Acta 22, 421–427 (1956).
Klavdieva, M. M. The history of neuropeptides II. Front. Neuroendocrinol. 17, 126–153 (1996).
Guillemin, R. Peptides in the brain: the new endocrinology of the neuron. Science 202, 390–402 (1978).
Swaab, D. F., Pool, C. W. & Nijveldt, F. Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophypopseal system. J. Neural Transm. 36, 195–215 (1975).
Swanson, L. W., Sawchenko, P. E. & Lind, R. W. Regulation of multiple peptides in CRF parvocellular neurosecretory neurons: implications for the stress response. Prog. Brain Res. 68, 169–190 (1986).
Hökfelt, T. et al. In Integrative Neuroendocrinology: Molecular, Cellular and Clinical Aspects: 1st International Congress of Neuroendocrinology, San Francisco, CA, July 1986 (eds McCann, S. M. & Weiner, R. I.) 1–34 (S. Karger AG, 1987).
Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).
Horvath, T. L. & Diano, S. The floating blueprint of hypothalamic feeding circuits. Nat. Rev. Neurosci. 5, 662–667 (2004).
Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).
Lechan, R. M. & Toni, R. in Endotext (eds Feingold, K. R. et al.) (MDText.com, 2000).
Schröder, H., Moser, N. & Huggenberger, S. in Neuroanatomy of the Mouse: An Introduction 205–230 (Springer, 2020).
Xie, Y. & Dorsky, R. I. Development of the hypothalamus: conservation, modification and innovation. Development 144, 1588–1599 (2017).
Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).
Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358, 64–69 (2017).
Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).
Sun, Y.-C. et al. Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat. Neurosci. 24, 873–885 (2021).
Romanov, R. A. et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat. Neurosci. 20, 176–188 (2017). This was one of the first studies to map neuronal identities at single-cell resolution in the adult hypothalamus.
Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-Seq reveals hypothalamic cell diversity. Cell Rep. 18, 3227–3241 (2017).
Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).
Mickelsen, L. E. et al. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat. Neurosci. 22, 642–656 (2019).
Wen, S. et al. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat. Neurosci. 23, 456–467 (2020).
Kim, D.-W. et al. Multimodal analysis of cell types in a hypothalamic node controlling social behavior. Cell 179, 713–728.e17 (2019).
Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018). This study used single-cell spatial transcriptomics (MERFISH) to map specific cell types in the adult preoptic hypothalamus.
Mickelsen, L. E. et al. Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. Elife 9, e58901 (2020).
Wang, Y. et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 184, 6361–6377.e24 (2021).
Xu, S. et al. Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. Science 370, eabb2494 (2020).
Maggi, R., Zasso, J. & Conti, L. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus. Front. Cell. Neurosci. 8, 440 (2014).
Miranda-Angulo, A. L., Byerly, M. S., Mesa, J., Wang, H. & Blackshaw, S. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J. Comp. Neurol. 522, 876–899 (2014).
Rosin, J. M. & Kurrasch, D. M. in Glial-Neuronal Signaling in Neuroendocrine Systems (eds. Tasker, J. G., Bains, J. S. & Chowen, J. A.) 11, 3–28 (Springer International Publishing, 2021).
Thion, M. S., Ginhoux, F. & Garel, S. Microglia and early brain development: an intimate journey. Science 362, 185–189 (2018).
Puelles, L. in Encyclopedia of Neuroscience 315–319 (Elsevier, 2009).
Puelles, L. & Rubenstein, J. L. R. A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Front. Neuroanat. 9, 27 (2015).
Puelles, L. Survey of midbrain, diencephalon, and hypothalamus neuroanatomic terms whose prosomeric definition conflicts with columnar tradition. Front. Neuroanat. 13, 20 (2019).
Ferran, J. L., Puelles, L. & Rubenstein, J. L. R. Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus. Front. Neuroanat. 9, 46 (2015).
Shimogori, T. et al. A genomic atlas of mouse hypothalamic development. Nat. Neurosci. 13, 767–775 (2010). This study generated the first ontogenetic map of area-specific gene selectors in the developing mouse hypothalamus.
Swanson, L. W. Brain Architecture: Understanding the Basic Plan (Oxford Univ. Press, 2011).
Kim, D. W. et al. The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat. Commun. 11, 4360 (2020). This study provided a high-resolution single-cell molecular atlas of the developing mouse hypothalamus.
Romanov, R. A. et al. Molecular design of hypothalamus development. Nature 582, 246–252 (2020). This study defines key molecular rules that underlie the temporal and spatial establishment of the mouse hypothalamus.
Kano, M., Suga, H. & Arima, H. Induction of functional hypothalamus and pituitary tissues from pluripotent stem cells for regenerative medicine. J. Endocr. Soc. 5, bvaa188 (2021).
Kim, D. W. et al. Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors. Cell Rep. 38, 110251 (2022).
Lee, B., Lee, S., Lee, S.-K. & Lee, J. W. The LIM-homeobox transcription factor Isl1 plays crucial roles in the development of multiple arcuate nucleus neurons. Development 143, 3763–3773 (2016).
Yun Liu, K., May Chow, J. & Sherry, C. Early life obesity and diabetes: origins in pregnancy. Open. J. Endocr. Metab. Dis. 3, 28012 (2013).
He, J. et al. How variable clones build an invariant retina. Neuron 75, 786–798 (2012).
Kohwi, M. & Doe, C. Q. Temporal fate specification and neural progenitor competence during development. Nat. Rev. Neurosci. 14, 823–838 (2013).
Gomes, F. L. A. F. et al. Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development 138, 227–235 (2011).
Chen, Z., Li, X. & Desplan, C. Deterministic or stochastic choices in retinal neuron specification. Neuron 75, 739–742 (2012).
Zhang, Y.-H. et al. Cascade diversification directs generation of neuronal diversity in the hypothalamus. Cell Stem Cell 28, 1483–1499 (2021). Fate diversification of neurons was reported to follow a stepwise cascade diversification model in the hypothalamus.
Zhou, X. et al. Cellular and molecular properties of neural progenitors in the developing mammalian hypothalamus. Nat. Commun. 11, 4063 (2020). This study describes phylogenetic conservation of the cellular and molecular properties of neural progenitors in mouse and human.
Hansen, D. V., Lui, J. H., Parker, P. R. L. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).
Arnold-Aldea, S. A. & Cepko, C. L. Dispersion patterns of clonally related cells during development of the hypothalamus. Dev. Biol. 173, 148–161 (1996).
Aydin, B. et al. Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes. Nat. Neurosci. 22, 897–908 (2019).
Lu, F. et al. Rax is a selector gene for mediobasal hypothalamic cell types. J. Neurosci. 33, 259–272 (2013).
Pak, T., Yoo, S., Miranda-Angulo, A. L., Wang, H. & Blackshaw, S. Rax-CreERT2 knock-in mice: a tool for selective and conditional gene deletion in progenitor cells and radial glia of the retina and hypothalamus. PLoS One 9, e90381 (2014).
Orquera, D. P., Nasif, S., Low, M. J., Rubinstein, M. & de Souza, F. S. J. Essential function of the transcription factor Rax in the early patterning of the mammalian hypothalamus. Dev. Biol. 416, 212–224 (2016).
Dale, J. K. et al. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90, 257–269 (1997).
Wittmann, S. G., Low, M. J. & Lechan, R. M. Adult-born proopiomelanocortin neurons derived from Rax-expressing precursors mitigate the metabolic effects of congenital hypothalamic proopiomelanocortin deficiency. Mol. Metab. 53, 101312 (2021).
Acampora, D. et al. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev. 13, 2787–2800 (1999).
Nasif, S. et al. Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood. Proc. Natl Acad. Sci. USA 112, E1861–E1870 (2015).
Alvarez-Bolado, G. Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res. 375, 23–39 (2019).
Padilla, S. L., Carmody, J. S. & Zeltser, L. M. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat. Med. 16, 403–405 (2010).
MacKay, H. & Abizaid, A. Embryonic development of the hypothalamic feeding circuitry: transcriptional, nutritional, and hormonal influences. Mol. Metab. 3, 813–822 (2014).
Huisman, C. et al. The histone H3-lysine 4-methyltransferase Mll4 regulates the development of growth hormone-releasing hormone-producing neurons in the mouse hypothalamus. Nat. Commun. 12, 256 (2021).
Lee, B. et al. Dlx1/2 and Otp coordinate the production of hypothalamic GHRH- and AgRP-neurons. Nat. Commun. 9, 2026 (2018).
Yu, H., Rubinstein, M. & Low, M. J. Developmental single-cell transcriptomics of hypothalamic POMC neurons reveal the genetic trajectories of multiple neuropeptidergic phenotypes. Elife 11, e72883 (2022).
Huisman, C. et al. Single cell transcriptome analysis of developing arcuate nucleus neurons uncovers their key developmental regulators. Nat. Commun. 10, 3696 (2019).
Orquera, D. P. et al. The homeodomain transcription factor NKX2.1 is essential for the early specification of melanocortin neuron identity and activates pomc expression in the developing hypothalamus. J. Neurosci. 39, 4023–4035 (2019).
Quarta, C. et al. Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nat. Metab. 1, 222–235 (2019).
Hael, C. E., Rojo, D., Orquera, D. P., Low, M. J. & Rubinstein, M. The transcriptional regulator PRDM12 is critical for Pomc expression in the mouse hypothalamus and controlling food intake, adiposity, and body weight. Mol. Metab. 34, 43–53 (2020).
Ma, T., Wong, S. Z. H., Lee, B., Ming, G.-L. & Song, H. Decoding neuronal composition and ontogeny of individual hypothalamic nuclei. Neuron 109, 1150–1167.e6 (2021).
Pelling, M. et al. Differential requirements for neurogenin 3 in the development of POMC and NPY neurons in the hypothalamus. Dev. Biol. 349, 406–416 (2011).
Romanov, R. A., Alpár, A., Hökfelt, T. & Harkany, T. Molecular diversity of corticotropin-releasing hormone mRNA-containing neurons in the hypothalamus. J. Endocrinol. 232, R161–R172 (2017).
Saucisse, N. et al. Functional heterogeneity of POMC neurons relies on mTORC1 signaling. Cell Rep. 37, 109800 (2021).
Biglari, N. et al. Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nat. Neurosci. 24, 913–929 (2021).
Sokolowski, K. et al. Specification of select hypothalamic circuits and innate behaviors by the embryonic patterning gene dbx1. Neuron 86, 403–416 (2015).
Hippenmeyer, S., Johnson, R. L. & Luo, L. Mosaic analysis with double markers reveals cell-type-specific paternal growth dominance. Cell Rep. 3, 960–967 (2013).
Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).
Wang, W. & Lufkin, T. The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev. Biol. 227, 432–449 (2000).
Schonemann, M. D. et al. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev. 9, 3122–3135 (1995).
Rakic, P. Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc. Natl Acad. Sci. USA 92, 11323–11327 (1995).
Moffat, J. J., Ka, M., Jung, E.-M. & Kim, W.-Y. Genes and brain malformations associated with abnormal neuron positioning. Mol. Brain 8, 72 (2015).
Marín, O. & Müller, U. Lineage origins of GABAergic versus glutamatergic neurons in the neocortex. Curr. Opin. Neurobiol. 26, 132–141 (2014).
Zhao, T. et al. Genetic mapping of Foxb1-cell lineage shows migration from caudal diencephalon to telencephalon and lateral hypothalamus. Eur. J. Neurosci. 28, 1941–1955 (2008).
Shimada, M. & Nakamura, T. Time of neuron origin in mouse hypothalamic nuclei. Exp. Neurol. 41, 163–173 (1973).
Altman, J. & Bayer, S. A. Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. J. Comp. Neurol. 182, 945–971 (1978).
Altman, J. & Bayer, S. A. Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons. J. Comp. Neurol. 182, 973–993 (1978).
Murcia-Ramón, R. et al. Neuronal tangential migration from Nkx2.1-positive hypothalamus. Brain Struct. Funct. 225, 2857–2869 (2020).
Kim, D. W. et al. Gene regulatory networks controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing GABAergic neurons. Commun. Biol. 4, 95 (2021). This study revealed a mechanism of molecular divergence under the control of Lhx6 and its effects on the development of GABAergic neurons in the hypothalamus.
Schwanzel-Fukuda, M. & Pfaff, D. W. Origin of luteinizing hormone-releasing hormone neurons. Nature 338, 161–164 (1989).
Kim, T. Molecular logic of hypothalamus development. J. Endocr. Soc. 5, A507–A507 (2021).
Vogt, D. et al. Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position. Neuron 82, 350–364 (2014).
Hanics, J. et al. Secretagogin-dependent matrix metalloprotease-2 release from neurons regulates neuroblast migration. Proc. Natl Acad. Sci. USA 114, E2006–E2015 (2017).
Kimura, Y., Matsunami, H. & Takeichi, M. Expression of cadherin-11 delineates boundaries, neuromeres, and nuclei in the developing mouse brain. Dev. Dyn. 206, 455–462 (1996).
Asahina, H., Masuba, A., Hirano, S. & Yuri, K. Distribution of protocadherin 9 protein in the developing mouse nervous system. Neuroscience 225, 88–104 (2012).
Ben-Ari, Y. Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 (2002).
Dellovade, T. L. et al. GABA influences the development of the ventromedial nucleus of the hypothalamus. J. Neurobiol. 49, 264–276 (2001).
Davis, A. M., Henion, T. R. & Tobet, S. A. Gamma-aminobutyric acidB receptors and the development of the ventromedial nucleus of the hypothalamus. J. Comp. Neurol. 449, 270–280 (2002).
Gonda, Y., Namba, T. & Hanashima, C. Beyond axon guidance: roles of Slit-Robo signaling in neocortical formation. Front. Cell Dev. Biol. 8, 607415 (2020).
Borrell, V. et al. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 76, 338–352 (2012).
Thompson, H., Andrews, W., Parnavelas, J. G. & Erskine, L. Robo2 is required for Slit-mediated intraretinal axon guidance. Dev. Biol. 335, 418–426 (2009).
Keimpema, E. et al. GABAergic terminals are a source of galanin to modulate cholinergic neuron development in the neonatal forebrain. Cereb. Cortex 24, 3277–3288 (2014).
Hökfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J. M. & Schultzberg, M. Peptidergic neurones. Nature 284, 515–521 (1980).
Everitt, B. J. & Hökfelt, T. Neuroendocrine anatomy of the hypothalamus. Acta Neurochir. Suppl. 47, 1–15 (1990).
Hökfelt, T. & Tatemoto, K. Galanin–25 years with a multitalented neuropeptide. Cell Mol. Life Sci. 65, 1793–1795 (2008).
Bouret, S. G., Draper, S. J. & Simerly, R. B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci. 24, 2797–2805 (2004).
Allaway, K. C. & Machold, R. Developmental specification of forebrain cholinergic neurons. Dev. Biol. 421, 1–7 (2017).
Ahmed, N. Y., Knowles, R. & Dehorter, N. New insights into cholinergic neuron diversity. Front. Mol. Neurosci. 12, 204 (2019).
Cho, H.-H. et al. Isl1 directly controls a cholinergic neuronal identity in the developing forebrain and spinal cord by forming cell type-specific complexes. PLoS Genet. 10, e1004280 (2014).
Zhao, Y. et al. The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc. Natl Acad. Sci. USA 100, 9005–9010 (2003).
Quaresma, P. G. F. et al. Cholinergic neurons in the hypothalamus and dorsal motor nucleus of the vagus are directly responsive to growth hormone. Life Sci. 259, 118229 (2020).
Nasirova, N. et al. Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons. J. Comp. Neurol. 528, 283–307 (2020).
Jeong, J. H., Woo, Y. J., Chua, S. & Jo, Y.-H. Single-cell gene expression analysis of cholinergic neurons in the arcuate nucleus of the hypothalamus. PLoS One 11, e0162839 (2016).
Jeong, J. H., Lee, D. K. & Jo, Y.-H. Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol. Metab. 6, 306–312 (2017).
Boulland, J.-L. et al. Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J. Comp. Neurol. 480, 264–280 (2004).
Cholanian, M., Powell, G. L., Levine, R. B. & Fregosi, R. F. Influence of developmental nicotine exposure on glutamatergic neurotransmission in rhythmically active hypoglossal motoneurons. Exp. Neurol. 287, 254–260 (2017).
Dwyer, J. B., McQuown, S. C. & Leslie, F. M. The dynamic effects of nicotine on the developing brain. Pharmacol. Ther. 122, 125–139 (2009).
Hanse, E., Seth, H. & Riebe, I. AMPA-silent synapses in brain development and pathology. Nat. Rev. Neurosci. 14, 839–850 (2013).
Ford, K. J. & Feller, M. B. Assembly and disassembly of a retinal cholinergic network. Vis. Neurosci. 29, 61–71 (2012).
Skrapits, K. et al. Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human. Front. Neurosci. 9, 29 (2015).
Herget, U. & Ryu, S. Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish. Front. Neuroanat. 9, 2 (2015).
Hanchate, N. K. et al. Connect-seq to superimpose molecular on anatomical neural circuit maps. Proc. Natl Acad. Sci. USA 117, 4375–4384 (2020).
Agoston, Z. et al. Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development 141, 28–38 (2014).
Gabilondo, H. et al. Neuronal cell fate specification by the convergence of different spatiotemporal cues on a common terminal selector cascade. PLoS Biol. 14, e1002450 (2016).
Yee, C. L., Wang, Y., Anderson, S., Ekker, M. & Rubenstein, J. L. R. Arcuate nucleus expression of NKX2.1 and DLX and lineages expressing these transcription factors in neuropeptide Y(+), proopiomelanocortin(+), and tyrosine hydroxylase(+) neurons in neonatal and adult mice. J. Comp. Neurol. 517, 37–50 (2009).
Ruediger, T. & Bolz, J. Neurotransmitters and the development of neuronal circuits. Adv. Exp. Med. Biol. 621, 104–115 (2007).
Komuro, H. & Rakic, P. Modulation of neuronal migration by NMDA receptors. Science 260, 95–97 (1993).
Zheng, J. Q., Felder, M., Connor, J. A. & Poo, M. M. Turning of nerve growth cones induced by neurotransmitters. Nature 368, 140–144 (1994).
Bouret, S. G. Neurodevelopmental actions of leptin. Brain Res. 1350, 2–9 (2010).
Dickson, B. J. Development. Wiring the brain with insulin. Science 300, 440–441 (2003).
Fernandez, A. M. & Torres-Alemán, I. The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci. 13, 225–239 (2012).
Steculorum, S. M. et al. Neonatal ghrelin programs development of hypothalamic feeding circuits. J. Clin. Invest. 125, 846–858 (2015).
Wilkinson, D. G. Multiple roles of EPH receptors and ephrins in neural development. Nat. Rev. Neurosci. 2, 155–164 (2001).
Yu, T. W. & Bargmann, C. I. Dynamic regulation of axon guidance. Nat. Neurosci. 4, 1169–1176 (2001).
Song, H. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).
Höpker, V. H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).
Graef, I. A. et al. Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113, 657–670 (2003).
Alpár, A. et al. Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nat. Commun. 5, 4421 (2014).
Harkany, T. et al. The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol. Sci. 28, 83–92 (2007).
Berghuis, P. et al. Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science 316, 1212–1216 (2007).
Ahima, R. S., Prabakaran, D. & Flier, J. S. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J. Clin. Invest. 101, 1020–1027 (1998).
Cedernaes, J., Waldeck, N. & Bass, J. Neurogenetic basis for circadian regulation of metabolism by the hypothalamus. Genes Dev. 33, 1136–1158 (2019).
Carmona-Alcocer, V., Rohr, K. E., Joye, D. A. M. & Evans, J. A. Circuit development in the master clock network of mammals. Eur. J. Neurosci. 51, 82–108 (2020).
Bedont, J. L. et al. Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Rep. 7, 609–622 (2014).
Shibata, S. & Moore, R. Y. Development of neuronal activity in the rat suprachiasmatic nucleus. Dev. Brain Res. 34, 311–315 (1987).
Fernandez, D. C., Chang, Y.-T., Hattar, S. & Chen, S.-K. Architecture of retinal projections to the central circadian pacemaker. Proc. Natl Acad. Sci. USA 113, 6047–6052 (2016).
Byerly, M. S. & Blackshaw, S. Vertebrate retina and hypothalamus development. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 380–389 (2009).
Astiz, M. & Oster, H. Perinatal programming of Circadian clock-stress crosstalk. Neural Plast. 2018, 5689165 (2018).
Watts, A. G., Swanson, L. W. & Sanchez-Watts, G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J. Comp. Neurol. 258, 204–229 (1987).
Reppert, S. M. & Schwartz, W. J. Maternal suprachiasmatic nuclei are necessary for maternal coordination of the developing circadian system. J. Neurosci. 6, 2724–2729 (1986).
Honma, S. Development of the mammalian circadian clock. Eur. J. Neurosci. 51, 182–193 (2020).
González, M. M. C. Dim light at night and constant darkness: two frequently used lighting conditions that jeopardize the health and well-being of laboratory rodents. Front. Neurol. 9, 609 (2018).
Bouret, S. G. In Appetite and Food Intake: Central Control (ed. Harris, R. B. S.) (CRC Press/Taylor & Francis, 2017).
Jašarević, E. et al. The maternal vaginal microbiome partially mediates the effects of prenatal stress on offspring gut and hypothalamus. Nat. Neurosci. 21, 1061–1071 (2018).
Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).
Baquero, A. F. et al. Developmental switch of leptin signaling in arcuate nucleus neurons. J. Neurosci. 34, 9982–9994 (2014).
Zeltser, L. M. Feeding circuit development and early-life influences on future feeding behaviour. Nat. Rev. Neurosci. 19, 302–316 (2018).
Caron, E., Ciofi, P., Prevot, V. & Bouret, S. G. Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function. J. Neurosci. 32, 11486–11494 (2012).
Elias, C. F. & Purohit, D. Leptin signaling and circuits in puberty and fertility. Cell Mol. Life Sci. 70, 841–862 (2013).
Serrano-Saiz, E. & Isogai, Y. Single-cell molecular and developmental perspectives of sexually dimorphic circuits underlying innate social behaviors. Curr. Opin. Neurobiol. 68, 159–166 (2021).
Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).
Udagawa, J., Hatta, T., Naora, H. & Otani, H. Expression of the long form of leptin receptor (Ob-Rb) mRNA in the brain of mouse embryos and newborn mice. Brain Res. 868, 251–258 (2000).
Bouret, S. G., Bates, S. H., Chen, S., Myers, M. G. & Simerly, R. B. Distinct roles for specific leptin receptor signals in the development of hypothalamic feeding circuits. J. Neurosci. 32, 1244–1252 (2012).
Carlo, A.-S., Meyerhof, W. & Williams, L. M. Early developmental expression of leptin receptor gene and [125I]leptin binding in the rat forebrain. J. Chem. Neuroanat. 33, 155–163 (2007).
Cottrell, E. C. et al. Developmental changes in hypothalamic leptin receptor: relationship with the postnatal leptin surge and energy balance neuropeptides in the postnatal rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R631–R639 (2009).
Kuiri-Hänninen, T., Sankilampi, U. & Dunkel, L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. Horm. Res. Paediatr. 82, 73–80 (2014).
Gottsch, M. L. et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145, 4073–4077 (2004).
Clarkson, J., d’Anglemont de Tassigny, X., Colledge, W. H., Caraty, A. & Herbison, A. E. Distribution of kisspeptin neurones in the adult female mouse brain. J. Neuroendocrinol. 21, 673–682 (2009).
Messina, A. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat. Neurosci. 19, 835–844 (2016). This paper identifies a microRNA-mediated epigenetic mechanism to control GnRH expression for infantile-to-juvenile transition.
Cinquina, V. et al. Life-long epigenetic programming of cortical architecture by maternal “Western” diet during pregnancy. Mol. Psychiatry 25, 22–36 (2020).
Cristino, L. et al. Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons. Proc. Natl Acad. Sci. USA 110, E2229–E2238 (2013).
Kauffman, A. S. et al. Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 148, 1774–1783 (2007).
Kauffman, A. S. Sexual differentiation and the Kiss1 system: hormonal and developmental considerations. Peptides 30, 83–93 (2009).
Pellegrino, G. et al. GnRH neurons recruit astrocytes in infancy to facilitate network integration and sexual maturation. Nat. Neurosci. 24, 1660–1672 (2021). This paper demonstrates how neuron–glia interplay primes sexual maturation.
Savic, I., Garcia-Falgueras, A. & Swaab, D. F. Sexual differentiation of the human brain in relation to gender identity and sexual orientation. Prog. Brain Res. 186, 41–62 (2010).
Zup, S. L. & Forger, N. G. in Reference Module in Neuroscience and Biobehavioral Psychology 323–341(Elsevier, 2017).
Morris, J. A., Jordan, C. L. & Breedlove, S. M. Sexual differentiation of the vertebrate nervous system. Nat. Neurosci. 7, 1034–1039 (2004).
McCarthy, M. M. Estradiol and the developing brain. Physiol. Rev. 88, 91–124 (2008).
He, Z., Ferguson, S. A., Cui, L., Greenfield, L. J. & Paule, M. G. Development of the sexually dimorphic nucleus of the preoptic area and the influence of estrogen-like compounds. Neural Regen. Res. 8, 2763–2774 (2013).
Sharma, K. et al. Sexually dimorphic oxytocin receptor-expressing neurons in the preoptic area of the mouse brain. PLoS One 14, e0219784 (2019).
van Veen, J. E. et al. Hypothalamic estrogen receptor alpha establishes a sexually dimorphic regulatory node of energy expenditure. Nat. Metab. 2, 351–363 (2020).
Simerly, R. B., Swanson, L. W. & Gorski, R. A. The distribution of monoaminergic cells and fibers in a periventricular preoptic nucleus involved in the control of gonadotropin release: immunohistochemical evidence for a dopaminergic sexual dimorphism. Brain Res. 330, 55–64 (1985).
Tsukahara, S. & Morishita, M. Sexually dimorphic formation of the preoptic area and the bed nucleus of the stria terminalis by neuroestrogens. Front. Neurosci. 14, 797 (2020).
Moe, Y. et al. A sexually dimorphic area of the dorsal hypothalamus in mice and common marmosets. Endocrinology 157, 4817–4828 (2016).
Ahima, R. S. Global warming threatens human thermoregulation and survival. J. Clin. Invest. 130, 559–561 (2020).
Okamoto-Mizuno, K. & Mizuno, K. Effects of thermal environment on sleep and circadian rhythm. J. Physiol. Anthropol. 31, 14 (2012).
Baek, S. & Lee, I. Single-cell ATAC sequencing analysis: from data preprocessing to hypothesis generation. Comput. Struct. Biotechnol. J. 18, 1429–1439 (2020).
Kashima, Y. et al. Single-cell sequencing techniques from individual to multiomics analyses. Exp. Mol. Med. 52, 1419–1427 (2020).
Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
Kelsey, G., Stegle, O. & Reik, W. Single-cell epigenomics: recording the past and predicting the future. Science 358, 69–75 (2017).
Wang, N. et al. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation. Nat. Commun. 10, 95 (2019).
Baratta, A. M., Rathod, R. S., Plasil, S. L., Seth, A. & Homanics, G. E. Exposure to drugs of abuse induce effects that persist across generations. Int. Rev. Neurobiol. 156, 217–277 (2021).
Champagne, F. A. Interplay between paternal germline and maternal effects in shaping development: The overlooked importance of behavioural ecology. Funct. Ecol. 34, 401–413 (2020).
Kaspar, D., Hastreiter, S., Irmler, M., Hrabé de Angelis, M. & Beckers, J. Nutrition and its role in epigenetic inheritance of obesity and diabetes across generations. Mamm. Genome 31, 119–133 (2020).
Bohacek, J. & Mansuy, I. M. Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology 38, 220–236 (2013).
Yohn, N. L., Bartolomei, M. S. & Blendy, J. A. Multigenerational and transgenerational inheritance of drug exposure: the effects of alcohol, opiates, cocaine, marijuana, and nicotine. Prog. Biophys. Mol. Biol. 118, 21–33 (2015).
Dietz, D. M. et al. Paternal transmission of stress-induced pathologies. Biol. Psychiatry 70, 408–414 (2011).
Maze, I. & Nestler, E. J. The epigenetic landscape of addiction. Ann. N. Y. Acad. Sci. 1216, 99–113 (2011).
Bara, A., Ferland, J.-M. N., Rompala, G., Szutorisz, H. & Hurd, Y. L. Cannabis and synaptic reprogramming of the developing brain. Nat. Rev. Neurosci. 22, 423–438 (2021).
Meccariello, R. et al. The epigenetics of the endocannabinoid system. Int. J. Mol. Sci. 21, 1113 (2020).
Szutorisz, H. & Hurd, Y. L. High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neurosci. Biobehav. Rev. 85, 93–101 (2018).
Jutras-Aswad, D., DiNieri, J. A., Harkany, T. & Hurd, Y. L. Neurobiological consequences of maternal cannabis on human fetal development and its neuropsychiatric outcome. Eur. Arch. Psychiatry Clin. Neurosci. 259, 395–412 (2009).
Tortoriello, G. et al. Miswiring the brain: Δ9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO J. 33, 668–685 (2014).
Benevento, M., van de Molengraft, M., van Westen, R., van Bokhoven, H. & Kasri, N. N. The role of chromatin repressive marks in cognition and disease: a focus on the repressive complex GLP/G9a. Neurobiol. Learn. Mem. 124, 88–96 (2015).
Gräff, J. & Mansuy, I. M. Epigenetic codes in cognition and behaviour. Behav. Brain Res. 192, 70–87 (2008).
Li, G. et al. Major epigenetic development distinguishing neuronal and non-neuronal cells occurs postnatally in the murine hypothalamus. Hum. Mol. Genet. 23, 1579–1590 (2014).
Le Thuc, O., Gruber, T., Tschöp, M. H. & García-Cáceres, C. in Glial-Neuronal Signaling in Neuroendocrine Systems (eds. Tasker, J. G., Bains, J. S. & Chowen, J. A.) vol. 11, 127–153 (Springer, 2021).
Fuente-Martín, E. et al. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J. Clin. Invest. 122, 3900–3913 (2012).
García-Cáceres, C. et al. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat. Neurosci. 22, 7–14 (2019).
García-Cáceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).
Kim, J. G. et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat. Neurosci. 17, 908–910 (2014).
Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 583, 115–121 (2020).
Zhang, L. et al. Behavioral role of PACAP signaling reflects its selective distribution in glutamatergic and GABAergic neuronal subpopulations. Elife 10, e61718 (2021).
Ollmann, M. M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).
Alpár, A., Benevento, M., Romanov, R. A., Hökfelt, T. & Harkany, T. Hypothalamic cell diversity: non-neuronal codes for long-distance volume transmission by neuropeptides. Curr. Opin. Neurobiol. 56, 16–23 (2019).
Gundlach, A. L., Burazin, T. C. & Larm, J. A. Distribution, regulation and role of hypothalamic galanin systems: renewed interest in a pleiotropic peptide family. Clin. Exp. Pharmacol. Physiol. 28, 100–105 (2001).
Yeo, S.-H. & Colledge, W. H. The role of Kiss1 neurons as integrators of endocrine, metabolic, and environmental factors in the hypothalamic-pituitary-gonadal axis. Front. Endocrinol. 9, 188 (2018).
Brown, J. A. et al. Distinct subsets of lateral hypothalamic neurotensin neurons are activated by leptin or dehydration. Sci. Rep. 9, 1873 (2019).
Vadnie, C. A. et al. Activation of neurotensin receptor type 1 attenuates locomotor activity. Neuropharmacology 85, 482–492 (2014).
McCormack, S. E., Blevins, J. E. & Lawson, E. A. Metabolic effects of oxytocin. Endocr. Rev. 41, 121–145 (2020).
Przewłocki, R. et al. The opioid peptide dynorphin, circadian rhythms, and starvation. Science 219, 71–73 (1983).
Ferreira, J. G. P., Bittencourt, J. C. & Adamantidis, A. Melanin-concentrating hormone and sleep. Curr. Opin. Neurobiol. 44, 152–158 (2017).
Osterstock, G. et al. Somatostatin triggers rhythmic electrical firing in hypothalamic GHRH neurons. Sci. Rep. 6, 24394 (2016).
Zhang, X. & van den Pol, A. N. Dopamine/tyrosine hydroxylase neurons of the hypothalamic arcuate nucleus release GABA, communicate with dopaminergic and other arcuate neurons, and respond to dynorphin, met-enkephalin, and oxytocin. J. Neurosci. 35, 14966–14982 (2015).
Korshunov, K. S., Blakemore, L. J. & Trombley, P. Q. Dopamine: a modulator of circadian rhythms in the central nervous system. Front. Cell Neurosci. 11, 91 (2017).
Squillacioti, C., Pelagalli, A., Liguori, G. & Mirabella, N. Urocortins in the mammalian endocrine system. Acta Vet. Scand. 61, 46 (2019).
Steyn, F. J., Tolle, V., Chen, C. & Epelbaum, J. Neuroendocrine regulation of growth hormone secretion. Compr. Physiol. 6, 687–735 (2016).
Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).
Blakely, R. D. & Edwards, R. H. Vesicular and plasma membrane transporters for neurotransmitters. Cold Spring Harb. Perspect. Biol. 4, a005595 (2012).
Chaudhry, F. A. et al. Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99, 769–780 (1999).
Dulcis, D., Jamshidi, P., Leutgeb, S. & Spitzer, N. C. Neurotransmitter switching in the adult brain regulates behavior. Science 340, 449–453 (2013).
Merkle, F. T. et al. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development 142, 633–643 (2015).
Huang, W.-K. et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell 28, 1657–1670.e10 (2021).
Acknowledgements
The authors thank E.O. Tretiakov for conceptual discussions on data analysis and interpretation. This work was supported by the Swedish Research Council (2020-01688 to T.Hö., 2018-02838 to T.Ha.); Novo Nordisk Foundation (NNF20OC0063667 to T.Ha., T.Hö.); Hjärnfonden (FO2019-0277 to T.Ha.), European Research Council (SECRET-CELLS, 2015-AdG-695136 and FOODFORLIFE, 2020-AdG-101021016 to T.Ha.) and intramural funds of the Medical University of Vienna (T.Ha.).
Author information
Authors and Affiliations
Contributions
All authors contributed to researching data for the article, substantial discussion of content and writing the article. M.B. and T.Ha. reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Neuroscience thanks D. Kurrasch, V. Prevot and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Infundibulum
-
Tubular structure that connects the posterior pituitary to the hypothalamus.
- Autonomic behaviours
-
Unconscious behavioural responses that are evoked by reflex arcs.
- Fast neurotransmitter
-
A chemical messenger loaded into synaptic vesicles by high-affinity vesicular transporters and released by excitable cells at specialized junctions to induce electrochemical signals through voltage-gated receptors to activate or inhibit target cells.
- Neuropeptide
-
A small protein that is released extrasynaptically from large dense core vesicles and that binds to metabotropic G protein-coupled receptors, activating second messenger cascades to regulate gene transcription, modulate synaptic transmission and/or stabilize circuit connectivity.
- Transcription factor
-
A protein that modulates gene transcription by directly binding to specific DNA sequences at the gene promoter.
- Convergence
-
An inward flux from multiple points of origin to an infinitesimal volumetrically defined space. In molecular neurobiology, convergence is used for transcription factors to jointly identify cell types.
- Divergence
-
An outward flux from a single point of origin to a volumetrically defined space around the initial point. In molecular neurobiology, divergence describes when cell fate is shaped by differential gene expression within gene regulatory networks driven by an identical master gene.
- Telencephalic
-
Relating to the telencephalon, the anterior subdivision of the encephalic vesicle that generates the neocortical structures in vertebrates.
- Neuromere
-
A morphologically and molecularly defined transient segment or subdivision of the developing nervous system.
- Diencephalic
-
Relating to the diencephalon, the encephalic subdivision between the telencephalon and the brainstem, chiefly corresponding to thalamic areas.
- Gene regulatory networks
-
(GRNs). Also known as regulons; a matrix of interacting genes arranged around a master gene and regulated in a hierarchical fashion as a single unit. A GRN thus includes differentially expressed genes reflecting cell states.
- Mesoderm
-
An embryonic germinal layer positioned between the ectoderm and the endoderm that consists of progenitor cells that generate bone, cartilage, musculature and the vascular system.
- Ectoderm
-
The most external embryonal germinal layer populated by progenitor cells that generate the skin and the nervous system (neuroectoderm).
- Conjoined invagination
-
An inward fold of two adjacent anatomical structures.
- Radial glia scaffold
-
A basic map of processes emanating from radial glial cells that serves as a guidance structure for migrating neuroblasts.
- Neural progenitor cells
-
(NPCs). A fate stage that precedes that of the neural precursors and in which multi-potency is retained.
- Cell-autonomous stochastic fate restriction
-
A set of randomized genetic commands in a given cell that determines the cell’s molecular identity, independent from any external influence.
- Genetic cascade
-
A hierarchical temporal succession of upstream gene expression commands that activate or repress downstream genetic programmes to drive cell-fate specification.
- Microdomains
-
Circumscribed regions in the brain that exhibit a specific molecular signature.
- Nucleokinesis
-
The active translocation of the nucleus during cell migration.
- Tanycytes
-
A type of radial glia positioned along the mid-ventral wall of the third ventricle in the adult brain.
- Neural precursor cells
-
A tissue-specific cell type that retains some reproductive potential but can give rise to only a limited number of cell lineages intrinsic to the particular tissue in which it resides.
- Epigenetic regulatory mechanisms
-
Molecular commands that regulate gene expression and protein translation without altering the DNA sequence through post-translational modifications of histones, mRNA and microRNAs, amongst others.
- Adhesion molecules
-
Cell-surface proteins that establish and stabilize physical contacts between cells or with the extracellular matrix.
- Pro-opiomelanocortin
-
(POMC). A multifunctional neuropeptide precursor that gives rise to α-melanocyte-stimulating hormone, adrenocorticotropic hormone and β-endorphin upon enzymatic cleavage.
- Gene selectors
-
Genes encoding transcription factors that are necessary to specify or differentiate anatomical areas.
- Minipuberty
-
Physiological activation of the hypothalamic–pituitary–gonadal axis that occurs in early postnatal stages and is necessary for gonadal development and fertility.
- Chromatin condensation
-
The process of compacting long stretches of DNA around histone octamers that prevents transcription factor binding, leading to gene silencing.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Benevento, M., Hökfelt, T. & Harkany, T. Ontogenetic rules for the molecular diversification of hypothalamic neurons. Nat Rev Neurosci 23, 611–627 (2022). https://doi.org/10.1038/s41583-022-00615-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41583-022-00615-3