Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Freezing revisited: coordinated autonomic and central optimization of threat coping

Abstract

Animals have sophisticated mechanisms for coping with danger. Freezing is a unique state that, upon threat detection, allows evidence to be gathered, response possibilities to be previsioned and preparations to be made for worst-case fight or flight. We propose that — rather than reflecting a passive fear state — the particular somatic and cognitive characteristics of freezing help to conceal overt responses, while optimizing sensory processing and action preparation. Critical for these functions are the neurotransmitters noradrenaline and acetylcholine, which modulate neural information processing and also control the sympathetic and parasympathetic branches of the autonomic nervous system. However, the interactions between autonomic systems and the brain during freezing, and the way in which they jointly coordinate responses, remain incompletely explored. We review the joint actions of these systems and offer a novel computational framework to describe their temporally harmonized integration. This reconceptualization of freezing has implications for its role in decision-making under threat and for psychopathology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Ascending and descending control systems involved in freezing.
Fig. 2: Neuromodulation of autonomic balance during freezing and the switch to action.
Fig. 3: Information processing and control-theoretic considerations pertaining to freezing.
Fig. 4: Measuring freezing in humans.

References

  1. Blanchard, D. C., Griebel, G., Pobbe, R. & Blanchard, R. J. Risk assessment as an evolved threat detection and analysis process. Neurosci. Biobehav. Rev. 35, 991–998 (2011).

    Article  PubMed  Google Scholar 

  2. Fanselow, M. S., Lester, L. S. & Helmstetter, F. J. Changes in feeding and foraging patterns as an antipredator defensive strategy: a laboratory simulation using aversive stimulation in a closed economy. J. Exp. Anal. Behav. 50, 361–374 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McNaughton, N. & Corr, P. J. A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci. Biobehav. Rev. 28, 285–305 (2004).

    Article  PubMed  Google Scholar 

  4. Mobbs, D. & Kim, J. J. Neuroethological studies of fear, anxiety, and risky decision-making in rodents and humans. Curr. Opin. Behav. Sci. 5, 8–15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bach, D. R. & Dayan, P. Algorithms for survival: a comparative perspective on emotions. Nat. Rev. Neurosci. 18, 311–319 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Hagenaars, M. A., Oitzl, M. & Roelofs, K. Updating freeze: aligning animal and human research. Neurosci. Biobehav. Rev. 47, 165–176 (2014).

    Article  PubMed  Google Scholar 

  7. Mobbs, D., Headley, D. B., Ding, W. & Dayan, P. Space, time, and fear: survival computations along defensive circuits. Trends Cogn. Sci. 24, 228–241 (2020).

    Article  PubMed  Google Scholar 

  8. Roelofs, K. Freeze for action: neurobiological mechanisms in animal and human freezing. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160206 (2017).

    Article  CAS  Google Scholar 

  9. Gozzi, A. et al. A neural switch for active and passive fear. Neuron 67, 656–666 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Moscarello, J. M. & LeDoux, J. E. Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions. J. Neurosci. 33, 3815–3823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fadok, J. P. et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542, 96–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Brandão, M. L., Zanoveli, J. M., Ruiz-Martinez, R. C., Oliveira, L. C. & Landeira-Fernandez, J. Different patterns of freezing behavior organized in the periaqueductal gray of rats: association with different types of anxiety. Behav. Brain Res. 188, 1–13 (2008).

    Article  PubMed  Google Scholar 

  13. Fanselow, M. S., Hoffman, A. N. & Zhuravka, I. Timing and the transition between modes in the defensive behavior system. Behav. Process. 166, 103890 (2019).

    Article  Google Scholar 

  14. Smith, R., Thayer, J. F., Khalsa, S. S. & Lane, R. D. The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev. 75, 274–296 (2017).

    Article  PubMed  Google Scholar 

  15. Thayer, J. F. & Lane, R. D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 61, 201–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Thayer, J. F. & Lane, R. D. Claude Bernard and the heart–brain connection: further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 33, 81–88 (2009).

    Article  PubMed  Google Scholar 

  17. Marr, H. Vision (W.H. Freeman, 1982).

  18. Bolles, R. C. Avoidance and escape learning: simultaneous acquisition of different responses. J. Comp. Physiol. Psychol. 68, 355 (1969).

    Article  CAS  PubMed  Google Scholar 

  19. LeDoux J. E. in Handbook of Physiology. 1: The Nervous System. Volume V, Higher Functions of the Brain (ed. Plum, F.) 419–460 (American Physiological Society, 1987).

  20. Samuels, E. R. & Szabadi, E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr. Neuropharmacol. 6, 235–253 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bouret, S. & Sara, S. J. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 28, 574–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Dayan, P. & Yu, A. J. Phasic norepinephrine: a neural interrupt signal for unexpected events. Netw. Comput. Neural Syst. 17, 335–350 (2006).

    Article  Google Scholar 

  23. Bockstaele, E. J. V., Pieribone, V. A. & Aston-Jones, G. Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: retrograde and anterograde tracing studies. J. Comp. Neurol. 290, 561–584 (1989).

    Article  PubMed  Google Scholar 

  24. Van Bockstaele, E. J., Bajic, D., Proudfit, H. & Valentino, R. J. Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiol. Behav. 73, 273–283 (2001).

    Article  PubMed  Google Scholar 

  25. Petrov, T., Krukoff, T. L. & Jhamandas, J. H. Branching projections of catecholaminergic brainstem neurons to the paraventricular hypothalamic nucleus and the central nucleus of the amygdala in the rat. Brain Res. 609, 81–92 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Zardetto-Smith, A. M. & Gray, T. S. Organization of peptidergic and catecholaminergic efferents from the nucleus of the solitary tract to the rat amygdala. Brain Res. Bull. 25, 875–887 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Resstel, L. B. M., Fernandes, K. B. P. & Corrêa, F. M. A. Medial prefrontal cortex modulation of the baroreflex parasympathetic component in the rat. Brain Res. 1015, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lima, J. D. et al. Cholinergic neurons in the pedunculopontine tegmental nucleus modulate breathing in rats by direct projections to the retrotrapezoid nucleus. J. Physiol. 597, 1919–1934 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mena-Segovia, J. & Bolam, J. P. Rethinking the pedunculopontine nucleus: from cellular organization to function. Neuron 94, 7–18 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Pahapill, P. A. & Lozano, A. M. The pedunculopontine nucleus and Parkinson’s disease. Brain 123, 1767–1783 (2000).

    Article  PubMed  Google Scholar 

  32. Sarter, M., Hasselmo, M. E., Bruno, J. P. & Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Rev. 48, 98–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Sarter, M. & Lustig, C. Forebrain cholinergic signaling: wired and phasic, not tonic, and causing behavior. J. Neurosci. 40, 712–719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hasselmo, M. E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710–715 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. LeDoux, J. & Daw, N. D. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat. Rev. Neurosci. 19, 269–282 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. McFadyen, J. Investigating the subcortical route to the amygdala across species and in disordered fear responses. J. Exp. Neurosci. 13, 1179069519846445 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pitkänen, A., Savander, V. & LeDoux, J. E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 20, 517–523 (1997).

    Article  PubMed  Google Scholar 

  38. Terburg, D. et al. The basolateral amygdala is essential for rapid escape: a human and rodent study. Cell 175, 723–735.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Evans, D. A. et al. A synaptic threshold mechanism for computing escape decisions. Nature 558, 590–594 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jones, B. E. & Yang, T. Z. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J. Comp. Neurol. 242, 56–92 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, M. S., Schambra, U. B., Wilson, K. H., Page, S. O. & Schwinn, D. A. α1-Adrenergic receptors in human spinal cord: specific localized expression of mRNA encoding α1-adrenergic receptor subtypes at four distinct levels. Mol. Brain Res. 63, 254–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Li, L. et al. Stress accelerates defensive responses to looming in mice and involves a locus coeruleus–superior colliculus projection. Curr. Biol. 28, 859–871.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y., Rodenkirch, C., Moskowitz, N., Schriver, B. & Wang, Q. Dynamic lateralization of pupil dilation evoked by locus coeruleus activation results from sympathetic not parasympathetic contributions. Cell Rep. 20, 3099–3112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deolindo, M. V., Pelosi, G. G., Busnardo, C., Resstel, L. B. M. & Corrêa, F. M. A. Cardiovascular effects of acetylcholine microinjection into the ventrolateral and dorsal periaqueductal gray of rats. Brain Res. 1371, 74–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Koba, S., Inoue, R. & Watanabe, T. Role played by periaqueductal gray neurons in parasympathetically mediated fear bradycardia in conscious rats. Physiol. Rep. 4, e12831 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. LeDoux, J. E., Iwata, J., Cicchetti, P. & Reis, D. J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hermans, E. J., Henckens, M. J. A. G., Roelofs, K. & Fernández, G. Fear bradycardia and activation of the human periaqueductal grey. NeuroImage 66, 278–287 (2013).

    Article  PubMed  Google Scholar 

  48. Carrive, P., Bandler, R. & Dampney, R. A. Somatic and autonomic integration in the midbrain of the unanesthetized decerebrate cat: a distinctive pattern evoked by excitation of neurones in the subtentorial portion of the midbrain periaqueductal grey. Brain Res. 483, 251–258 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Keay, K. A., Li, Q. F. & Bandler, R. Muscle pain activates a direct projection from ventrolateral periaqueductal gray to rostral ventrolateral medulla in rats. Neurosci. Lett. 290, 157–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Lovick, T. A. Midbrain influences on ventrolateral medullo-spinal neurones in the rat. Exp. Brain Res. 90, 147–152 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Verberne, A. J. M. & Struyker Boudier, H. A. J. Midbrain central gray: regional haemodynamic control and excitatory amino acidergic mechanisms. Brain Res. 550, 86–94 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Alves, F. H. F., Crestani, C. C., Resstel, L. B. M. & Corrêa, F. M. A. Cardiovascular effects of carbachol microinjected into the bed nucleus of the stria terminalis of the rat brain. Brain Res. 1143, 161–168 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Crestani, C. C. et al. Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr. Neuropharmacol. 11, 141–159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong, S. W., Massé, N., Kimmerly, D. S., Menon, R. S. & Shoemaker, J. K. Ventral medial prefrontal cortex and cardiovagal control in conscious humans. NeuroImage 35, 698–708 (2007).

    Article  PubMed  Google Scholar 

  55. Crippa, G. E., Peres-Polon, V. L., Kuboyama, R. H. & Corrêa, F. M. A. Cardiovascular response to the injection of acetylcholine into the anterior cingulate region of the medial prefrontal cortex of unanesthetized rats. Cereb. Cortex 9, 362–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Mallios, V. J., Lydic, R. & Baghdoyan, H. A. Muscarinic receptor subtypes are differentially distributed across brain stem respiratory nuclei. Am. J. Physiol. Lung Cell. Mol. Physiol. https://doi.org/10.1152/ajplung.1995.268.6.L941 (1995).

    Article  Google Scholar 

  57. Ghali, M. G. Z. Midbrain control of breathing and blood pressure: the role of periaqueductal gray matter and mesencephalic collicular neuronal microcircuit oscillators. Eur. J. Neurosci. 52, 3879–3902 (2020).

    Article  Google Scholar 

  58. Castegnetti, G., Tzovara, A., Staib, M., Gerster, S. & Bach, D. R. Assessing fear learning via conditioned respiratory amplitude responses. Psychophysiology 54, 215–223 (2017).

    Article  PubMed  Google Scholar 

  59. Fokkema, D. S. The psychobiology of strained breathing and its cardiovascular implications: a functional system review. Psychophysiology 36, 164–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Van Diest, I., Bradley, M. M., Guerra, P., Van den Bergh, O. & Lang, P. J. Fear conditioned respiration and its association to cardiac reactivity. Biol. Psychol. 80, 212–217 (2009).

    Article  PubMed  Google Scholar 

  61. Yasuma, F. & Hayano, J. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest 125, 683–690 (2004).

    Article  PubMed  Google Scholar 

  62. Penzo, M. A., Robert, V. & Li, B. Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala. J. Neurosci. 34, 2432–2437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schipper, P. et al. The association between serotonin transporter availability and the neural correlates of fear bradycardia. Proc. Natl Acad. Sci. USA 116, 25941–25947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tovote, P. et al. Midbrain circuits for defensive behaviour. Nature 534, 206–212 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Nuseir, K., Heidenreich, B. A. & Proudfit, H. K. The antinociception produced by microinjection of a cholinergic agonist in the ventromedial medulla is mediated by noradrenergic neurons in the A7 catecholamine cell group. Brain Res. 822, 1–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Power, A. E. & McGaugh, J. L. Cholinergic activation of the basolateral amygdala regulates unlearned freezing behavior in rats. Behav. Brain Res. 134, 307–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Winkler, J., Ramirez, G. A., Thal, L. J. & Waite, J. J. Nerve growth factor (NGF) augments cortical and hippocampal cholinergic functioning after p75NGF receptor-mediated deafferentation but impairs inhibitory avoidance and induces fear-related behaviors. J. Neurosci. 20, 834–844 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aitta-aho, T. et al. Basal forebrain and brainstem cholinergic neurons differentially impact amygdala circuits and learning-related behavior. Curr. Biol. 28, 2557–2569.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Monassi, C. R., Hoffmann, A. & Menescal-de-Oliveira, L. Involvement of the cholinergic system and periaqueductal gray matter in the modulation of tonic immobility in the guinea pig. Physiol. Behav. 62, 53–59 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Burnstock, G. Do some sympathetic neurones synthesize and release both noradrenaline and acetylcholine? Prog. Neurobiol. 11, 205–222 (1978).

    Article  CAS  PubMed  Google Scholar 

  71. Bagur, S. et al. Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nat. Commun. 12, 2605 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Corcoran, A. W., Pezzulo, G. & Hohwy, J. Commentary: respiration-entrained brain rhythms are global but often overlooked. Front. Syst. Neurosci. 12, 25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tort, A. B. L., Brankačk, J. & Draguhn, A. Respiration-entrained brain rhythms are global but often overlooked. Trends Neurosci. 41, 186–197 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Karalis, N. et al. 4-Hz oscillations synchronize prefrontal–amygdala circuits during fear behavior. Nat. Neurosci. 19, 605–612 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zelano, C. et al. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 36, 12448–12467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Walker, P. & Carrive, P. Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery. Neuroscience 116, 897–912 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Allen, M., Levy, A., Parr, T. & Friston, K. J. In the body’s eye: the computational anatomy of interoceptive inference. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/603928v1 (2019).

  78. Corcoran, A. W., Macefield, V. G. & Hohwy, J. Be still my heart: cardiac regulation as a mode of uncertainty reduction. Psychon. Bull. Rev. https://doi.org/10.3758/s13423-021-01888-y (2021).

    Article  PubMed  Google Scholar 

  79. Lang, P. J., Bradley, M. M. & Cuthbert, B. N. Emotion, motivation, and anxiety: brain mechanisms and psychophysiology. Biol. Psychiatry 44, 1248–1263 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Wiens, S. & Ohman, A. Unawareness is more than a chance event: comment on Lovibond and Shanks (2002). J. Exp. Psychol. Anim. Behav. Process. 28, 27–31 (2002).

    Article  PubMed  Google Scholar 

  81. Garfinkel, S. N. & Critchley, H. D. Threat and the body: how the heart supports fear processing. Trends Cogn. Sci. 20, 34–46 (2016).

    Article  PubMed  Google Scholar 

  82. Rösler, L. & Gamer, M. Freezing of gaze during action preparation under threat imminence. Sci. Rep. 9, 17215 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lojowska, M., Gladwin, T. E., Hermans, E. J. & Roelofs, K. Freezing promotes perception of coarse visual features. J. Exp. Psychol. Gen. 144, 1080–1088 (2015).

    Article  PubMed  Google Scholar 

  84. Lojowska, M., Ling, S., Roelofs, K. & Hermans, E. J. Visuocortical changes during a freezing-like state in humans. NeuroImage 179, 313–325 (2018).

    Article  PubMed  Google Scholar 

  85. De Voogd L., Hagenberg E., Zhou Y., De Lange F., Roelofs K. Acute threat enhances perceptual sensitivity without affecting the decision criterion. Sci. Rep. 12, 9071 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Ribeiro, M. J. & Castelo-Branco, M. Neural correlates of anticipatory cardiac deceleration and its association with the speed of perceptual decision-making, in young and older adults. NeuroImage 199, 521–533 (2019).

    Article  PubMed  Google Scholar 

  87. Rothermel, M., Carey, R. M., Puche, A., Shipley, M. T. & Wachowiak, M. Cholinergic inputs from basal forebrain add an excitatory bias to odor coding in the olfactory bulb. J. Neurosci. 34, 4654–4664 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. D’Souza, R. D. & Vijayaraghavan, S. Paying attention to smell: cholinergic signaling in the olfactory bulb. Front. Synaptic Neurosci. 6, 21 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Koch, M. The neurobiology of startle. Prog. Neurobiol. 59, 107–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Davis, M., Walker, D. L., Miles, L. & Grillon, C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35, 105–135 (2010).

    Article  PubMed  Google Scholar 

  91. Szeska, C., Richter, J., Wendt, J., Weymar, M. & Hamm, A. O. Attentive immobility in the face of inevitable distal threat — startle potentiation and fear bradycardia as an index of emotion and attention. Psychophysiology 58, e13812 (2021).

    Article  PubMed  Google Scholar 

  92. van Ast, V. A., Klumpers, F., Grasman, R. P. P. P., Krypotos, A.-M. & Roelofs, K. Postural freezing relates to startle potentiation in a human fear-conditioning paradigm. Psychophysiology 59, e13983 (2022).

    PubMed  Google Scholar 

  93. Leaton, R. N. & Borszcz, G. S. Potentiated startle: its relation to freezing and shock intensity in rats. J. Exp. Psychol. Anim. Behav. Process. 11, 421–428 (1985).

    Article  Google Scholar 

  94. Plappert, C. F., Pilz, P. K. D. & Schnitzler, H.-U. Acoustic startle response and habituation in freezing and nonfreezing rats. Behav. Neurosci. 107, 981–987 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Greba, Q., Munro, L. J. & Kokkinidis, L. The involvement of ventral tegmental area cholinergic muscarinic receptors in classically conditioned fear expression as measured with fear-potentiated startle. Brain Res. 870, 135–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Schwienbacher, I., Schnitzler, H.-U., Westbrook, R. F., Richardson, R. & Fendt, M. Carbachol injections into the nucleus accumbens disrupt acquisition and expression of fear-potentiated startle and freezing in rats. Neuroscience 140, 769–778 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Grillon, C. et al. Increased anxiety during anticipation of unpredictable but not predictable aversive stimuli as a psychophysiologic marker of panic disorder. Am. J. Psychiat. 165, 898–904 (2008).

    Article  PubMed  Google Scholar 

  98. Kozlowska, K., Walker, P., McLean, L. & Carrive, P. Fear and the defense cascade: clinical implications and management. Harv. Rev. Psychiat. 23, 263–287 (2015).

    Article  Google Scholar 

  99. Hashemi, M. M. et al. Neural dynamics of shooting decisions and the switch from freeze to fight. Sci. Rep. 9, 4240 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Paton, J. F. R., Boscan, P., Pickering, A. E. & Nalivaiko, E. The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Res. Brain Res. Rev. 49, 555–565 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Vila, J. et al. Cardiac defense: from attention to action. Int. J. Psychophysiol. 66, 169–182 (2007).

    Article  PubMed  Google Scholar 

  102. Mobbs, D. et al. From threat to fear: the neural organization of defensive fear systems in humans. J. Neurosci. 29, 12236–12243 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ongür, D. & Price, J. L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).

    Article  PubMed  Google Scholar 

  104. Arnsten, A. F. T. & Goldman-Rakic, P. S. Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Res. 306, 9–18 (1984).

    Article  CAS  PubMed  Google Scholar 

  105. Koga, K. et al. Ascending noradrenergic excitation from the locus coeruleus to the anterior cingulate cortex. Mol. Brain 13, 49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tervo, D. G. R. et al. Behavioral variability through stochastic choice and its gating by anterior cingulate cortex. Cell 159, 21–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Etkin, A., Egner, T. & Kalisch, R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93 (2011).

    Article  PubMed  Google Scholar 

  108. Holroyd, C. B. & Verguts, T. The best laid plans: computational principles of anterior cingulate cortex. Trends Cogn. Sci. 25, 316–329 (2021).

    Article  PubMed  Google Scholar 

  109. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A. & Nieuwenhuis, S. The role of the medial frontal cortex in cognitive control. Science 306, 443–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J. & Rushworth, M. F. S. Optimal decision making and the anterior cingulate cortex. Nat. Neurosci. 9, 940–947 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Kolling, N., Behrens, T. E. J., Mars, R. B. & Rushworth, M. F. S. Neural mechanisms of foraging. Science 336, 95–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Klaassen, F. H. et al. Defensive freezing and its relation to approach–avoidance decision-making under threat. Sci. Rep. 11, 12030 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Blanchard, D. C. Translating dynamic defense patterns from rodents to people. Neurosci. Biobehav. Rev. 76, 22–28 (2017).

    Article  PubMed  Google Scholar 

  115. Blanchard, R. J., Blanchard, D. C., Rodgers, J. & Weiss, S. M. The characterization and modelling of antipredator defensive behavior. Neurosci. Biobehav. Rev. 14, 463–472 (1990).

    Article  CAS  PubMed  Google Scholar 

  116. Caroline Blanchard, D., Hynd, A. L., Minke, K. A., Minemoto, T. & Blanchard, R. J. Human defensive behaviors to threat scenarios show parallels to fear- and anxiety-related defense patterns of non-human mammals. Neurosci. Biobehav. Rev. 25, 761–770 (2001).

    Article  Google Scholar 

  117. Lloyd, K. & Dayan, P. Interrupting behaviour: minimizing decision costs via temporal commitment and low-level interrupts. PLoS Comput. Biol. 14, e1005916 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Vale, R., Evans, D. A. & Branco, T. Rapid spatial learning controls instinctive defensive behavior in mice. Curr. Biol. 27, 1342–1349 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mattar, M. G. & Daw, N. D. Prioritized memory access explains planning and hippocampal replay. Nat. Neurosci. 21, 1609–1617 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sutton, R. S. Dyna, an integrated architecture for learning, planning, and reacting. ACM SIGART Bull. 2, 160–163 (1991).

    Article  Google Scholar 

  121. Wise, T., Liu, Y., Chowdhury, F. & Dolan, R. J. Model-based aversive learning in humans is supported by preferential task state reactivation. Sci. Adv. 7, eabf9616 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cazé, R., Khamassi, M., Aubin, L. & Girard, B. Hippocampal replays under the scrutiny of reinforcement learning models. J. Neurophysiol. 120, 2877–2896 (2018).

    Article  PubMed  Google Scholar 

  123. Findlay, G., Tononi, G. & Cirelli, C. The evolving view of replay and its functions in wake and sleep. Sleep. Adv. 1, zpab002 (2020).

    Article  PubMed  Google Scholar 

  124. Foster, D. J. Replay comes of age. Annu. Rev. Neurosci. 40, 581–602 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Tambini, A. & Davachi, L. Awake reactivation of prior experiences consolidates memories and biases cognition. Trends Cogn. Sci. 23, 876–890 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Buhry, L., Azizi, A. H. & Cheng, S. Reactivation, replay, and preplay: how it might all fit together. Neural Plast. 2011, e203462 (2011).

    Article  Google Scholar 

  127. Chen, Z. & Wilson, M. A. Deciphering neural codes of memory during sleep. Trends Neurosci. 40, 260–275 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Shea-Brown, E., Gilzenrat, M. S. & Cohen, J. D. Optimization of decision making in multilayer networks: the role of locus coeruleus. Neural Comput. 20, 2863–2894 (2008).

    Article  PubMed  Google Scholar 

  129. Ratcliff, R., Smith, P. L., Brown, S. D. & McKoon, G. Diffusion decision model: current issues and history. Trends Cogn. Sci. 20, 260–281 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Livermore, J. J. A. Approach-avoidance decisions under threat: the role of autonomic psychophysiological states. Front. Neurosci. 15, 12 (2021).

    Article  Google Scholar 

  131. Worringer, B. et al. Common and distinct neural correlates of dual-tasking and task-switching: a meta-analytic review and a neuro-cognitive processing model of human multitasking. Brain Struct. Funct. 224, 1845–1869 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Mobbs, D., Trimmer, P. C., Blumstein, D. T. & Dayan, P. Foraging for foundations in decision neuroscience: insights from ethology. Nat. Rev. Neurosci. 19, 419–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Robbins, T. W. Arousal systems and attentional processes. Biol. Psychol. 45, 57–71 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Sarter, M., Gehring, W. J. & Kozak, R. More attention must be paid: the neurobiology of attentional effort. Brain Res. Rev. 51, 145–160 (2006).

    Article  PubMed  Google Scholar 

  135. Qi, S. et al. How cognitive and reactive fear circuits optimize escape decisions in humans. Proc. Natl Acad. Sci. USA 115, 3186–3191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Al, E. et al. Heart–brain interactions shape somatosensory perception and evoked potentials. Proc. Natl Acad. Sci. USA 117, 10575–10584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sandman, C. A., McCanne, T. R., Kaiser, D. N. & Diamond, B. Heart rate and cardiac phase influences on visual perception. J. Comp. Physiol. Psychol. 91, 189–202 (1977).

    Article  CAS  PubMed  Google Scholar 

  138. Dayan, P., Niv, Y., Seymour, B. & Daw, N. D. The misbehavior of value and the discipline of the will. Neural Netw. 19, 1153–1160 (2006).

    Article  PubMed  Google Scholar 

  139. Hasselmo, M. E. & Giocomo, L. M. Cholinergic modulation of cortical function. J. Mol. Neurosci. 30, 133–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Rokem, A., Landau, A. N., Garg, D., Prinzmetal, W. & Silver, M. A. Cholinergic enhancement increases the effects of voluntary attention but does not affect involuntary attention. Neuropsychopharmacology 35, 2538–2544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dayan, P., Kakade, S. & Montague, P. R. Learning and selective attention. Nat. Neurosci. 3, 1218–1223 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Kaelbling, L. P., Littman, M. L. & Cassandra, A. R. Planning and acting in partially observable stochastic domains. Artif. Intell. 101, 99–134 (1998).

    Article  Google Scholar 

  143. Papadimitriou, C. H. & Tsitsiklis, J. N. The complexity of Markov decision processes. Math. Oper. Res. 12, 441–450 (1987).

    Article  Google Scholar 

  144. Eppinger, B., Goschke, T. & Musslick, S. Meta-control: from psychology to computational neuroscience. Cogn. Affect. Behav. Neurosci. https://doi.org/10.3758/s13415-021-00919-4 (2021).

    Article  PubMed  Google Scholar 

  145. Cools, R. Chemistry of the adaptive mind: lessons from dopamine. Neuron 104, 113–131 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Ratcliff, R. & Smith, P. L. A comparison of sequential sampling models for two-choice reaction time. Psychol. Rev. 111, 333–367 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Gold, J. I. & Shadlen, M. N. Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36, 299–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Hauser, T. U., Moutoussis, M., Purg, N., Dayan, P. & Dolan, R. J. Beta-blocker propranolol modulates decision urgency during sequential information gathering. J. Neurosci. 38, 7170–7178 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).

  150. Kahneman, D. Thinking, Fast and Slow (Farrar, Straus and Giroux, 2011).

  151. Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).

    Article  CAS  PubMed  Google Scholar 

  152. Johnson, A. & Redish, A. D. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27, 12176–12189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497, 74–79 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Coulom, R. in Computers and Games (eds van den Herik, H. J., Ciancarini, P. & Donkers, H. H. L. M.) 72–83 (Springer, 2007).

  155. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Sutton, R. S. Learning to predict by the methods of temporal differences. Mach. Learn. 3, 9–44 (1988).

    Google Scholar 

  157. Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Killcross, S. & Coutureau, E. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb. Cortex 13, 400–408 (2003).

    Article  PubMed  Google Scholar 

  159. Dayan, P. How to set the switches on this thing. Curr. Opin. Neurobiol. 22, 1068–1074 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Pezzulo, G., Rigoli, F. & Chersi, F. The mixed instrumental controller: using value of information to combine habitual choice and mental simulation. Front. Psychol. 4, 92 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Hamid, A. A. et al. Mesolimbic dopamine signals the value of work. Nat. Neurosci. 19, 117–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Mazzoni, P., Hristova, A. & Krakauer, J. W. Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J. Neurosci. 27, 7105–7116 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191, 507–520 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Blanchard, T. C. & Hayden, B. Y. Neurons in dorsal anterior cingulate cortex signal postdecisional variables in a foraging task. J. Neurosci. 34, 646–655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Brown, J. W. & Alexander, W. H. Foraging value, risk avoidance, and multiple control signals: how the anterior cingulate cortex controls value-based decision-making. J. Cogn. Neurosci. 29, 1656–1673 (2017).

    Article  PubMed  Google Scholar 

  166. Mobbs, D. et al. When fear is near: threat imminence elicits prefrontal–periaqueductal gray shifts in humans. Science 317, 1079–1083 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Porges, S. W. Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology 32, 301–318 (1995).

    Article  CAS  PubMed  Google Scholar 

  168. Porges, S. W. The polyvagal theory: phylogenetic substrates of a social nervous system. Int. J. Psychophysiol. 42, 123–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Porges, S. W. The polyvagal perspective. Biol. Psychol. 74, 116–143 (2007).

    Article  PubMed  Google Scholar 

  170. Katz, P. S. & Lillvis, J. L. Reconciling the deep homology of neuromodulation with the evolution of behavior. Curr. Opin. Neurobiol. 29, 39–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Menegas, W., Akiti, K., Amo, R., Uchida, N. & Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci. 21, 1421–1430 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Verharen, J. P. H., Zhu, Y. & Lammel, S. Aversion hot spots in the dopamine system. Curr. Opin. Neurobiol. 64, 46–52 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gentry, R. N., Lee, B. & Roesch, M. R. Phasic dopamine release in the rat nucleus accumbens predicts approach and avoidance performance. Nat. Commun. 7, 13154 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Gentry, R. N., Schuweiler, D. R. & Roesch, M. R. Dopamine signals related to appetitive and aversive events in paradigms that manipulate reward and avoidability. Brain Res. 1713, 80–90 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Wenzel, J. M., Rauscher, N. A., Cheer, J. F. & Oleson, E. B. A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature. ACS Chem. Neurosci. 6, 16–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Boureau, Y.-L. & Dayan, P. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 36, 74–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Deakin, J. The origins of ‘5-HT and mechanisms of defence’ by Deakin and Graeff: a personal perspective. J. Psychopharmacol. 27, 1084–1089 (2013).

    Article  PubMed  CAS  Google Scholar 

  178. Paul, E. D., Johnson, P. L., Shekhar, A. & Lowry, C. A. The Deakin/Graeff hypothesis: focus on serotonergic inhibition of panic. Neurosci. Biobehav. Rev. 46, 379–396 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Deakin, J. F. W. & Graeff, F. G. 5-HT and mechanisms of defence. J. Psychopharmacol. 5, 305–315 (1991).

    Article  CAS  PubMed  Google Scholar 

  180. Graeff, F. G., Guimarães, F. S., De Andrade, T. G. C. S. & Deakin, J. F. W. Role of 5-HT in stress, anxiety, and depression. Pharmacol. Biochem. Behav. 54, 129–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  181. Cools, R., Robinson, O. J. & Sahakian, B. Acute tryptophan depletion in healthy volunteers enhances punishment prediction but does not affect reward prediction. Neuropsychopharmacology 33, 2291–2299 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Crockett, M. J., Clark, L. & Robbins, T. W. Reconciling the role of serotonin in behavioral inhibition and aversion: acute tryptophan depletion abolishes punishment-induced inhibition in humans. J. Neurosci. 29, 11993–11999 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lottem, E. et al. Activation of serotonin neurons promotes active persistence in a probabilistic foraging task. Nat. Commun. 9, 1000 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Miyazaki, K., Miyazaki, K. W. & Doya, K. The role of serotonin in the regulation of patience and impulsivity. Mol. Neurobiol. 45, 213–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Miyazaki, K. W. et al. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Curr. Biol. 24, 2033–2040 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Soubrié, P. Reconciling the role of central serotonin neurons in human and animal behavior. Behav. Brain Sci. 9, 319–335 (1986).

    Article  Google Scholar 

  187. Seo, C. et al. Intense threat switches dorsal raphe serotonin neurons to a paradoxical operational mode. Science 363, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Campese, V. D. et al. Noradrenergic regulation of central amygdala in aversive pavlovian-to-instrumental transfer. eNeuro 4, ENEURO.0224-17.2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Hamm, A. O. & Vaitl, D. Affective learning: awareness and aversion. Psychophysiology 33, 698–710 (1996).

    Article  CAS  PubMed  Google Scholar 

  190. Hodes, R. L., Cook, E. W. & Lang, P. J. Individual differences in autonomic response: conditioned association or conditioned fear? Psychophysiology 22, 545–560 (1985).

    Article  CAS  PubMed  Google Scholar 

  191. Moratti, S. & Keil, A. Cortical activation during Pavlovian fear conditioning depends on heart rate response patterns: an MEG study. Cogn. Brain Res. 25, 459–471 (2005).

    Article  Google Scholar 

  192. Obrist, W. The cardiac–somatic relationship: some reformulations. Psychophysiology 6, 569–587 (1970).

    Article  CAS  PubMed  Google Scholar 

  193. Aylward, J. & Robinson, O. J. Towards an emotional ‘stress test’: a reliable, non-subjective cognitive measure of anxious responding. Sci. Rep. 7, 40094 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mobbs, D. et al. Promises and challenges of human computational ethology. Neuron 14, 2224–2238 (2021).

    Article  CAS  Google Scholar 

  195. Chandler, D. J., Lamperski, C. S. & Waterhouse, B. D. Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. Brain Res. 1522, 38–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Gielow, M. R. & Zaborszky, L. The input–output relationship of the cholinergic basal forebrain. Cell Rep. 18, 1817–1830 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wang, H.-L. & Morales, M. Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur. J. Neurosci. 29, 340–358 (2009).

    Article  PubMed  Google Scholar 

  198. Spann, B. M. & Grofova, I. Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat. J. Comp. Neurol. 283, 13–27 (1989).

    Article  CAS  PubMed  Google Scholar 

  199. Ballinger, E., Ananth, M., Talmage, D. A. & Role, L. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91, 1199–1218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Gladwin, T. E., Hashemi, M. M., van Ast, V. & Roelofs, K. Ready and waiting: freezing as active action preparation under threat. Neurosci. Lett. 619, 182–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Kalin, N. H. & Shelton, S. E. Nonhuman primate models to study anxiety, emotion regulation, and psychopathology. Ann. N. Y. Acad. Sci. 1008, 189–200 (2003).

    Article  PubMed  Google Scholar 

  202. Qi, C. et al. Anxiety-related behavioral inhibition in rats: a model to examine mechanisms underlying the risk to develop stress-related psychopathology. Genes Brain Behav. 9, 974–984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hashemi, M. M. Exploring Defensive Freeze–Fight Reaction in Humans: From Adaptive Defence to Stress Vulnerability. Doctoral dissertation (Radboud University Nijmegen, The Netherlands, 2021).

  204. Hagenaars, M. A., Stins, J. F. & Roelofs, K. Aversive life events enhance human freezing responses. J. Exp. Psychol. Gen. 141, 98–105 (2012).

    Article  PubMed  Google Scholar 

  205. Niermann, H. C. M. et al. Infant attachment predicts bodily freezing in adolescence: evidence from a prospective longitudinal study. Front. Behav. Neurosci. 9, 263 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Niermann, H. C. M. et al. The relation between infant freezing and the development of internalizing symptoms in adolescence: a prospective longitudinal study. Dev. Sci. 22, e12763 (2019).

    Article  PubMed  Google Scholar 

  207. Brosschot, J. F., Verkuil, B. & Thayer, J. F. The default response to uncertainty and the importance of perceived safety in anxiety and stress: an evolution-theoretical perspective. J. Anxiety Disord. 41, 22–34 (2016).

    Article  PubMed  Google Scholar 

  208. Hartley, C. A. & Phelps, E. A. Anxiety and decision-making. Biol. Psychiat. 72, 113–118 (2012).

    Article  PubMed  Google Scholar 

  209. Ly, V., Huys, Q. J. M., Stins, J. F., Roelofs, K. & Cools, R. Individual differences in bodily freezing predict emotional biases in decision making. Front. Behav. Neurosci. 8, 237 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Garfinkel, S. N. et al. Interoceptive dimensions across cardiac and respiratory axes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20160014 (2016).

    Article  Google Scholar 

  211. Owens, A. P., Allen, M., Ondobaka, S. & Friston, K. J. Interoceptive inference: from computational neuroscience to clinic. Neurosci. Biobehav. Rev. 90, 174–183 (2018).

    Article  PubMed  Google Scholar 

  212. Mkrtchian, A., Roiser, J. P. & Robinson, O. J. Threat of shock and aversive inhibition: induced anxiety modulates Pavlovian–instrumental interactions. J. Exp. Psychol. Gen. 146, 1694–1704 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Robinson, O. J., Krimsky, M. & Grillon, C. The impact of induced anxiety on response inhibition. Front. Hum. Neurosci. 7, 69 (2013).

    PubMed  PubMed Central  Google Scholar 

  214. Fung, B. J., Qi, S., Hassabis, D., Daw, N. & Mobbs, D. Slow escape decisions are swayed by trait anxiety. Nat. Hum. Behav. 3, 702–708 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Robinson, O. J. et al. Towards a mechanistic understanding of pathological anxiety: the dorsal medial prefrontal–amygdala ‘aversive amplification’ circuit in unmedicated generalized and social anxiety disorders. Lancet Psychiat. 1, 294–302 (2014).

    Article  Google Scholar 

  216. Maier, S. F. & Seligman, M. E. P. Learned helplessness at fifty: insights from neuroscience. Psychol. Rev. 123, 349–367 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.R. was supported by a consolidator grant from the European Research Council (ERC_CoG-2017_772337). P.D. was supported by the Max Planck Society and the Alexander von Humboldt Foundation. The authors thank A. Cleeremans, R. Cools, F. Klumpers, D. Mobbs, O. Robinson and T. Wise for their most helpful comments on an earlier draft, and S. Sara and L. de Voogd for discussions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Karin Roelofs.

Ethics declarations

Competing interests

The authors declare no competing interest.

Peer review

Peer review information

Nature Reviews Neuroscience thanks J. Herman, J. LeDoux and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roelofs, K., Dayan, P. Freezing revisited: coordinated autonomic and central optimization of threat coping. Nat Rev Neurosci 23, 568–580 (2022). https://doi.org/10.1038/s41583-022-00608-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00608-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing