Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Taking stock of value in the orbitofrontal cortex

Subjects

Abstract

People with damage to the orbitofrontal cortex (OFC) have specific problems making decisions, whereas their other cognitive functions are spared. Neurophysiological studies have shown that OFC neurons fire in proportion to the value of anticipated outcomes. Thus, a central role of the OFC is to guide optimal decision-making by signalling values associated with different choices. Until recently, this view of OFC function dominated the field. New data, however, suggest that the OFC may have a much broader role in cognition by representing cognitive maps that can be used to guide behaviour and that value is just one of many variables that are important for behavioural control. In this Review, we critically evaluate these two alternative accounts of OFC function and examine how they might be reconciled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: During decision-making, the OFC flip-flops between representing the value of either option.
Fig. 2: The relationship between the state-transition graph and value.
Fig. 3: An illustrative example of the flexibility of cognitive maps.
Fig. 4: Responses in human vmPFC reflect encoding of state information.
Fig. 5: Value place neurons in the primate hippocampus.

Similar content being viewed by others

References

  1. Damasio, A. R. Descartes’ Error: Emotion, Reason, and the Human Brain (Putman, 1994).

  2. Eslinger, P. J. & Damasio, A. R. Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 35, 1731–1741 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Bechara, A., Damasio, A. R., Damasio, H. & Anderson, S. W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50, 7–15 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).

    Article  CAS  PubMed  Google Scholar 

  6. Behrens, T. E. J. et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018). This review explains how cognitive maps might be used to organize knowledge across multiple domains, not just space.

    Article  CAS  PubMed  Google Scholar 

  7. O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford University Press, 1978).

  8. Schuck, N. W., Cai, M. B., Wilson, R. C. & Niv, Y. Human orbitofrontal cortex represents a cognitive map of state space. Neuron 91, 1402–1412 (2016). A human neuroimaging study showing that the vmPFC might be particularly important for representing the cognitive map.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kennerley, S. W., Dahmubed, A. F., Lara, A. H. & Wallis, J. D. Neurons in the frontal lobe encode the value of multiple decision variables. J. Cogn. Neurosci. 21, 1162–1178 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hosokawa, T., Kennerley, S. W., Sloan, J. & Wallis, J. D. Single-neuron mechanisms underlying cost-benefit analysis in frontal cortex. J. Neurosci. 33, 17385–17397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roesch, M. R. & Olson, C. R. Neuronal activity in primate orbitofrontal cortex reflects the value of time. J. Neurophysiol. 94, 2457–2471 (2005).

    Article  PubMed  Google Scholar 

  12. Rich, E. L. & Wallis, J. D. Medial-lateral organization of the orbitofrontal cortex. J. Cogn. Neurosci. 26, 1347–1362 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Morrison, S. E. & Salzman, C. D. The convergence of information about rewarding and aversive stimuli in single neurons. J. Neurosci. 29, 11471–11483 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roesch, M. R. & Olson, C. R. Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304, 307–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Wallis, J. D. & Rich, E. L. Challenges of interpreting frontal neurons during value-based decision-making. Front. Neurosci. 5, 124 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kennerley, S. W., Behrens, T. E. & Wallis, J. D. Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nat. Neurosci. 14, 1581–1589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carmichael, S. T. & Price, J. L. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 363, 615–641 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Carmichael, S. T. & Price, J. L. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R. J. & Reinoso-Suarez, F. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb. Cortex 10, 220–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Padoa-Schioppa, C. Neurobiology of economic choice: a good-based model. Annu. Rev. Neurosci. 34, 333–359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siep, N. et al. Hunger is the best spice: an fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behav. Brain Res. 198, 149–158 (2009).

    Article  PubMed  Google Scholar 

  22. Barron, H. C., Dolan, R. J. & Behrens, T. E. Online evaluation of novel choices by simultaneous representation of multiple memories. Nat. Neurosci. 16, 1492–1498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hare, T. A., O’Doherty, J., Camerer, C. F., Schultz, W. & Rangel, A. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J. Neurosci. 28, 5623–5630 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sescousse, G., Redoute, J. & Dreher, J. C. The architecture of reward value coding in the human orbitofrontal cortex. J. Neurosci. 30, 13095–13104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, Y., Sescousse, G., Amiez, C. & Dreher, J. C. Local morphology predicts functional organization of experienced value signals in the human orbitofrontal cortex. J. Neurosci. 35, 1648–1658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peters, J. & Buchel, C. Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making. J. Neurosci. 29, 15727–15734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fellows, L. K. & Farah, M. J. The role of ventromedial prefrontal cortex in decision making: Judgment under uncertainty or judgment per se? Cereb. Cortex 17, 2669–2674 (2007).

    Article  PubMed  Google Scholar 

  28. Fellows, L. K. Deciding how to decide: ventromedial frontal lobe damage affects information acquisition in multi-attribute decision making. Brain 129, 944–952 (2006).

    Article  PubMed  Google Scholar 

  29. Xia, C., Stolle, D., Gidengil, E. & Fellows, L. K. Lateral orbitofrontal cortex links social impressions to political choices. J. Neurosci. 35, 8507–8514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Camille, N., Griffiths, C. A., Vo, K., Fellows, L. K. & Kable, J. W. Ventromedial frontal lobe damage disrupts value maximization in humans. J. Neurosci. 31, 7527–7532 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ballesta, S., Shi, W., Conen, K. E. & Padoa-Schioppa, C. Values encoded in orbitofrontal cortex are causally related to economic choices. Nature https://doi.org/10.1038/s41586-020-2880-x (2020). Causal evidence for the role of the OFC in economic choice using electrical microstimulation.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gardner, M. P. H. et al. Processing in lateral orbitofrontal cortex is required to estimate subjective preference during initial, but not established, economic choice. Neuron 108, 526–537.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rustichini, A. & Padoa-Schioppa, C. A neuro-computational model of economic decisions. J. Neurophysiol. 114, 1382–1398 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hunt, L. T. et al. Mechanisms underlying cortical activity during value-guided choice. Nat. Neurosci. 15, 470–476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cai, X. & Padoa-Schioppa, C. Contributions of orbitofrontal and lateral prefrontal cortices to economic choice and the good-to-action transformation. Neuron 81, 1140–1151 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hunt, L. T., Behrens, T. E., Hosokawa, T., Wallis, J. D. & Kennerley, S. W. Capturing the temporal evolution of choice across prefrontal cortex. eLife https://doi.org/10.7554/eLife.11945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yim, M. Y., Cai, X. & Wang, X. J. Transforming the choice outcome to an action plan in monkey lateral prefrontal cortex: a neural circuit model. Neuron 103, 520–532.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Padoa-Schioppa, C. Neuronal origins of choice variability in economic decisions. Neuron 80, 1322–1336 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Rich, E. L. & Wallis, J. D. Decoding subjective decisions from orbitofrontal cortex. Nat. Neurosci. 19, 973–980 (2016). Study that first measured population-level dynamics in the OFC during decision-making with single-trial resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iversen, S. D. & Mishkin, M. Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp. Brain Res. 11, 376–386 (1970).

    Article  CAS  PubMed  Google Scholar 

  41. Baxter, M. G., Parker, A., Lindner, C. C., Izquierdo, A. D. & Murray, E. A. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J. Neurosci. 20, 4311–4319 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roberts, A. C. & Wallis, J. D. Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb. Cortex 10, 252–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Izquierdo, A., Suda, R. K. & Murray, E. A. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24, 7540–7548 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pickens, C. L. et al. Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J. Neurosci. 23, 11078–11084 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kourtzi, Z. & Kanwisher, N. Representation of perceived object shape by the human lateral occipital complex. Science 293, 1506–1509 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Stalnaker, T. A., Cooch, N. K. & Schoenbaum, G. What the orbitofrontal cortex does not do. Nat. Neurosci. 18, 620–627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Padoa-Schioppa, C. & Schoenbaum, G. Dialogue on economic choice, learning theory, and neuronal representations. Curr. Opin. Behav. Sci. 5, 16–23 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sutton, R. S. & Barto, A. G. Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev. 88, 135–170 (1981).

    Article  CAS  PubMed  Google Scholar 

  49. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Doll, B. B., Simon, D. A. & Daw, N. D. The ubiquity of model-based reinforcement learning. Curr. Opin. Neurobiol. 22, 1075–1081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Collins, A. G. E. & Cockburn, J. Beyond dichotomies in reinforcement learning. Nat. Rev. Neurosci. 21, 576–586 (2020). An interesting review that warns against the simple dichotomy of model-free versus model-based mechanisms that has come to dominate neuroscientific studies of reinforcement learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gremel, C. M. & Costa, R. M. Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat. Commun. 4, 2264 (2013).

    Article  PubMed  CAS  Google Scholar 

  53. McDannald, M. A., Lucantonio, F., Burke, K. A., Niv, Y. & Schoenbaum, G. Ventral striatum and orbitofrontal cortex are both required for model-based, but not model-free, reinforcement learning. J. Neurosci. 31, 2700–2705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Redish, A. D. Vicarious trial and error. Nat. Rev. Neurosci. 17, 147–159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kennerley, S. W. & Wallis, J. D. Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables. Eur. J. Neurosci. 29, 2061–2073 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wallis, J. D. Decoding cognitive processes from neural ensembles. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2018.09.002 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Klein-Flugge, M. C., Barron, H. C., Brodersen, K. H., Dolan, R. J. & Behrens, T. E. Segregated encoding of reward-identity and stimulus-reward associations in human orbitofrontal cortex. J. Neurosci. 33, 3202–3211 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burke, K. A., Franz, T. M., Miller, D. N. & Schoenbaum, G. The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature 454, 340–344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J. & Kurth-Nelson, Z. Deep reinforcement learning and its neuroscientific implications. Neuron 107, 603–616 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  PubMed  Google Scholar 

  61. Moser, E. I., Kropff, E. & Moser, M. B. Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eichenbaum, H. What H.M. taught us. J. Cogn. Neurosci. 25, 14–21 (2013).

    Article  PubMed  Google Scholar 

  64. Cohen, N. J. & Eichenbaum, H. The theory that wouldn’t die: a critical look at the spatial mapping theory of hippocampal function. Hippocampus 1, 265–268 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Howard, M. W. et al. A unified mathematical framework for coding time, space, and sequences in the hippocampal region. J. Neurosci. 34, 4692–4707 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eichenbaum, H. & Cohen, N. J. Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron 83, 764–770 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Courville, A. C., Daw, N. D. & Touretzky, D. S. Bayesian theories of conditioning in a changing world. Trends Cogn. Sci. 10, 294–300 (2006).

    Article  PubMed  Google Scholar 

  68. Gershman, S. J., Blei, D. M. & Niv, Y. Context, learning, and extinction. Psychol. Rev. 117, 197–209 (2010).

    Article  PubMed  Google Scholar 

  69. Whittington, J. C. R. et al. The Tolman-Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. Cell 183, 1249–1263.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dayan, P. Improving generalization for temporal difference learning: the successor representation. Neural Comput. 5, 613–624 (1993).

    Article  Google Scholar 

  71. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017). First demonstration that the firing properties of hippocampal place neurons are consistent with encoding the successor representation.

    Article  CAS  PubMed  Google Scholar 

  72. Momennejad, I. Learning structures: predictive representations, replay, and generalization. Curr. Opin. Behav. Sci. 32, 155–166 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gershman, S. J. The successor representation: its computational logic and neural substrates. J. Neurosci. 38, 7193–7200 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schoenbaum, G., Setlow, B., Nugent, S. L., Saddoris, M. P. & Gallagher, M. Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn. Mem. 10, 129–140 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Fellows, L. K. & Farah, M. J. Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126, 1830–1837 (2003).

    Article  PubMed  Google Scholar 

  77. Clarke, H., Walker, S., Dalley, J., Robbins, T. & Roberts, A. Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb. Cortex 17, 18–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & Niv, Y. Orbitofrontal cortex as a cognitive map of task space. Neuron 81, 267–279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rudebeck, P. H. & Murray, E. A. Dissociable effects of subtotal lesions within the macaque orbital prefrontal cortex on reward-guided behavior. J. Neurosci. 31, 10569–10578 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rudebeck, P. H., Saunders, R. C., Prescott, A. T., Chau, L. S. & Murray, E. A. Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat. Neurosci. 16, 1140–1145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H. & Holmes, A. The neural basis of reversal learning: an updated perspective. Neuroscience 345, 12–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Glover, G. H. & Law, C. S. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn. Reson. Med. 46, 515–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Wallis, J. D. Cross-species studies of orbitofrontal cortex and value-based decision-making. Nat. Neurosci. 15, 13–19 (2012).

    Article  CAS  Google Scholar 

  84. Wallis, J. D. & Kennerley, S. W. Heterogeneous reward signals in prefrontal cortex. Curr. Opin. Neurobiol. 20, 191–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wallis, J. D., Anderson, K. C. & Miller, E. K. Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953–956 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Sleezer, B. J., Castagno, M. D. & Hayden, B. Y. Rule encoding in orbitofrontal cortex and striatum guides selection. J. Neurosci. 36, 11223–11237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tsujimoto, S., Genovesio, A. & Wise, S. P. Comparison of strategy signals in the dorsolateral and orbital prefrontal cortex. J. Neurosci. 31, 4583–4592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ramus, S. J. & Eichenbaum, H. Neural correlates of olfactory recognition memory in the rat orbitofrontal cortex. J. Neurosci. 20, 8199–8208 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stalnaker, T. A., Raheja, N. & Schoenbaum, G. Orbitofrontal state representations are related to choice adaptations and reward predictions. J. Neurosci. 41, 1941–1951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Abe, H. & Lee, D. Distributed coding of actual and hypothetical outcomes in the orbital and dorsolateral prefrontal cortex. Neuron 70, 731–741 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bell, D. E. Regret in decision making under uncertainty. Oper. Res. 30, 961–981 (1982).

    Article  Google Scholar 

  92. Camille, N. et al. The involvement of the orbitofrontal cortex in the experience of regret. Science 304, 1167–1170 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Steiner, A. P. & Redish, A. D. Behavioral and neurophysiological correlates of regret in rat decision-making on a neuroeconomic task. Nat. Neurosci. 17, 995–1002 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. The global record of memory in hippocampal neuronal activity. Nature 397, 613–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature 543, 719–722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Theves, S., Fernandez, G. & Doeller, C. F. The hippocampus encodes distances in multidimensional feature space. Curr. Biol. 29, 1226–1231.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Park, S. A., Miller, D. S., Nili, H., Ranganath, C. & Boorman, E. D. Map making: constructing, combining, and inferring on abstract cognitive maps. Neuron 107, 1226–1238.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Knudsen, E. B. & Wallis, J. D. Hippocampal neurons construct a map of an abstract value space. Cell 184, 4640–4650.e10 (2021). Study showing that hippocampal neurons also encode abstract, cognitive information using the same relational code that the hippocampus uses for encoding space.

    Article  CAS  PubMed  Google Scholar 

  99. Rangel, A. & Clithero, J. A. Value normalization in decision making: theory and evidence. Curr. Opin. Neurobiol. 22, 970–981 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Louie, K., Grattan, L. E. & Glimcher, P. W. Reward value-based gain control: divisive normalization in parietal cortex. J. Neurosci. 31, 10627–10639 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M. & Tanila, H. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23, 209–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Bakkour, A. et al. The hippocampus supports deliberation during value-based decisions. eLife https://doi.org/10.7554/eLife.46080 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sun, C., Yang, W., Martin, J. & Tonegawa, S. Hippocampal neurons represent events as transferable units of experience. Nat. Neurosci. 23, 651–663 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Wikenheiser, A. M. & Redish, A. D. Hippocampal theta sequences reflect current goals. Nat. Neurosci. 18, 289–294 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497, 74–79 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Barbas, H. & Blatt, G. J. Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5, 511–533 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Knudsen, E. B. & Wallis, J. D. Closed-loop theta stimulation in the orbitofrontal cortex prevents reward-based learning. Neuron 106, 537–547.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schuck, N. W. & Niv, Y. Sequential replay of nonspatial task states in the human hippocampus. Science https://doi.org/10.1126/science.aaw5181 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. van Wingerden, M., Vinck, M., Lankelma, J. V. & Pennartz, C. M. Learning-associated gamma-band phase-locking of action-outcome selective neurons in orbitofrontal cortex. J. Neurosci. 30, 10025–10038 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Wikenheiser, A. M., Marrero-Garcia, Y. & Schoenbaum, G. Suppression of ventral hippocampal output impairs integrated orbitofrontal encoding of task structure. Neuron 95, 1197–1207.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McKenzie, S. et al. Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron 83, 202–215 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Farovik, A. et al. Orbitofrontal cortex encodes memories within value-based schemas and represents contexts that guide memory retrieval. J. Neurosci. 35, 8333–8344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou, J. et al. Rat orbitofrontal ensemble activity contains multiplexed but dissociable representations of value and task structure in an odor sequence task. Curr. Biol. 29, 897–907.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Niv, Y. Learning task-state representations. Nat. Neurosci. 22, 1544–1553 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wikenheiser, A. M. & Schoenbaum, G. Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex. Nat. Rev. Neurosci. 17, 513–523 (2016). Paper that proposed that the OFC might be important for integrating reward information with the hippocampal map.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Baxter, M. G., Gaffan, D., Kyriazis, D. A. & Mitchell, A. S. Ventrolateral prefrontal cortex is required for performance of a strategy implementation task but not reinforcer devaluation effects in rhesus monkeys. Eur. J. Neurosci. 29, 2049–2059 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Basu, R. et al. The orbitofrontal cortex maps future navigational goals. Nature 599, 449–452 (2021). Recent neurophysiological study showing that OFC neurons potentially encode the value of specific states in the state-transition graph.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sadacca, B. F. et al. Orbitofrontal neurons signal sensory associations underlying model-based inference in a sensory preconditioning task. eLife https://doi.org/10.7554/eLife.30373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jones, J. L. et al. Orbitofrontal cortex supports behavior and learning using inferred but not cached values. Science 338, 953–956 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, F., Schoenbaum, G. & Kahnt, T. Interactions between human orbitofrontal cortex and hippocampus support model-based inference. PLoS Biol. 18, e3000578 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Wang, F., Howard, J. D., Voss, J. L., Schoenbaum, G. & Kahnt, T. Targeted stimulation of an orbitofrontal network disrupts decisions based on inferred, not experienced outcomes. J. Neurosci. 40, 8726–8733 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Buckley, M. J. et al. Dissociable components of rule-guided behavior depend on distinct medial and prefrontal regions. Science 325, 52–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Preston, A. R. & Eichenbaum, H. Interplay of hippocampus and prefrontal cortex in memory. Curr. Biol. 23, R764–R773 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Squire, L. R. & Alvarez, P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr. Opin. Neurobiol. 5, 169–177 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Boorman, E. D., Rajendran, V. G., O’Reilly, J. X. & Behrens, T. E. Two anatomically and computationally distinct learning signals predict changes to stimulus-outcome associations in hippocampus. Neuron 89, 1343–1354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sanders, H., Wilson, M. A. & Gershman, S. J. Hippocampal remapping as hidden state inference. eLife https://doi.org/10.7554/eLife.51140 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B. & Botvinick, M. M. Neural representations of events arise from temporal community structure. Nat. Neurosci. 16, 486–492 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schapiro, A. C., Turk-Browne, N. B., Norman, K. A. & Botvinick, M. M. Statistical learning of temporal community structure in the hippocampus. Hippocampus 26, 3–8 (2016).

    Article  PubMed  Google Scholar 

  131. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.D.W. was supported by grants from the US National Institutes of Health (NIH) R01-MH117763, R01-MH121448 and R01-NS116623 during the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Joni D. Wallis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks M. Roesch and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Secondary reinforcer

A reward or punishment whose value is learned (for example, money) through its association with a primary reinforcer whose value is innate (for example, food).

Repetition suppression

A reduction in the magnitude of the evoked blood oxygen level-dependent response when a stimulus is presented repeatedly.

Reinforcement learning

The process by which an agent learns to predict and maximize future reward.

Inference

The process of deriving logical conclusions from known premises.

Decision primitives

Parameters that are combined to calculate the value of a reward; for example, a food reward might include size, probability of occurrence and calories.

Episodic memories

Memories of personal experiences that are tied to specific times and places.

Bayesian inference

A statistical approach that uses Bayes theorem to determine how much to update one’s belief given a new piece of evidence.

Graph theory

A branch of mathematics that focuses on understanding networks. A graph consists of vertices (also called nodes) that are connected by edges (also called lines).

Successor representation

A map of the environment that estimates the predictive relationships between different states of the environment.

Perseverate

To continue to repeat a previously rewarded action even when it no longer leads to reward.

Behaviourist theory

The theory that psychology can be objectively studied only through observable actions; it arose as a reaction to nineteenth-century psychology, which focused on introspection.

Susceptibility artefacts

Artefacts that occur during MRI at air–tissue boundaries; they are particularly serious for brain areas close to sinuses.

Wisconsin card sorting test

A neuropsychological test in which participants sort cards according to rules such as shape or colour. Patients with frontal lobe damage have difficulty switching between rules.

Visuomotor conditional task

A task that requires subjects to follow a conditional ‘if–then’ rule, in which the ‘if’ is a visual stimulus and the ‘then’ is a motor response.

Rock–paper–scissors game

Two players simultaneously make one of three hand shapes: rock, paper or scissors. Rock beats scissors, scissors beat paper, and paper beats rock.

Place neurons

Hippocampal neurons that fire whenever an animal is in a specific location.

Sharp-wave ripples

Oscillations that are characteristics of electrical activity in the mammalian hippocampus; they are of large amplitude and high frequency (100–250 Hz).

Ecological validity

The degree to which a laboratory test predicts behaviour in real-world settings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knudsen, E.B., Wallis, J.D. Taking stock of value in the orbitofrontal cortex. Nat Rev Neurosci 23, 428–438 (2022). https://doi.org/10.1038/s41583-022-00589-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00589-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing