Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Music in the brain

Abstract

Music is ubiquitous across human cultures — as a source of affective and pleasurable experience, moving us both physically and emotionally — and learning to play music shapes both brain structure and brain function. Music processing in the brain — namely, the perception of melody, harmony and rhythm — has traditionally been studied as an auditory phenomenon using passive listening paradigms. However, when listening to music, we actively generate predictions about what is likely to happen next. This enactive aspect has led to a more comprehensive understanding of music processing involving brain structures implicated in action, emotion and learning. Here we review the cognitive neuroscience literature of music perception. We show that music perception, action, emotion and learning all rest on the human brain’s fundamental capacity for prediction — as formulated by the predictive coding of music model. This Review elucidates how this formulation of music perception and expertise in individuals can be extended to account for the dynamics and underlying brain mechanisms of collective music making. This in turn has important implications for human creativity as evinced by music improvisation. These recent advances shed new light on what makes music meaningful from a neuroscientific perspective.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: From the structural constituents of music to perception, action and emotion in the brain.
Fig. 2: Predictive coding of music.
Fig. 3: How we may experience the same musical material with different real-time predictive brain models.
Fig. 4: Groove: the pleasurable sensation of wanting to move to music.
Fig. 5: Musical interaction.

References

  1. Zatorre, R. J., Chen, J. L. & Penhune, V. B. When the brain plays music: auditory–motor interactions in music perception and production. Nat. Rev. Neurosci. 8, 547–558 (2007). A seminal review of auditory–motor coupling in music.

    CAS  PubMed  Google Scholar 

  2. Koelsch, S. Toward a neural basis of music perception–a review and updated model. Front. Psychol. 2, 110 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Maes, P. J., Leman, M., Palmer, C. & Wanderley, M. M. Action-based effects on music perception. Front. Psychol. 4, 1008 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Koelsch, S. Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 15, 170–180 (2014). In this review, the author shows how music engages phylogenetically old reward networks in the brain to evoke emotions, and not merely subjective feelings.

    CAS  PubMed  Google Scholar 

  5. Vuust, P. & Witek, M. A. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music. Front. Psychol. 5, 1111 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010). This review posits that several global brain theories may be unified by the free-energy principle.

    CAS  PubMed  Google Scholar 

  7. Koelsch, S., Vuust, P. & Friston, K. Predictive processes and the peculiar case of music. Trends Cogn. Sci. 23, 63–77 (2019). This review focuses specifically on predictive coding in music.

    PubMed  Google Scholar 

  8. Meyer, L. Emotion and Meaning in Music (Univ. of Chicago Press, 1956).

  9. Lerdahl, F. & Jackendoff, R. A Generative Theory of Music (MIT Press, 1999).

  10. Huron, D. Sweet Anticipation (MIT Press, 2006). In this book, Huron draws on evolutionary theory and statistical learning to propose a general theory of musical expectation.

  11. Hansen, N. C. & Pearce, M. T. Predictive uncertainty in auditory sequence processing. Front. Psychol. https://doi.org/10.3389/fpsyg.2013.01008 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vuust, P., Brattico, E., Seppanen, M., Naatanen, R. & Tervaniemi, M. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia 50, 1432–1443 (2012).

    PubMed  Google Scholar 

  13. Altenmüller, E. O. How many music centers are in the brain? Ann. N. Y. Acad. Sci. 930, 273–280 (2001).

    PubMed  Google Scholar 

  14. Monelle, R. Linguistics and Semiotics in Music (Harwood Academic Publishers, 1992).

  15. Rohrmeier, M. A. & Koelsch, S. Predictive information processing in music cognition. A critical review. Int. J. Psychophysiol. 83, 164–175 (2012).

    PubMed  Google Scholar 

  16. Vuust, P., Dietz, M. J., Witek, M. & Kringelbach, M. L. Now you hear it: a predictive coding model for understanding rhythmic incongruity. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.13622 (2018).

    Article  PubMed  Google Scholar 

  17. Vuust, P., Ostergaard, L., Pallesen, K. J., Bailey, C. & Roepstorff, A. Predictive coding of music–brain responses to rhythmic incongruity. Cortex 45, 80–92 (2009).

    PubMed  Google Scholar 

  18. Vuust, P. & Frith, C. Anticipation is the key to understanding music and the effects of music on emotion. Behav. Brain Res. 31, 599–600 (2008). This is the foundation for the PCM model used in this Review.

    Google Scholar 

  19. Garrido, M. I., Sahani, M. & Dolan, R. J. Outlier responses reflect sensitivity to statistical structure in the human brain. PLoS Comput. Biol. 9, e1002999 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lumaca, M., Baggio, G., Brattico, E., Haumann, N. T. & Vuust, P. From random to regular: neural constraints on the emergence of isochronous rhythm during cultural transmission. Soc. Cogn. Affect. Neurosci. 13, 877–888 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Quiroga-Martinez, D. R. et al. Musical prediction error responses similarly reduced by predictive uncertainty in musicians and non-musicians. Eur. J. Neurosci. https://doi.org/10.1111/ejn.14667 (2019).

    Article  Google Scholar 

  22. Koelsch, S., Schröger, E. & Gunter, T. C. Music matters: preattentive musicality of the human brain. Psychophysiology 39, 38–48 (2002).

    PubMed  Google Scholar 

  23. Koelsch, S., Schmidt, B.-h & Kansok, J. Effects of musical expertise on the early right anterior negativity: an event-related brain potential study. Psychophysiology 39, 657–663 (2002).

    PubMed  Google Scholar 

  24. Lumaca, M., Dietz, M. J., Hansen, N. C., Quiroga-Martinez, D. R. & Vuust, P. Perceptual learning of tone patterns changes the effective connectivity between Heschl’s gyrus and planum temporale. Hum. Brain Mapp. 42, 941–952 (2020).

    PubMed  PubMed Central  Google Scholar 

  25. Lieder, F., Daunizeau, J., Garrido, M. I., Friston, K. J. & Stephan, K. E. Modelling trial-by-trial changes in the mismatch negativity. PLoS Comput. Biol. 9, e1002911 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wacongne, C., Changeux, J. P. & Dehaene, S. A neuronal model of predictive coding accounting for the mismatch negativity. J. Neurosci. 32, 3665–3678 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kiebel, S. J., Garrido, M. I. & Friston, K. J. Dynamic causal modelling of evoked responses: the role of intrinsic connections. Neuroimage 36, 332–345 (2007).

    PubMed  Google Scholar 

  28. Feldman, H. & Friston, K. J. Attention, uncertainty, and free-energy. Front. Hum. Neurosci. 4, 215 (2010).

    PubMed  PubMed Central  Google Scholar 

  29. Cheung, V. K. M. et al. Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Curr. Biol. 29, 4084–4092 e4084 (2019). This fMRI study ties uncertainty and surprise to musical pleasure.

    CAS  PubMed  Google Scholar 

  30. McDermott, J. H. & Oxenham, A. J. Music perception, pitch, and the auditory system. Curr. Opin. Neurobiol. 18, 452–463 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Thoret, E., Caramiaux, B., Depalle, P. & McAdams, S. Learning metrics on spectrotemporal modulations reveals the perception of musical instrument timbre. Nat. Hum. Behav. 5, 369–377 (2020).

    PubMed  Google Scholar 

  32. Siedenburg, K. & McAdams, S. Four distinctions for the auditory “wastebasket” of timbre. Front. Psychol. 8, 1747 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Bendor, D. & Wang, X. The neuronal representation of pitch in primate auditory cortex. Nature 436, 1161–1165 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zatorre, R. J. Pitch perception of complex tones and human temporal-lobe function. J. Acoustical Soc. Am. 84, 566–572 (1988).

    CAS  Google Scholar 

  35. Warren, J. D., Uppenkamp, S., Patterson, R. D. & Griffiths, T. D. Separating pitch chroma and pitch height in the human brain. Proc. Natl Acad. Sci. USA 100, 10038–10042 (2003). Using fMRI data, this study shows that pitch chroma is represented anterior to the primary auditory cortex, and pitch height is represented posterior to the primary auditory cortex.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rauschecker, J. P. & Scott, S. K. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12, 718–724 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Leaver, A. M., Van Lare, J., Zielinski, B., Halpern, A. R. & Rauschecker, J. P. Brain activation during anticipation of sound sequences. J. Neurosci. 29, 2477–2485 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Houde, J. F. & Chang, E. F. The cortical computations underlying feedback control in vocal production. Curr. Opin. Neurobiol. 33, 174–181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, Y. S., Janata, P., Frost, C., Hanke, M. & Granger, R. Investigation of melodic contour processing in the brain using multivariate pattern-based fMRI. Neuroimage 57, 293–300 (2011).

    PubMed  Google Scholar 

  40. Janata, P. et al. The cortical topography of tonal structures underlying Western music. Science 298, 2167–2170 (2002).

    CAS  PubMed  Google Scholar 

  41. Saffran, J. R., Aslin, R. N. & Newport, E. L. Statistical learning by 8-month-old infants. Science 274, 1926–1928 (1996).

    CAS  PubMed  Google Scholar 

  42. Saffran, J. R., Johnson, E. K., Aslin, R. N. & Newport, E. L. Statistical learning of tone sequences by human infants and adults. Cognition 70, 27–52 (1999).

    CAS  PubMed  Google Scholar 

  43. Krumhansl, C. L. Perceptual structures for tonal music. Music. Percept. 1, 28–62 (1983).

    Google Scholar 

  44. Margulis, E. H. A model of melodic expectation. Music. Percept. 22, 663–714 (2005).

    Google Scholar 

  45. Temperley, D. A probabilistic model of melody perception. Cogn. Sci. 32, 418–444 (2008).

    PubMed  Google Scholar 

  46. Pearce, M. T. & Wiggins, G. A. Auditory expectation: the information dynamics of music perception and cognition. Top. Cogn. Sci. 4, 625–652 (2012).

    PubMed  Google Scholar 

  47. Sears, D. R. W., Pearce, M. T., Caplin, W. E. & McAdams, S. Simulating melodic and harmonic expectations for tonal cadences using probabilistic models. J. N. Music. Res. 47, 29–52 (2018).

    Google Scholar 

  48. Näätänen, R., Gaillard, A. W. & Mäntysalo, S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol. 42, 313–329 (1978).

    Google Scholar 

  49. Näätänen, R., Paavilainen, P., Rinne, T. & Alho, K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin. Neurophysiol. 118, 2544–2590 (2007). This classic review covers three decades of MMN research to understand auditory perception.

    PubMed  Google Scholar 

  50. Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C. & Vuust, P. The Musical Ear Test, a new reliable test for measuring musical competence. Learn. Individ. Differ. 20, 188–196 (2010).

    Google Scholar 

  51. Tervaniemi, M. et al. Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus. Eur. J. Neurosci. 30, 1636–1642 (2009).

    CAS  PubMed  Google Scholar 

  52. Burunat, I. et al. The reliability of continuous brain responses during naturalistic listening to music. Neuroimage 124, 224–231 (2016).

    PubMed  Google Scholar 

  53. Burunat, I. et al. Action in perception: prominent visuo-motor functional symmetry in musicians during music listening. PLoS ONE 10, e0138238 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Alluri, V. et al. Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. Neuroimage 59, 3677–3689 (2012). A free-listening fMRI study showing brain networks involved in perception of distinct acoustical features of music.

    PubMed  Google Scholar 

  55. Halpern, A. R. & Zatorre, R. J. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cereb. Cortex 9, 697–704 (1999).

    CAS  PubMed  Google Scholar 

  56. Herholz, S. C., Halpern, A. R. & Zatorre, R. J. Neuronal correlates of perception, imagery, and memory for familiar tunes. J. Cogn. Neurosci. 24, 1382–1397 (2012).

    PubMed  Google Scholar 

  57. Pallesen, K. J. et al. Emotion processing of major, minor, and dissonant chords: a functional magnetic resonance imaging study. Ann. N. Y. Acad. Sci. 1060, 450–453 (2005).

    PubMed  Google Scholar 

  58. McPherson, M. J. et al. Perceptual fusion of musical notes by native Amazonians suggests universal representations of musical intervals. Nat. Commun. 11, 2786 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Helmholtz H. L. F. On the Sensations of Tone as a Physiological Basis for the Theory of Music (Cambridge Univ. Press, 1954).

  60. Vassilakis, P. N. & Kendall, R. A. in Human Vision and Electronic Imaging XV. 75270O (International Society for Optics and Photonics, 2010).

  61. Plomp, R. & Levelt, W. J. M. Tonal consonance and critical bandwidth. J. Acoustical Soc. Am. 38, 548–560 (1965).

    CAS  Google Scholar 

  62. McDermott, J. H., Schultz, A. F., Undurraga, E. A. & Godoy, R. A. Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature 535, 547–550 (2016). An ethnomusicology study showing that consonance preference may be absent in people with minimal exposure to Western music.

    CAS  PubMed  Google Scholar 

  63. Mehr, S. A. et al. Universality and diversity in human song. Science https://doi.org/10.1126/science.aax0868 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Patel, A. D., Gibson, E., Ratner, J., Besson, M. & Holcomb, P. J. Processing syntactic relations in language and music: an event-related potential study. J. Cogn. Neurosci. 10, 717–733 (1998). This classic study compares responses to syntactic incongruities in both language and Western tonal music.

    CAS  PubMed  Google Scholar 

  65. Janata, P. The neural architecture of music-evoked autobiographical memories. Cereb. Cortex 19, 2579–2594 (2009).

    PubMed  PubMed Central  Google Scholar 

  66. Maess, B., Koelsch, S., Gunter, T. C. & Friederici, A. D. Musical syntax is processed in Broca’s area: an MEG study. Nat. Neurosci. 4, 540–545 (2001).

    CAS  PubMed  Google Scholar 

  67. Koelsch, S. et al. Differentiating ERAN and MMN: an ERP study. Neuroreport 12, 1385–1389 (2001). Using EEG, the authors show that ERAN and MMN reflect different cognitive mechanisms.

    CAS  PubMed  Google Scholar 

  68. Loui, P., Grent-‘t-Jong, T., Torpey, D. & Woldorff, M. Effects of attention on the neural processing of harmonic syntax in Western music. Cogn. Brain Res. 25, 678–687 (2005).

    Google Scholar 

  69. Koelsch, S., Fritz, T., Schulze, K., Alsop, D. & Schlaug, G. Adults and children processing music: an fMRI study. Neuroimage 25, 1068–1076 (2005).

    PubMed  Google Scholar 

  70. Tillmann, B., Janata, P. & Bharucha, J. J. Activation of the inferior frontal cortex in musical priming. Ann. N. Y. Acad. Sci. 999, 209–211 (2003).

    PubMed  Google Scholar 

  71. Garza-Villarreal, E. A., Brattico, E., Leino, S., Ostergaard, L. & Vuust, P. Distinct neural responses to chord violations: a multiple source analysis study. Brain Res. 1389, 103–114 (2011).

    CAS  PubMed  Google Scholar 

  72. Leino, S., Brattico, E., Tervaniemi, M. & Vuust, P. Representation of harmony rules in the human brain: further evidence from event-related potentials. Brain Res. 1142, 169–177 (2007).

    CAS  PubMed  Google Scholar 

  73. Sammler, D. et al. Co-localizing linguistic and musical syntax with intracranial EEG. Neuroimage 64, 134–146 (2013).

    PubMed  Google Scholar 

  74. Loui, P., Wessel, D. L. & Hudson Kam, C. L. Humans rapidly learn grammatical structure in a new musical scale. Music. Percept. 27, 377–388 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. Loui, P., Wu, E. H., Wessel, D. L. & Knight, R. T. A generalized mechanism for perception of pitch patterns. J. Neurosci. 29, 454–459 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cheung, V. K. M., Meyer, L., Friederici, A. D. & Koelsch, S. The right inferior frontal gyrus processes nested non-local dependencies in music. Sci. Rep. 8, 3822 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Haueisen, J. & Knosche, T. R. Involuntary motor activity in pianists evoked by music perception. J. Cogn. Neurosci. 13, 786–792 (2001).

    CAS  PubMed  Google Scholar 

  78. Bangert, M. et al. Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage 30, 917–926 (2006).

    PubMed  Google Scholar 

  79. Baumann, S. et al. A network for audio-motor coordination in skilled pianists and non-musicians. Brain Res. 1161, 65–78 (2007).

    CAS  PubMed  Google Scholar 

  80. Lahav, A., Saltzman, E. & Schlaug, G. Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J. Neurosci. 27, 308–314 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bianco, R. et al. Neural networks for harmonic structure in music perception and action. Neuroimage 142, 454–464 (2016).

    CAS  PubMed  Google Scholar 

  82. Eerola, T., Vuoskoski, J. K., Peltola, H.-R., Putkinen, V. & Schäfer, K. An integrative review of the enjoyment of sadness associated with music. Phys. Life Rev. 25, 100–121 (2018).

    PubMed  Google Scholar 

  83. Huron, D. M. D. The harmonic minor scale provides an optimum way of reducing average melodic interval size, consistent with sad affect cues. Empir. Musicol. Rev. 7, 15 (2012).

    Google Scholar 

  84. Huron, D. A comparison of average pitch height and interval size in major-and minor-key themes: evidence consistent with affect-related pitch prosody. 3, 59-63 (2008).

  85. Juslin, P. N. & Laukka, P. Communication of emotions in vocal expression and music performance: different channels, same code? Psychol. Bull. 129, 770 (2003).

    PubMed  Google Scholar 

  86. Fritz, T. et al. Universal recognition of three basic emotions in music. Curr. Biol. 19, 573–576 (2009).

    CAS  PubMed  Google Scholar 

  87. London, J. Hearing in Time: Psychological Aspects of Musical Meter (Oxford Univ. Press, 2012).

  88. Honing, H. Without it no music: beat induction as a fundamental musical trait. Ann. N. Y. Acad. Sci. 1252, 85–91 (2012).

    PubMed  Google Scholar 

  89. Hickok, G., Farahbod, H. & Saberi, K. The rhythm of perception: entrainment to acoustic rhythms induces subsequent perceptual oscillation. Psychol. Sci. 26, 1006–1013 (2015).

    PubMed  Google Scholar 

  90. Yabe, H., Tervaniemi, M., Reinikainen, K. & Näätänen, R. Temporal window of integration revealed by MMN to sound omission. Neuroreport 8, 1971–1974 (1997).

    CAS  PubMed  Google Scholar 

  91. Andreou, L.-V., Griffiths, T. D. & Chait, M. Sensitivity to the temporal structure of rapid sound sequences — an MEG study. Neuroimage 110, 194–204 (2015).

    PubMed  Google Scholar 

  92. Jongsma, M. L., Meeuwissen, E., Vos, P. G. & Maes, R. Rhythm perception: speeding up or slowing down affects different subcomponents of the ERP P3 complex. Biol. Psychol. 75, 219–228 (2007).

    PubMed  Google Scholar 

  93. Graber, E. & Fujioka, T. Endogenous expectations for sequence continuation after auditory beat accelerations and decelerations revealed by P3a and induced beta-band responses. Neuroscience 413, 11–21 (2019).

    CAS  PubMed  Google Scholar 

  94. Brochard, R., Abecasis, D., Potter, D., Ragot, R. & Drake, C. The “ticktock” of our internal clock: direct brain evidence of subjective accents in isochronous sequences. Psychol. Sci. 14, 362–366 (2003).

    PubMed  Google Scholar 

  95. Lerdahl, F. & Jackendoff, R. An overview of hierarchical structure in music. Music. Percept. 1, 229–252 (1983).

    Google Scholar 

  96. Large, E. W. & Kolen, J. F. Resonance and the perception of musical meter. Connect. Sci. 6, 177–208 (1994).

    Google Scholar 

  97. Large, E. W. & Jones, M. R. The dynamics of attending: how people track time-varying events. Psychol. Rev. 106, 119–159 (1999).

    Google Scholar 

  98. Cutietta, R. A. & Booth, G. D. The influence of metre, mode, interval type and contour in repeated melodic free-recall. Psychol. Music 24, 222–236 (1996).

    Google Scholar 

  99. Smith, K. C. & Cuddy, L. L. Effects of metric and harmonic rhythm on the detection of pitch alterations in melodic sequences. J. Exp. Psychol. 15, 457–471 (1989).

    CAS  Google Scholar 

  100. Palmer, C. & Krumhansl, C. L. Mental representations for musical meter. J. Exp. Psychol. 16, 728–741 (1990).

    CAS  Google Scholar 

  101. Einarson, K. M. & Trainor, L. J. Hearing the beat: young children’s perceptual sensitivity to beat alignment varies according to metric structure. Music. Percept. 34, 56–70 (2016).

    Google Scholar 

  102. Large, E. W., Herrera, J. A. & Velasco, M. J. Neural networks for beat perception in musical rhythm. Front. Syst. Neurosci. 9, 159 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Nozaradan, S., Peretz, I., Missal, M. & Mouraux, A. Tagging the neuronal entrainment to beat and meter. J. Neurosci. 31, 10234–10240 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Nozaradan, S., Peretz, I. & Mouraux, A. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J. Neurosci. 32, 17572–17581 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nozaradan, S., Schonwiesner, M., Keller, P. E., Lenc, T. & Lehmann, A. Neural bases of rhythmic entrainment in humans: critical transformation between cortical and lower-level representations of auditory rhythm. Eur. J. Neurosci. 47, 321–332 (2018).

    PubMed  Google Scholar 

  106. Lenc, T., Keller, P. E., Varlet, M. & Nozaradan, S. Neural and behavioral evidence for frequency-selective context effects in rhythm processing in humans. Cereb. Cortex Commun. https://doi.org/10.1093/texcom/tgaa037 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jacoby, N. & McDermott, J. H. Integer ratio priors on musical rhythm revealed cross-culturally by iterated reproduction. Curr. Biol. 27, 359–370 (2017).

    CAS  PubMed  Google Scholar 

  108. Hannon, E. E. & Trehub, S. E. Metrical categories in infancy and adulthood. Psychol. Sci. 16, 48–55 (2005).

    PubMed  Google Scholar 

  109. Hannon, E. E. & Trehub, S. E. Tuning in to musical rhythms: infants learn more readily than adults. Proc. Natl Acad. Sci. USA 102, 12639–12643 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Vuust, P. et al. To musicians, the message is in the meter pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. Neuroimage 24, 560–564 (2005).

    PubMed  Google Scholar 

  111. Grahn, J. A. & Brett, M. Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 19, 893–906 (2007). This fMRI study investigates participants listening to rhythms of varied complexity.

    PubMed  Google Scholar 

  112. Toiviainen, P., Burunat, I., Brattico, E., Vuust, P. & Alluri, V. The chronnectome of musical beat. Neuroimage 216, 116191 (2019).

    PubMed  Google Scholar 

  113. Chen, J. L., Penhune, V. B. & Zatorre, R. J. Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J. Cogn. Neurosci. 20, 226–239 (2008).

    PubMed  Google Scholar 

  114. Levitin, D. J., Grahn, J. A. & London, J. The psychology of music: rhythm and movement. Annu. Rev. Psychol. 69, 51–75 (2018).

    PubMed  Google Scholar 

  115. Winkler, I., Haden, G. P., Ladinig, O., Sziller, I. & Honing, H. Newborn infants detect the beat in music. Proc. Natl Acad. Sci. USA 106, 2468–2471 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Phillips-Silver, J. & Trainor, L. J. Feeling the beat: movement influences infant rhythm perception. Science 308, 1430–1430 (2005).

    CAS  PubMed  Google Scholar 

  117. Cirelli, L. K., Trehub, S. E. & Trainor, L. J. Rhythm and melody as social signals for infants. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.13580 (2018).

    Article  PubMed  Google Scholar 

  118. Cirelli, L. K., Einarson, K. M. & Trainor, L. J. Interpersonal synchrony increases prosocial behavior in infants. Dev. Sci. 17, 1003–1011 (2014).

    PubMed  Google Scholar 

  119. Repp, B. H. Sensorimotor synchronization: a review of the tapping literature. Psychon. Bull. Rev. 12, 969–992 (2005).

    PubMed  Google Scholar 

  120. Repp, B. H. & Su, Y. H. Sensorimotor synchronization: a review of recent research (2006-2012). Psychon. Bull. Rev. 20, 403–452 (2013). This review, and Repp (2005), succinctly covers the field of sensorimotor synchronization.

    PubMed  Google Scholar 

  121. Zarco, W., Merchant, H., Prado, L. & Mendez, J. C. Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J. Neurophysiol. 102, 3191–3202 (2009).

    PubMed  PubMed Central  Google Scholar 

  122. Honing, H., Bouwer, F. L., Prado, L. & Merchant, H. Rhesus monkeys (Macaca mulatta) sense isochrony in rhythm, but not the beat: additional support for the gradual audiomotor evolution hypothesis. Front. Neurosci. 12, 475 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Hattori, Y. & Tomonaga, M. Rhythmic swaying induced by sound in chimpanzees (Pan troglodytes). Proc. Natl Acad. Sci. USA 117, 936–942 (2020).

    CAS  PubMed  Google Scholar 

  124. Danielsen, A. Presence and Pleasure. The Funk Grooves of James Brown and Parliament (Wesleyan Univ. Press, 2006).

  125. Madison, G., Gouyon, F., Ullen, F. & Hornstrom, K. Modeling the tendency for music to induce movement in humans: first correlations with low-level audio descriptors across music genres. J. Exp. Psychol. Hum. Percept. Perform. 37, 1578–1594 (2011).

    PubMed  Google Scholar 

  126. Stupacher, J., Hove, M. J., Novembre, G., Schutz-Bosbach, S. & Keller, P. E. Musical groove modulates motor cortex excitability: a TMS investigation. Brain Cogn. 82, 127–136 (2013).

    PubMed  Google Scholar 

  127. Janata, P., Tomic, S. T. & Haberman, J. M. Sensorimotor coupling in music and the psychology of the groove. J. Exp. Psychol. 141, 54 (2012). Using a systematic approach, this multiple-studies article shows that the concept of groove can be widely understood as a pleasurable drive towards action.

    Google Scholar 

  128. Witek, M. A. et al. A critical cross-cultural study of sensorimotor and groove responses to syncopation among Ghanaian and American university students and staff. Music. Percept. 37, 278–297 (2020).

    Google Scholar 

  129. Friston, K., Mattout, J. & Kilner, J. Action understanding and active inference. Biol. Cybern. 104, 137–160 (2011).

    PubMed  PubMed Central  Google Scholar 

  130. Longuet-Higgins, H. C. & Lee, C. S. The rhythmic interpretation of monophonic music. Music. Percept. 1, 18 (1984).

    Google Scholar 

  131. Sioros, G., Miron, M., Davies, M., Gouyon, F. & Madison, G. Syncopation creates the sensation of groove in synthesized music examples. Front. Psychol. 5, 1036 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Witek, M. A., Clarke, E. F., Wallentin, M., Kringelbach, M. L. & Vuust, P. Syncopation, body-movement and pleasure in groove music. PLoS ONE 9, e94446 (2014).

    PubMed  PubMed Central  Google Scholar 

  133. Kowalewski, D. A., Kratzer, T. M. & Friedman, R. S. Social music: investigating the link between personal liking and perceived groove. Music. Percept. 37, 339–346 (2020).

    Google Scholar 

  134. Bowling, D. L., Ancochea, P. G., Hove, M. J. & Tecumseh Fitch, W. Pupillometry of groove: evidence for noradrenergic arousal in the link between music and movement. Front. Neurosci. 13, 1039 (2019).

    Google Scholar 

  135. Matthews, T. E., Witek, M. A. G., Heggli, O. A., Penhune, V. B. & Vuust, P. The sensation of groove is affected by the interaction of rhythmic and harmonic complexity. PLoS ONE 14, e0204539 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Matthews, T. E., Witek, M. A., Lund, T., Vuust, P. & Penhune, V. B. The sensation of groove engages motor and reward networks. Neuroimage 214, 116768 (2020). This fMRI study shows that the sensation of groove engages both motor and reward networks in the brain.

    PubMed  Google Scholar 

  137. Vaquero, L., Ramos-Escobar, N., François, C., Penhune, V. & Rodríguez-Fornells, A. White-matter structural connectivity predicts short-term melody and rhythm learning in non-musicians. Neuroimage 181, 252–262 (2018).

    PubMed  Google Scholar 

  138. Zatorre, R. J., Halpern, A. R., Perry, D. W., Meyer, E. & Evans, A. C. Hearing in the mind’s ear: a PET investigation of musical imagery and perception. J. Cogn. Neurosci. 8, 29–46 (1996).

    CAS  PubMed  Google Scholar 

  139. Benadon, F. Meter isn’t everything: the case of a timeline-oriented Cuban polyrhythm. N. Ideas Psychol. 56, 100735 (2020).

    Google Scholar 

  140. London, J., Polak, R. & Jacoby, N. Rhythm histograms and musical meter: a corpus study of Malian percussion music. Psychon. Bull. Rev. 24, 474–480 (2017).

    PubMed  Google Scholar 

  141. Huron, D. Is music an evolutionary adaptation? Ann. N. Y. Acad. Sci. 930, 43–61 (2001).

    CAS  PubMed  Google Scholar 

  142. Koelsch, S. Towards a neural basis of music-evoked emotions. Trends Cogn. Sci. 14, 131–137 (2010).

    PubMed  Google Scholar 

  143. Eerola, T. & Vuoskoski, J. K. A comparison of the discrete and dimensional models of emotion in music. Psychol. Music. 39, 18–49 (2010).

    Google Scholar 

  144. Lonsdale, A. J. & North, A. C. Why do we listen to music? A uses and gratifications analysis. Br. J. Psychol. 102, 108–134 (2011).

    PubMed  Google Scholar 

  145. Juslin, P. N. & Laukka, P. Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. J. N. Music. Res. 33, 217–238 (2004).

    Google Scholar 

  146. Huron, D. Why is sad music pleasurable? A possible role for prolactin. Music. Sci. 15, 146–158 (2011).

    Google Scholar 

  147. Brattico, E. et al. It’s sad but I like it: the neural dissociation between musical emotions and liking in experts and laypersons. Front. Hum. Neurosci. 9, 676 (2015).

    PubMed  Google Scholar 

  148. Sachs, M. E., Damasio, A. & Habibi, A. Unique personality profiles predict when and why sad music is enjoyed. Psychol. Music https://doi.org/10.1177/0305735620932660 (2020).

    Article  Google Scholar 

  149. Sachs, M. E., Habibi, A., Damasio, A. & Kaplan, J. T. Dynamic intersubject neural synchronization reflects affective responses to sad music. Neuroimage 218, 116512 (2020).

    PubMed  Google Scholar 

  150. Juslin, P. N. & Vastfjall, D. Emotional responses to music: the need to consider underlying mechanisms. Behav. Brain Sci. 31, 559–575 (2008). Using a novel theoretical framework, the authors propose that the mechanisms that evoke emotions from music are not unique to music.

    PubMed  Google Scholar 

  151. Rickard, N. S. Intense emotional responses to music: a test of the physiological arousal hypothesis. Psychol. Music. 32, 371–388 (2004).

    Google Scholar 

  152. Cowen, A. S., Fang, X., Sauter, D. & Keltner, D. What music makes us feel: at least 13 dimensions organize subjective experiences associated with music across different cultures. Proc. Natl Acad. Sci. USA 117, 1924–1934 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Argstatter, H. Perception of basic emotions in music: culture-specific or multicultural? Psychol. Music. 44, 674–690 (2016).

    Google Scholar 

  154. Stevens, C. J. Music perception and cognition: a review of recent cross-cultural research. Top. Cogn. Sci. 4, 653–667 (2012).

    PubMed  Google Scholar 

  155. Pearce, M. Cultural distance: a computational approach to exploring cultural influences on music cognition. in Oxford Handbook of Music and the Brain Vol. 31 (Oxford Univ. Press, 2018).

  156. van der Weij, B., Pearce, M. T. & Honing, H. A probabilistic model of meter perception: simulating enculturation. Front. Psychol. 8, 824 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. Kringelbach, M. L. & Berridge, K. C. Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn. Sci. 13, 479–487 (2009).

    PubMed  PubMed Central  Google Scholar 

  158. Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA 98, 11818–11823 (2001). This seminal positron emission tomography study shows that the experience of musical chills correlates with activity in the reward system.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Salimpoor, V. N. & Zatorre, R. J. Complex cognitive functions underlie aesthetic emotions: comment on “From everyday emotions to aesthetic emotions: towards a unified theory of musical emotions” by Patrik N. Juslin. Phys. Life Rev. 10, 279–280 (2013).

    PubMed  Google Scholar 

  160. Salimpoor, V. N. et al. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216–219 (2013).

    CAS  PubMed  Google Scholar 

  161. Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A. & Zatorre, R. J. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14, 257–262 (2011).

    CAS  PubMed  Google Scholar 

  162. Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R. & Zatorre, R. J. The rewarding aspects of music listening are related to degree of emotional arousal. PLoS ONE 4, e7487 (2009).

    PubMed  PubMed Central  Google Scholar 

  163. Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A. & Marco-Pallares, J. Dissociation between musical and monetary reward responses in specific musical anhedonia. Curr. Biol. 24, 699–704 (2014).

    CAS  PubMed  Google Scholar 

  164. Martinez-Molina, N., Mas-Herrero, E., Rodriguez-Fornells, A., Zatorre, R. J. & Marco-Pallares, J. Neural correlates of specific musical anhedonia. Proc. Natl Acad. Sci. USA 113, E7337–E7345 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Gebauer, L. K., M., L. & Vuust, P. Musical pleasure cycles: the role of anticipation and dopamine. Psychomusicology 22, 16 (2012).

    Google Scholar 

  166. Shany, O. et al. Surprise-related activation in the nucleus accumbens interacts with music-induced pleasantness. Soc. Cogn. Affect. Neurosci. 14, 459–470 (2019).

    PubMed  PubMed Central  Google Scholar 

  167. Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A. & Zatorre, R. J. Predictability and uncertainty in the pleasure of music: a reward for learning? J. Neurosci. 39, 9397–9409 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Swaminathan, S. & Schellenberg, E. G. Current emotion research in music psychology. Emot. Rev. 7, 189–197 (2015).

    Google Scholar 

  169. Madison, G. & Schiölde, G. Repeated listening increases the liking for music regardless of its complexity: implications for the appreciation and aesthetics of music. Front. Neurosci. 11, 147 (2017).

    PubMed  PubMed Central  Google Scholar 

  170. Corrigall, K. A. & Schellenberg, E. G. Liking music: genres, contextual factors, and individual differences. in Art, Aesthetics, and the Brain (Oxford Univ. Press, 2015).

  171. Zentner, A. Measuring the effect of file sharing on music purchases. J. Law Econ. 49, 63–90 (2006).

    Google Scholar 

  172. Rentfrow, P. J. & Gosling, S. D. The do re mi’s of everyday life: the structure and personality correlates of music preferences. J. Pers. Soc. Psychol. 84, 1236–1256 (2003).

    PubMed  Google Scholar 

  173. Vuust, P. et al. Personality influences career choice: sensation seeking in professional musicians. Music. Educ. Res. 12, 219–230 (2010).

    Google Scholar 

  174. Rohrmeier, M. & Rebuschat, P. Implicit learning and acquisition of music. Top. Cogn. Sci. 4, 525–553 (2012).

    PubMed  Google Scholar 

  175. Münthe, T. F., Altenmüller, E. & Jäncke, L. The musician’s brain as a model of neuroplasticity. Nat. Rev. Neurosci. 3, 1–6 (2002). This review highlights how professional musicians represent an ideal model for investigating neuroplasticity.

    Google Scholar 

  176. Habibi, A. et al. Childhood music training induces change in micro and macroscopic brain structure: results from a longitudinal study. Cereb. Cortex 28, 4336–4347 (2018).

    PubMed  Google Scholar 

  177. Schlaug, G., Jancke, L., Huang, Y., Staiger, J. F. & Steinmetz, H. Increased corpus callosum size in musicians. Neuropsychologia 33, 1047–1055 (1995).

    CAS  PubMed  Google Scholar 

  178. Baer, L. H. et al. Regional cerebellar volumes are related to early musical training and finger tapping performance. Neuroimage 109, 130–139 (2015).

    CAS  PubMed  Google Scholar 

  179. Kleber, B. et al. Voxel-based morphometry in opera singers: increased gray-matter volume in right somatosensory and auditory cortices. Neuroimage 133, 477–483 (2016).

    PubMed  Google Scholar 

  180. Gaser, C. & Schlaug, G. Brain structures differ between musicians and non-musicians. J. Neurosci. 23, 9240–9245 (2003). Using a morphometric technique, this study shows a grey matter volume difference in multiple brain regions between professional musicians and a matched control group of amateur musicians and non-musicians.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Sluming, V. et al. Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. Neuroimage 17, 1613–1622 (2002).

    PubMed  Google Scholar 

  182. Palomar-García, M.-Á., Zatorre, R. J., Ventura-Campos, N., Bueichekú, E. & Ávila, C. Modulation of functional connectivity in auditory–motor networks in musicians compared with nonmusicians. Cereb. Cortex 27, 2768–2778 (2017).

    PubMed  Google Scholar 

  183. Schneider, P. et al. Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat. Neurosci. 5, 688–694 (2002).

    CAS  PubMed  Google Scholar 

  184. Bengtsson, S. L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8, 1148–1150 (2005).

    CAS  PubMed  Google Scholar 

  185. Zamorano, A. M., Cifre, I., Montoya, P., Riquelme, I. & Kleber, B. Insula-based networks in professional musicians: evidence for increased functional connectivity during resting state fMRI. Hum. Brain Mapp. 38, 4834–4849 (2017).

    PubMed  PubMed Central  Google Scholar 

  186. Kraus, N. & Chandrasekaran, B. Music training for the development of auditory skills. Nat. Rev. Neurosci. 11, 599–605 (2010).

    CAS  PubMed  Google Scholar 

  187. Koelsch, S., Schröger, E. & Tervaniemi, M. Superior pre-attentive auditory processing in musicians. Neuroreport 10, 1309–1313 (1999).

    CAS  PubMed  Google Scholar 

  188. Münte, T. F., Kohlmetz, C., Nager, W. & Altenmüller, E. Superior auditory spatial tuning in conductors. Nature 409, 580 (2001).

    PubMed  Google Scholar 

  189. Seppänen, M., Brattico, E. & Tervaniemi, M. Practice strategies of musicians modulate neural processing and the learning of sound-patterns. Neurobiol. Learn. Mem. 87, 236–247 (2007).

    PubMed  Google Scholar 

  190. Guillot, A. et al. Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage 41, 1471–1483 (2008).

    PubMed  Google Scholar 

  191. Bianco, R., Novembre, G., Keller, P. E., Villringer, A. & Sammler, D. Musical genre-dependent behavioural and EEG signatures of action planning. a comparison between classical and jazz pianists. Neuroimage 169, 383–394 (2018).

    CAS  PubMed  Google Scholar 

  192. Vuust, P., Brattico, E., Seppänen, M., Näätänen, R. & Tervaniemi, M. Practiced musical style shapes auditory skills. Ann. N. Y. Acad. Sci. 1252, 139–146 (2012).

    PubMed  Google Scholar 

  193. Bangert, M. & Altenmüller, E. O. Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neurosci. 4, 26 (2003).

    PubMed  PubMed Central  Google Scholar 

  194. Li, Q. et al. Musical training induces functional and structural auditory-motor network plasticity in young adults. Hum. Brain Mapp. 39, 2098–2110 (2018).

    PubMed  PubMed Central  Google Scholar 

  195. Herholz, S. C., Coffey, E. B. J., Pantev, C. & Zatorre, R. J. Dissociation of neural networks for predisposition and for training-related plasticity in auditory-motor learning. Cereb. Cortex 26, 3125–3134 (2016).

    PubMed  Google Scholar 

  196. Putkinen, V., Tervaniemi, M. & Huotilainen, M. Musical playschool activities are linked to faster auditory development during preschool-age: a longitudinal ERP study. Sci. Rep. 9, 11310–11310 (2019).

    PubMed  PubMed Central  Google Scholar 

  197. Putkinen, V., Tervaniemi, M., Saarikivi, K., Ojala, P. & Huotilainen, M. Enhanced development of auditory change detection in musically trained school-aged children: a longitudinal event-related potential study. Dev. Sci. 17, 282–297 (2014).

    PubMed  Google Scholar 

  198. Jentschke, S. & Koelsch, S. Musical training modulates the development of syntax processing in children. Neuroimage 47, 735–744 (2009).

    PubMed  Google Scholar 

  199. Chobert, J., François, C., Velay, J. L. & Besson, M. Twelve months of active musical training in 8-to 10-year-old children enhances the preattentive processing of syllabic duration and voice onset time. Cereb. Cortex 24, 956–967 (2014).

    PubMed  Google Scholar 

  200. Moreno, S. et al. Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb. Cortex 19, 712–723 (2009).

    PubMed  Google Scholar 

  201. Putkinen, V., Huotilainen, M. & Tervaniemi, M. Neural encoding of pitch direction is enhanced in musically trained children and is related to reading skills. Front. Psychol. 10, 1475 (2019).

    PubMed  PubMed Central  Google Scholar 

  202. Wong, P. C., Skoe, E., Russo, N. M., Dees, T. & Kraus, N. Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat. Neurosci. 10, 420–422 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Virtala, P. & Partanen, E. Can very early music interventions promote at-risk infants’ development? Ann. N. Y. Acad. Sci. 1423, 92–101 (2018).

    Google Scholar 

  204. Flaugnacco, E. et al. Music training increases phonological awareness and reading skills in developmental dyslexia: a randomized control trial. PLoS ONE 10, e0138715 (2015).

    PubMed  PubMed Central  Google Scholar 

  205. Fiveash, A. et al. A stimulus-brain coupling analysis of regular and irregular rhythms in adults with dyslexia and controls. Brain Cogn. 140, 105531 (2020).

    PubMed  Google Scholar 

  206. Schellenberg, E. G. Correlation = causation? music training, psychology, and neuroscience. Psychol. Aesthet. Creat. Arts 14, 475–480 (2019).

    Google Scholar 

  207. Sala, G. & Gobet, F. Cognitive and academic benefits of music training with children: a multilevel meta-analysis. Mem. Cogn. 48, 1429–1441 (2020).

    Google Scholar 

  208. Saffran, J. R. Musical learning and language development. Ann. N. Y. Acad. Sci. 999, 397–401 (2003).

    PubMed  Google Scholar 

  209. Friston, K. The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13, 293–301 (2009).

    PubMed  Google Scholar 

  210. Pearce, M. T. Statistical learning and probabilistic prediction in music cognition: mechanisms of stylistic enculturation. Ann. N. Y. Acad. Sci. 1423, 378–395 (2018).

    PubMed Central  Google Scholar 

  211. Novembre, G., Knoblich, G., Dunne, L. & Keller, P. E. Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation. Soc. Cogn. Affect. Neurosci. 12, 662–670 (2017).

    PubMed Central  Google Scholar 

  212. Konvalinka, I. et al. Frontal alpha oscillations distinguish leaders from followers: multivariate decoding of mutually interacting brains. Neuroimage 94C, 79–88 (2014).

    Google Scholar 

  213. Novembre, G., Mitsopoulos, Z. & Keller, P. E. Empathic perspective taking promotes interpersonal coordination through music. Sci. Rep. 9, 12255 (2019).

    PubMed  PubMed Central  Google Scholar 

  214. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    CAS  PubMed  Google Scholar 

  215. Patel, A. D. & Iversen, J. R. The evolutionary neuroscience of musical beat perception: the action simulation for auditory prediction (ASAP) hypothesis. Front. Syst. Neurosci. 8, 57 (2014).

    PubMed  PubMed Central  Google Scholar 

  216. Sebanz, N. & Knoblich, G. Prediction in joint action: what, when, and where. Top. Cogn. Sci. 1, 353–367 (2009).

    PubMed  Google Scholar 

  217. Friston, K. J. & Frith, C. D. Active inference, communication and hermeneutics. Cortex 68, 129–143 (2015). This article proposes a link between active inference, communication and hermeneutics.

    PubMed  PubMed Central  Google Scholar 

  218. Konvalinka, I., Vuust, P., Roepstorff, A. & Frith, C. D. Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. Q. J. Exp. Psychol. 63, 2220–2230 (2010).

    Google Scholar 

  219. Wing, A. M. & Kristofferson, A. B. Response delays and the timing of discrete motor responses. Percept. Psychophys. 14, 5–12 (1973).

    Google Scholar 

  220. Repp, B. H. & Keller, P. E. Sensorimotor synchronization with adaptively timed sequences. Hum. Mov. Sci. 27, 423–456 (2008).

    PubMed  Google Scholar 

  221. Vorberg, D. & Schulze, H.-H. Linear phase-correction in synchronization: predictions, parameter estimation, and simulations. J. Math. Psychol. 46, 56–87 (2002).

    Google Scholar 

  222. Novembre, G., Sammler, D. & Keller, P. E. Neural alpha oscillations index the balance between self-other integration and segregation in real-time joint action. Neuropsychologia 89, 414–425 (2016). Using dual-EEG, the authors propose alpha oscillations as a candidate for regulating the balance between internal and external information in joint action.

    PubMed  Google Scholar 

  223. Keller, P. E., Knoblich, G. & Repp, B. H. Pianists duet better when they play with themselves: on the possible role of action simulation in synchronization. Conscious. Cogn. 16, 102–111 (2007).

    PubMed  Google Scholar 

  224. Fairhurst, M. T., Janata, P. & Keller, P. E. Leading the follower: an fMRI investigation of dynamic cooperativity and leader-follower strategies in synchronization with an adaptive virtual partner. Neuroimage 84, 688–697 (2014).

    PubMed  Google Scholar 

  225. Heggli, O. A., Konvalinka, I., Kringelbach, M. L. & Vuust, P. Musical interaction is influenced by underlying predictive models and musical expertise. Sci. Rep. 9, 1–13 (2019).

    CAS  Google Scholar 

  226. Heggli, O. A., Cabral, J., Konvalinka, I., Vuust, P. & Kringelbach, M. L. A Kuramoto model of self-other integration across interpersonal synchronization strategies. PLoS Comput. Biol. 15, e1007422 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Heggli, O. A. et al. Transient brain networks underlying interpersonal strategies during synchronized action. Soc. Cogn. Affect. Neurosci. 16, 19–30 (2020). This EEG study shows that differences in interpersonal synchronization are reflected by activity in a temporoparietal network.

    PubMed Central  Google Scholar 

  228. Patel, A. D. Music, Language, and the Brain (Oxford Univ. Press, 2006).

  229. Molnar-Szakacs, I. & Overy, K. Music and mirror neurons: from motion to ‘e’motion. Soc. Cogn. Affect. Neurosci. 1, 235–241 (2006).

    PubMed  PubMed Central  Google Scholar 

  230. Beaty, R. E., Benedek, M., Silvia, P. J. & Schacter, D. L. Creative cognition and brain network dynamics. Trends Cogn. Sci. 20, 87–95 (2016).

    PubMed  Google Scholar 

  231. Limb, C. J. & Braun, A. R. Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation. PLoS ONE 3, e1679 (2008).

    PubMed  PubMed Central  Google Scholar 

  232. Liu, S. et al. Neural correlates of lyrical improvisation: an FMRI study of freestyle rap. Sci. Rep. 2, 834 (2012).

    PubMed  PubMed Central  Google Scholar 

  233. Rosen, D. S. et al. Dual-process contributions to creativity in jazz improvisations: an SPM-EEG study. Neuroimage 213, 116632 (2020).

    PubMed  Google Scholar 

  234. Boasen, J., Takeshita, Y., Kuriki, S. & Yokosawa, K. Spectral-spatial differentiation of brain activity during mental imagery of improvisational music performance using MEG. Front. Hum. Neurosci. 12, 156 (2018).

    PubMed  PubMed Central  Google Scholar 

  235. Berkowitz, A. L. & Ansari, D. Generation of novel motor sequences: the neural correlates of musical improvisation. Neuroimage 41, 535–543 (2008).

    PubMed  Google Scholar 

  236. Loui, P. Rapid and flexible creativity in musical improvisation: review and a model. Ann. N. Y. Acad. Sci. 1423, 138–145 (2018).

    Google Scholar 

  237. Beaty, R. E. The neuroscience of musical improvisation. Neurosci. Biobehav. Rev. 51, 108–117 (2015).

    PubMed  Google Scholar 

  238. Vuust, P. & Kringelbach, M. L. Music improvisation: a challenge for empirical research. in Routledge Companion to Music Cognition (Routledge, 2017).

  239. Norgaard, M. Descriptions of improvisational thinking by artist-level jazz musicians. J. Res. Music. Educ. 59, 109–127 (2011).

    Google Scholar 

  240. Kringelbach, M. L. & Deco, G. Brain states and transitions: insights from computational neuroscience. Cell Rep. 32, 108128 (2020).

    CAS  PubMed  Google Scholar 

  241. Deco, G. & Kringelbach, M. L. Hierarchy of information processing in the brain: a novel ‘intrinsic ignition’ framework. Neuron 94, 961–968 (2017).

    CAS  PubMed  Google Scholar 

  242. Pinho, A. L., de Manzano, O., Fransson, P., Eriksson, H. & Ullen, F. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. J. Neurosci. 34, 6156–6163 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Pinho, A. L., Ullen, F., Castelo-Branco, M., Fransson, P. & de Manzano, O. Addressing a paradox: dual strategies for creative performance in introspective and extrospective networks. Cereb. Cortex 26, 3052–3063 (2016).

    PubMed  Google Scholar 

  244. de Manzano, O. & Ullen, F. Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. Neuroimage 63, 272–280 (2012).

    PubMed  Google Scholar 

  245. Beaty, R. E. et al. Robust prediction of individual creative ability from brain functional connectivity. Proc. Natl Acad. Sci. USA 115, 1087–1092 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Daikoku, T. Entropy, uncertainty, and the depth of implicit knowledge on musical creativity: computational study of improvisation in melody and rhythm. Front. Comput. Neurosci. 12, 97 (2018).

    PubMed  PubMed Central  Google Scholar 

  247. Belden, A. et al. Improvising at rest: differentiating jazz and classical music training with resting state functional connectivity. Neuroimage 207, 116384 (2020).

    PubMed  Google Scholar 

  248. Arkin, C., Przysinda, E., Pfeifer, C. W., Zeng, T. & Loui, P. Gray matter correlates of creativity in musical improvisation. Front. Hum. Neurosci. 13, 169 (2019).

    PubMed  PubMed Central  Google Scholar 

  249. Bashwiner, D. M., Wertz, C. J., Flores, R. A. & Jung, R. E. Musical creativity “revealed” in brain structure: interplay between motor, default mode, and limbic networks. Sci. Rep. 6, 20482 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Przysinda, E., Zeng, T., Maves, K., Arkin, C. & Loui, P. Jazz musicians reveal role of expectancy in human creativity. Brain Cogn. 119, 45–53 (2017).

    PubMed  Google Scholar 

  251. Large, E. W., Kim, J. C., Flaig, N. K., Bharucha, J. J. & Krumhansl, C. L. A neurodynamic account of musical tonality. Music. Percept. 33, 319–331 (2016).

    Google Scholar 

  252. Large, E. W. & Palmer, C. Perceiving temporal regularity in music. Cogn. Sci. 26, 1–37 (2002). This article proposes an oscillator-based approach for the perception of temporal regularity in music.

    Google Scholar 

  253. Cannon, J. J. & Patel, A. D. How beat perception co-opts motor neurophysiology. Trends Cogn. Sci. 25, 137–150 (2020). The authors propose that cyclic time-keeping activity in the supplementary motor area, termed ‘proto-actions’, is organized by the dorsal striatum to support hierarchical metrical structures.

    PubMed  Google Scholar 

  254. Keller, P. E., Novembre, G. & Loehr, J. Musical ensemble performance: representing self, other and joint action outcomes. in Shared Representations: Sensorimotor Foundations of Social Life Cambridge Social Neuroscience (eds Cross, E. S. & Obhi, S. S.) 280-310 (Cambridge Univ. Press, 2016).

  255. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    CAS  PubMed  Google Scholar 

  256. Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013).

    PubMed  Google Scholar 

  257. Kahl, R. Selected Writings of Hermann Helmholtz (Wesleyan Univ. Press, 1878).

  258. Gregory, R. L. Perceptions as hypotheses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 290, 181–197 (1980).

    CAS  PubMed  Google Scholar 

  259. Gibson, J. J. The Ecological Approach to Visual Perception (Houghton Mifflin, 1979).

  260. Fuster, J. The Prefrontal Cortex Anatomy, Physiology and Neuropsychology of the Frontal Lobe (Lippincott-Raven, 1997).

  261. Neisser, U. Cognition and Reality: Principles and Implications of Cognitive Psychology (W H Freeman/Times Books/ Henry Holt & Co, 1976).

  262. Arbib, M. A. & Hesse, M. B. The Construction of Reality (Cambridge Univ. Press, 1986).

  263. Cisek, P. & Kalaska, J. F. Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci. 33, 269–298 (2010).

    CAS  PubMed  Google Scholar 

  264. Isomura, T., Parr, T. & Friston, K. Bayesian filtering with multiple internal models: toward a theory of social intelligence. Neural Comput. 31, 2390–2431 (2019).

    PubMed  Google Scholar 

  265. Friston, K. & Frith, C. A duet for one. Conscious. Cogn. 36, 390–405 (2015).

    PubMed  PubMed Central  Google Scholar 

  266. Hunt, B. R., Ott, E. & Yorke, J. A. Differentiable generalized synchronization of chaos. Phys. Rev. E 55, 4029–4034 (1997).

    CAS  Google Scholar 

  267. Ghazanfar, A. A. & Takahashi, D. Y. The evolution of speech: vision, rhythm, cooperation. Trends Cogn. Sci. 18, 543–553 (2014).

    PubMed  PubMed Central  Google Scholar 

  268. Wilson, M. & Wilson, T. P. An oscillator model of the timing of turn-taking. Psychon. Bull. Rev. 12, 957–968 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by The Danish National Research Foundation (DNRF117). The authors thank E. Altenmüller and D. Huron for comments on early versions of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Peter Vuust.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks D. Sammler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Melody

Patterns of pitched sounds unfolding over time, in accordance with cultural conventions and constraints.

Harmony

The combination of multiple, simultaneously pitched sounds to form a chord, and subsequent chord progressions, a fundamental building block of Western music. The rules of harmony are the hierarchically organized expectations for chord progressions.

Rhythm

The structured arrangement of successive sound events over time, a primary parameter of musical structure. Rhythm perception is based on the perception of duration and grouping of these events and can be achieved even if sounds are not discrete, such as amplitude-modulated sounds.

Expectations

Mathematically, the expected values or means of random variables.

Statistical learning

The ability to extract statistical regularities from the world to learn about the environment.

Tonality

In Western music, the organization of melody and harmony in a hierarchy of relations, often pointing towards a referential pitch (the tonal centre or the tonic).

Metre

A predictive framework governing the interpretation of regularly recurring patterns and accents in rhythm.

Predictions

The output of a model generating outcomes from their causes. In predictive coding, the prediction is generated from expected states of the world and compared with observed outcomes to form a prediction error.

Anticipation

The subjective experience accompanying a strong expectation that a particular event will occur.

Active inference

An enactive generalization of predictive coding that casts both action and perception as minimizing surprise or prediction error (active inference is considered a corollary of the free-energy principle).

Prediction error

A quantity used in predictive coding to denote the difference between an observation or point estimate and its predicted value. Predictive coding uses precision-weighted prediction errors to update expectations that generate predictions.

Schematic expectations

Expectations of musical events based on prior knowledge of regularities and patterns in musical sequences, such as melodies and chords.

Veridical expectations

Expectations of specific events or patterns in a familiar musical sequence.

Dynamic expectations

Short-lived expectations that dynamically shift owing to the ongoing musical context, such as when a repeated musical phrase causes the listener to expect similar phrases as the work continues.

Precision

The inverse variance or negative entropy of a random variable. It corresponds to a second-order statistic (for example, a second-order moment) of the variable’s probability distribution or density. This can be contrasted with the mean or expectation, which constitutes a first-order statistic (for example, a first-order moment).

Mismatch negativity

(MMN). A component of the auditory event-related potential recorded with electroencephalography or magnetoencephalography related to a change in different sound features such as pitch, timbre, location of the sound source, intensity and rhythm. It peaks approximately 110–250 ms after change onset and is typically recorded while participants’ attention is distracted from the stimulus, usually by watching a silent film or reading a book. The amplitude and latency of the MMN depends on the deviation magnitude, such that larger deviations in the same context yield larger and faster MMN responses.

Functional MRI

(fMRI). A neuroimaging technique that images rapid changes in blood oxygenation levels in the brain.

Groove

In the realm of contemporary music, a persistently repeated pattern played by the rhythm section (usually drums, percussion, bass, guitar and/or piano). In music psychology, the pleasurable sensation of wanting to move.

Pitch

The perceptual correlate of periodicity in sounds that allows their ordering on a frequency-related musical scale.

Timbre

Also known as tone colour or tone quality, the perceived sound quality of a sound, including its spectral composition and its additional noise characteristics.

Chroma

The pitch class containing all pitches separated by an integer number of octaves. Humans perceive a similarity between notes having the same chroma.

Information content

The contextual unexpectedness or surprise associated with an event.

Entropy

In the Shannon sense, the expected surprise or information content (self-information). In other words, it is the uncertainty or unpredictability of a random variable (for example, an event in the future).

Magnetoencephalography

(MEG). A neuroimaging technique that measures the magnetic fields produced by naturally occurring electrical activity in the brain.

Event-related potential

A very small electrical voltage generated in the brain structures in response to specific events or stimuli.

Consonant and dissonant intervals

Psychologically, consonance is when two or more notes sound together with an absence of perceived roughness. Dissonance is the antonym of consonance. Western listeners consider intervals produced by frequency ratios such as 1:2 (octave), 3:2 (fifth) or 4:3 (fourth) as consonant. Dissonances are intervals produced by frequency ratios formed from numbers greater than 4.

Harmonic cadences

Stereotypical patterns consisting of two or more chords that conclude a phrase, section or piece of music. They are often used to establish a sense of tonality.

Electroencephalography

(EEG). An electrophysiological method that measures electrical activity of the brain.

Frequency tagging

A method of analysing steady-state evoked potentials arising from stimulation or aspects of stimulation repeated at a fixed rate. An example of frequency tagging analysis is shown in Fig. 1c.

Syncopations

A shift of rhythmic emphasis from metrically strong accents to weak accents, a characteristic of multiple musical genres, such as funk, jazz and hip hop.

Eudaimonia

In Aristotelian ethics, refers to a life well lived or human flourishing, and in affective neuroscience, it is often used to describe meaningful pleasure.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vuust, P., Heggli, O.A., Friston, K.J. et al. Music in the brain. Nat Rev Neurosci 23, 287–305 (2022). https://doi.org/10.1038/s41583-022-00578-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00578-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing