Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impaired insulin signalling and allostatic load in Alzheimer disease

Abstract

The discovery of insulin in 1921 revolutionized the treatment of diabetes and paved the way for numerous studies on hormone signalling networks and actions in peripheral tissues and in the central nervous system. Impaired insulin signalling, a hallmark of diabetes, is now established as a key component of Alzheimer disease (AD) pathology. Here, we review evidence showing that brain inflammation and activation of cellular stress response mechanisms comprise molecular underpinnings of impaired brain insulin signalling in AD and integrate impaired insulin signalling with AD pathology. Further, we highlight that insulin resistance is an important component of allostatic load and that allostatic overload can trigger insulin resistance. This bidirectional association between impaired insulin signalling and allostatic overload favours medical conditions that increase the risk of AD, including diabetes, obesity, depression, and cardiovascular and cerebrovascular diseases. Finally, we discuss how the integration of biological, social and lifestyle factors throughout the lifespan can contribute to the development of AD, underscoring the potential of social and lifestyle interventions to preserve brain health and prevent or delay AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms leading to impaired brain insulin signalling in AD.
Fig. 2: Intersections between AD pathology, inflammation and impaired insulin signalling in the brain.
Fig. 3: Impaired insulin signalling, allostatic load and their links to the development of dementia.

Similar content being viewed by others

References

  1. World Health Organization. Global Status Report on the Public Health Response to Dementia. (WHO, 2021).

  2. Mukadam, N., Sommerlad, A., Huntley, J. & Livingston, G. Population attributable fractions for risk factors for dementia in low-income and middle-income countries: an analysis using cross-sectional survey data. Lancet Glob. Health 7, e596–e603 (2019).

    Article  PubMed  Google Scholar 

  3. Zetterberg, H. & Mattsson, N. Understanding the cause of sporadic Alzheimer’s disease. Expert. Rev. Neurother. 14, 621–630 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Gudala, K., Bansal, D., Schifano, F. & Bhansali, A. Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. J. Diabetes Investig. 4, 640–650 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barbiellini Amidei, C. et al. Association between age at diabetes onset and subsequent risk of dementia. JAMA 325, 1640–1649 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. McIntosh, E. C., Nation, D. A. & Initiative, A. S. D. N. Importance of treatment status in links between type 2 diabetes and Alzheimer’s disease. Diabetes Care 42, 972–979 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Felice, F. G. Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J. Clin. Invest. 123, 531–539 (2013). In this article, the cellular and molecular mechanisms underlying defective insulin signalling in AD are reviewed and the therapeutic potential of targeting brain insulin resistance to ameliorate cognitive dysfunction is discussed.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Freiherr, J. et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 27, 505–514 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biessels, G. J. & Reagan, L. P. Hippocampal insulin resistance and cognitive dysfunction. Nat. Rev. Neurosci. 16, 660–671 (2015). This article reviews evidence of insulin resistance as a shared pathogenic mechanism linking T2D and dementia, with a particular emphasis on impaired hippocampal insulin signalling as an important mediator of cognitive dysfunction.

    Article  CAS  PubMed  Google Scholar 

  10. Cai, W. et al. Peripheral insulin regulates a broad network of gene expression in the hypothalamus, hippocampus and nucleus accumbens. Diabetes 70, 1857–1873 (2021).

    Article  PubMed  Google Scholar 

  11. Arnold, S. E. et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol. 14, 168–181 (2018). This article reviews data on the effects of insulin in the brain in health and disease, with emphasis on shared pathophysiological mechanisms linking AD and related dementias to T2D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McEwen, B. S. & Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 153, 2093–2101 (1993). This article introduces the concept of allostatic load to define the chronic exposure to stressful events throughout life that can lead to long-lasting health effects.

    Article  CAS  PubMed  Google Scholar 

  13. Rhea, E. M., Salameh, T. S. & Banks, W. A. Routes for the delivery of insulin to the central nervous system: a comparative review. Exp. Neurol. 313, 10–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Kleinridders, A., Ferris, H. A., Cai, W. & Kahn, C. R. Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63, 2232–2243 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grillo, C. A. et al. Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats. Behav. Brain Res. 222, 230–235 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soto, M., Cai, W., Konishi, M. & Kahn, C. R. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc. Natl Acad. Sci. USA 116, 6379–6384 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kleinridders, A. et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc. Natl Acad. Sci. USA 112, 3463–3468 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, F., Siu, J. J., Huang, W., Askwith, C. & Cao, L. Insulin modulates excitatory synaptic transmission and synaptic plasticity in the mouse hippocampus. Neuroscience 411, 237–254 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Reagan, L. P. et al. Hippocampal-specific insulin resistance elicits behavioral despair and hippocampal dendritic atrophy. Neurobiol. Stress. 15, 100354 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai, W. et al. Insulin regulates astrocyte gliotransmission and modulates behavior. J. Clin. Invest. 128, 2914–2926 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Porte, D., Baskin, D. G. & Schwartz, M. W. Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 54, 1264–1276 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Woods, S. C., Lotter, E. C., McKay, L. D. & Porte, D. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282, 503–505 (1979).

    Article  CAS  PubMed  Google Scholar 

  23. Abbott, M. A., Wells, D. G. & Fallon, J. R. The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J. Neurosci. 19, 7300–7308 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Skeberdis, V. A., Lan, J., Zheng, X., Zukin, R. S. & Bennett, M. V. Insulin promotes rapid delivery of N-methyl-D- aspartate receptors to the cell surface by exocytosis. Proc. Natl Acad. Sci. USA 98, 3561–3566 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, L., Brown, J. C. III, Webster, W. W., Morrisett, R. A. & Monaghan, D. T. Insulin potentiates N-methyl-D-aspartate receptor activity in Xenopus oocytes and rat hippocampus. Neurosci. Lett. 192, 5–8 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Christie, J. M., Wenthold, R. J. & Monaghan, D. T. Insulin causes a transient tyrosine phosphorylation of NR2A and NR2B NMDA receptor subunits in rat hippocampus. J. Neurochem. 72, 1523–1528 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Passafaro, M., Piech, V. & Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4, 917–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Zamanillo, D. et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Oh, M. C., Derkach, V. A., Guire, E. S. & Soderling, T. R. Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J. Biol. Chem. 281, 752–758 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. McNay, E. C. & Pearson-Leary, J. GluT4: a central player in hippocampal memory and brain insulin resistance. Exp. Neurol. 323, 113076 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Grillo, C. A., Piroli, G. G., Hendry, R. M. & Reagan, L. P. Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent. Brain Res. 1296, 35–45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pearson-Leary, J., Jahagirdar, V., Sage, J. & McNay, E. C. Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4. Behav. Brain Res. 338, 32–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Grillo, C. A. et al. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes 64, 3927–3936 (2015). This study indicates a functional role of hippocampal IRs in cognition by demonstrating that the downregulation of IRs in the hippocampi of rats elicits impairments in synaptic transmission and hippocampal-dependent learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, C. R., Seeley, R. J., Craft, S. & Woods, S. C. Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol. Behav. 68, 509–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Benedict, C. et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29, 1326–1334 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Shemesh, E., Rudich, A., Harman-Boehm, I. & Cukierman-Yaffe, T. Effect of intranasal insulin on cognitive function: a systematic review. J. Clin. Endocrinol. Metab. 97, 366–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Craft, S. et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch. Neurol. 69, 29–38 (2012).

    Article  PubMed  Google Scholar 

  38. Claxton, A. et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J. Alzheimers Dis. 44, 897–906 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Craft, S. et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: a randomized clinical trial. JAMA Neurol. 77, 1099–1109 (2020).

    Article  PubMed  Google Scholar 

  40. Craft, S. et al. Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 50, 164–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Kaiyala, K. J., Prigeon, R. L., Kahn, S. E., Woods, S. C. & Schwartz, M. W. Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes 49, 1525–1533 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Schrijvers, E. M. et al. Insulin metabolism and the risk of Alzheimer disease: the Rotterdam Study. Neurology 75, 1982–1987 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luchsinger, J. A., Tang, M. X., Shea, S. & Mayeux, R. Hyperinsulinemia and risk of Alzheimer disease. Neurology 63, 1187–1192 (2004).

    Article  PubMed  Google Scholar 

  44. Steen, E. et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease — is this type 3 diabetes? J. Alzheimers Dis. 7, 63–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Rivera, E. J. et al. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J. Alzheimers Dis. 8, 247–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Braak, H. & Braak, E. Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiol. Aging 18, S85–S88 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Moloney, A. M. et al. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol. Aging 31, 224–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Bomfim, T. R. et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J. Clin. Invest. 122, 1339–1353 (2012). This study shows activation of the TNF–JNK pathway and its link to impaired insulin signalling via IRS1 inhibition in AD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yarchoan, M. et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer’s disease and tauopathies. Acta Neuropathol. 128, 679–689 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Talbot, K. et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 122, 1316–1338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gong, Y. et al. Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl Acad. Sci. USA 100, 10417–10422 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferreira, S. T. & Klein, W. L. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol. Learn. Mem. 96, 529–543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao, W. Q. et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J. 22, 246–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. De Felice, F. G. et al. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc. Natl Acad. Sci. USA 106, 1971–1976 (2009). This study was the first to show the potential of insulin in mitigating Aβ oligomer-induced synapse loss in hippocampal neurons and paved the way for investigations using anti-diabetes agents as novel therapeutics for AD.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lourenco, M. V. et al. TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab. 18, 831–843 (2013). This study demonstrates that the TNF–PKR pathway mediates AβO-induced deficits in insulin signalling and memory.

    Article  CAS  PubMed  Google Scholar 

  56. Gonçalves, R. A., Wijesekara, N., Fraser, P. E. & De Felice, F. G. The link between tau and insulin signaling: implications for Alzheimer’s disease and other tauopathies. Front. Cell Neurosci. 13, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Marciniak, E. et al. Tau deletion promotes brain insulin resistance. J. Exp. Med. 214, 2257–2269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Biundo, F., Del Prete, D., Zhang, H., Arancio, O. & D’Adamio, L. A role for tau in learning, memory and synaptic plasticity. Sci. Rep. 8, 3184 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gonçalves, R. A., Wijesekara, N., Fraser, P. E. & De Felice, F. G. Behavioral abnormalities in knockout and humanized tau mice. Front. Endocrinol. 11, 124 (2020).

    Article  Google Scholar 

  60. Ahmed, T. et al. Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol. Aging 35, 2474–2478 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Zhu, X., Lee, H. G., Raina, A. K., Perry, G. & Smith, M. A. The role of mitogen-activated protein kinase pathways in Alzheimer’s disease. Neurosignals 11, 270–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Du, Y. et al. MKP-1 reduces Aβ generation and alleviates cognitive impairments in Alzheimer’s disease models. Signal. Transduct. Target. Ther. 4, 58 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pei, J. J. et al. Localization of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer’s disease brains at different stages of neurofibrillary degeneration. J. Alzheimers Dis. 3, 41–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Gee, M. S. et al. A selective p38α/β MAPK inhibitor alleviates neuropathology and cognitive impairment, and modulates microglia function in 5XFAD mouse. Alzheimers Res. Ther. 12, 45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Munoz, L. et al. A novel p38 alpha MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer’s disease mouse model. J. Neuroinflammation 4, 21 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pei, J.-J. et al. Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer’s disease. Mol. Brain Res. 109, 45–55 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Kyriakis, J. M. et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Raingeaud, J. et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420–7426 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Johnson, G. L. & Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Santos, L. E. & Ferreira, S. T. Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer’s disease. Neuropharmacology 136, 350–360 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Fujishiro, M. et al. Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3T3-L1 adipocytes. Mol. Endocrinol. 17, 487–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zare-Shahabadi, A., Masliah, E., Johnson, G. V. & Rezaei, N. Autophagy in Alzheimer’s disease. Rev. Neurosci. 26, 385–395 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mendoza, M. C., Er, E. E. & Blenis, J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 36, 320–328 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Harrington, L. S. et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol. 166, 213–223 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shah, O. J., Wang, Z. & Hunter, T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol. 14, 1650–1656 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Heneka, M. T. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dandona, P., Aljada, A. & Bandyopadhyay, A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 25, 4–7 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Marioni, R. E. et al. Association between raised inflammatory markers and cognitive decline in elderly people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes 59, 710–713 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Huang, Y. et al. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat. Immunol. 22, 586–594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bolós, M. et al. Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol. Neurodegener. 12, 59 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lewcock, J. W. et al. Emerging microglia biology defines novel therapeutic approaches for Alzheimer’s Disease. Neuron 108, 801–821 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Hsieh, C. L. et al. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J. Neurochem. 109, 1144–1156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bradburn, S., Murgatroyd, C. & Ray, N. Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. Ageing Res. Rev. 50, 1–8 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Hopperton, K. E., Mohammad, D., Trepanier, M. O., Giuliano, V. & Bazinet, R. P. Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol. Psychiatry 23, 177–198 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Lyoo, C. H. et al. Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with pet radioligand binding to translocator protein. J. Nucl. Med. 56, 701–706 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Bettcher, B. M., Tansey, M. G., Dorothee, G. & Heneka, M. T. Peripheral and central immune system crosstalk in Alzheimer disease-a research prospectus. Nat. Rev. Neurol. 17, 689–701 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ledo, J. H. et al. Cross talk between brain innate immunity and serotonin signaling underlies depressive-like behavior induced by Alzheimer’s amyloid-beta oligomers in mice. J. Neurosci. 36, 12106–12116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ledo, J. H. et al. Amyloid-β oligomers link depressive-like behavior and cognitive deficits in mice. Mol. Psychiatry 18, 1053–1054 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. De Souza, C. T. et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146, 4192–4199 (2005).

    Article  PubMed  Google Scholar 

  92. Senn, J. J., Klover, P. J., Nowak, I. A. & Mooney, R. A. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51, 3391–3399 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Heinrich, P. C., Behrmann, I., Müller-Newen, G., Schaper, F. & Graeve, L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334, 297–314 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rui, L., Yuan, M., Frantz, D., Shoelson, S. & White, M. F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem. 277, 42394–42398 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Ueki, K., Kondo, T. & Kahn, C. R. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol. Cell Biol. 24, 5434–5446 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Walker, D. G., Whetzel, A. M. & Lue, L. F. Expression of suppressor of cytokine signaling genes in human elderly and Alzheimer’s disease brains and human microglia. Neuroscience 302, 121–137 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Iwahara, N. et al. Role of suppressor of cytokine signaling 3 (SOCS3) in altering activated microglia phenotype in APPswe/PS1dE9 mice. J. Alzheimers Dis. 55, 1235–1247 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Lyra E Silva, N. M. et al. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Transl. Psychiatry 11, 251 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pedroso, J. A. B., Ramos-Lobo, A. M. & Donato, J. SOCS3 as a future target to treat metabolic disorders. Hormones 18, 127–136 (2019).

    Article  PubMed  Google Scholar 

  100. Gustin, A. et al. NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One 10, e0130624 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ising, C. et al. NLRP3 inflammasome activation drives tau pathology. Nature 575, 669–673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shaftel, S. S., Griffin, W. S. & O’Banion, M. K. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J. Neuroinflammation 5, 7 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Lonnemann, N. et al. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 117, 32145–32154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kitazawa, M. et al. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J. Immunol. 187, 6539–6549 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Jager, J., Grémeaux, T., Cormont, M., Le Marchand-Brustel, Y. & Tanti, J. F. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148, 241–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Nov, O. et al. Interleukin-1beta may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation. Endocrinology 151, 4247–4256 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Batista, A. F. et al. Interleukin-1β mediates alterations in mitochondrial fusion/fission proteins and memory impairment induced by amyloid-β oligomers. J. Neuroinflammation 18, 54 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Manczak, M. & Reddy, P. H. Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum. Mol. Genet. 21, 2538–2547 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Baek, S. H. et al. Inhibition of Drp1 ameliorates synaptic depression, Aβ deposition, and cognitive impairment in an Alzheimer’s disease model. J. Neurosci. 37, 5099–5110 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kim, S. H., Smith, C. J. & Van Eldik, L. J. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol. Aging 25, 431–439 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Zhou, Z. et al. Retention of normal glia function by an isoform-selective protein kinase inhibitor drug candidate that modulates cytokine production and cognitive outcomes. J. Neuroinflammation 14, 75 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Fagiani, F., Lanni, C., Racchi, M. & Govoni, S. Targeting dementias through cancer kinases inhibition. Alzheimers Dement. 6, e12044 (2020).

    Google Scholar 

  115. Hepp Rehfeldt, S. C., Majolo, F., Goettert, M. I. & Laufer, S. c-Jun N-terminal kinase inhibitors as potential leads for new therapeutics for Alzheimer’s diseases. Int. J. Mol. Sci. 21, 9677 (2020).

    Article  PubMed Central  Google Scholar 

  116. Hetz, C., Chevet, E. & Oakes, S. A. Proteostasis control by the unfolded protein response. Nat. Cell Biol. 17, 829–838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hetz, C. & Saxena, S. ER stress and the unfolded protein response in neurodegeneration. Nat. Rev. Neurol. 13, 477–491 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Duran-Aniotz, C. et al. IRE1 signaling exacerbates Alzheimer’s disease pathogenesis. Acta Neuropathol. 134, 489–506 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Scheper, W. & Hoozemans, J. J. The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathol. 130, 315–331 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Murray, H. C. et al. The unfolded protein response is activated in the olfactory system in Alzheimer’s disease. Acta Neuropathol. Commun. 8, 109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Arruda, A. P. et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  PubMed  Google Scholar 

  124. Liang, L. et al. Endoplasmic reticulum stress impairs insulin receptor signaling in the brains of obese rats. PLoS One 10, e0126384 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Castro, G. et al. Diet-induced obesity induces endoplasmic reticulum stress and insulin resistance in the amygdala of rats. FEBS Open. Bio 3, 443–449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cnop, M., Foufelle, F. & Velloso, L. A. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol. Med. 18, 59–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Clarke, J. R. et al. Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol. Med. 7, 190–210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sims-Robinson, C. et al. The role of endoplasmic reticulum stress in hippocampal insulin resistance. Exp. Neurol. 277, 261–267 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shrestha, P. et al. Cell-type-specific drug-inducible protein synthesis inhibition demonstrates that memory consolidation requires rapid neuronal translation. Nat. Neurosci. 23, 281–292 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sharma, V. et al. eIF2α controls memory consolidation via excitatory and somatostatin neurons. Nature 586, 412–416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Oliveira, M. M. et al. Correction of eIF2-dependent defects in brain protein synthesis, synaptic plasticity, and memory in mouse models of Alzheimer’s disease. Sci. Signal. 14, eabc5429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ma, T. et al. Suppression of eIF2α kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat. Neurosci. 16, 1299–1305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sidrauski, C. et al. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. Elife 4, e07314 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Boden, G. et al. Insulin regulates the unfolded protein response in human adipose tissue. Diabetes 63, 912–922 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ni, Y. G. et al. FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proc. Natl Acad. Sci. USA 104, 20517–20522 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hamer, J. A. et al. Brain insulin resistance: A treatment target for cognitive impairment and anhedonia in depression. Exp. Neurol. 315, 1–8 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. World Health Organization. Obesity and Overweight https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2021).

  138. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Rosen, E. D. et al. Epigenetics and epigenomics: implications for diabetes and obesity. Diabetes 67, 1923–1931 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. McEwen, B. S. Allostasis and the epigenetics of brain and body health over the life course: the brain on stress. JAMA Psychiatry 74, 551–552 (2017).

    Article  PubMed  Google Scholar 

  141. van de Bunt, M. et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 11, e1005694 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Swartz, J. R., Hariri, A. R. & Williamson, D. E. An epigenetic mechanism links socioeconomic status to changes in depression-related brain function in high-risk adolescents. Mol. Psychiatry 22, 209–214 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Guidi, J., Lucente, M., Sonino, N. & Fava, G. A. Allostatic load and its impact on health: a systematic review. Psychother. Psychosom. 90, 11–27 (2021).

    Article  PubMed  Google Scholar 

  144. Juster, R. P., McEwen, B. S. & Lupien, S. J. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci. Biobehav. Rev. 35, 2–16 (2010).

    Article  PubMed  Google Scholar 

  145. Bale, T. L. Epigenetic and transgenerational reprogramming of brain development. Nat. Rev. Neurosci. 16, 332–344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. McEwen, B. S. In pursuit of resilience: stress, epigenetics, and brain plasticity. Ann. N. Y. Acad. Sci. 1373, 56–64 (2016).

    Article  PubMed  Google Scholar 

  147. Teicher, M. H., Samson, J. A., Anderson, C. M. & Ohashi, K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci. 17, 652–666 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Dannlowski, U. et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol. Psychiatry 71, 286–293 (2012).

    Article  PubMed  Google Scholar 

  149. Andersen, S. L. et al. Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain development. J. Neuropsychiatry Clin. Neurosci. 20, 292–301 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Zhang, Z., Liu, J., Li, L. & Xu, H. The long arm of childhood in china: early-life conditions and cognitive function among middle-aged and older adults. J. Aging Health 30, 1319–1344 (2018).

    Article  PubMed  Google Scholar 

  151. Radford, K. et al. Childhood stress and adversity is associated with late-life dementia in aboriginal Australians. Am. J. Geriatr. Psychiatry 25, 1097–1106 (2017).

    Article  PubMed  Google Scholar 

  152. Tani, Y., Fujiwara, T. & Kondo, K. Association between adverse childhood experiences and dementia in older japanese adults. JAMA Netw. Open 3, e1920740 (2020).

    Article  PubMed  Google Scholar 

  153. Donley, G. A. R., Lönnroos, E., Tuomainen, T. P. & Kauhanen, J. Association of childhood stress with late-life dementia and Alzheimer’s disease: the KIHD study. Eur. J. Public Health 28, 1069–1073 (2018).

    Article  PubMed  Google Scholar 

  154. McGrath, E. R. et al. Blood pressure from mid- to late life and risk of incident dementia. Neurology 89, 2447–2454 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Petrovitch, H. et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Honolulu-Asia aging Study. Neurobiol. Aging 21, 57–62 (2000).

    CAS  PubMed  Google Scholar 

  156. Jochemsen, H. M. et al. Blood pressure and progression of brain atrophy: the SMART-MR Study. JAMA Neurol. 70, 1046–1053 (2013).

    Article  PubMed  Google Scholar 

  157. Zhou, M. S., Schulman, I. H. & Zeng, Q. Link between the renin-angiotensin system and insulin resistance: implications for cardiovascular disease. Vasc. Med. 17, 330–341 (2012).

    Article  PubMed  Google Scholar 

  158. Hughes, T. M. & Craft, S. The role of insulin in the vascular contributions to age-related dementia. Biochim. Biophys. Acta 1862, 983–991 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Hoscheidt, S. M. et al. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults. J. Cereb. Blood Flow. Metab. 37, 2249–2261 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Roberts, R. O. et al. Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology 82, 1132–1141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Moran, C. et al. Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology 85, 1123–1130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Green, R. C. et al. Depression as a risk factor for Alzheimer disease: the MIRAGE Study. Arch. Neurol. 60, 753–759 (2003).

    Article  PubMed  Google Scholar 

  163. Starkstein, S. E., Jorge, R., Mizrahi, R. & Robinson, R. G. The construct of minor and major depression in Alzheimer’s disease. Am. J. Psychiatry 162, 2086–2093 (2005).

    Article  PubMed  Google Scholar 

  164. Rasgon, N. L. & McEwen, B. S. Insulin resistance-a missing link no more. Mol. Psychiatry 21, 1648–1652 (2016). This article highlights the contribution of allostatic load to the development of insulin resistance and reviews evidence of insulin resistance being a key mechanism integrating mood disorders, diabetes and dementia.

    Article  CAS  PubMed  Google Scholar 

  165. Lyra, E. et al. Insulin resistance as a shared pathogenic mechanism between depression and type 2 diabetes. Front. Psychiatry 10, 57 (2019).

    Article  Google Scholar 

  166. Cohen, L. S., Soares, C. N., Vitonis, A. F., Otto, M. W. & Harlow, B. L. Risk for new onset of depression during the menopausal transition: the Harvard study of moods and cycles. Arch. Gen. Psychiatry 63, 385–390 (2006).

    Article  PubMed  Google Scholar 

  167. Zandi, P. P. et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA 288, 2123–2129 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Everson-Rose, S. A. et al. Depressive symptoms, insulin resistance, and risk of diabetes in women at midlife. Diabetes Care 27, 2856–2862 (2004).

    Article  PubMed  Google Scholar 

  169. Maki, P. M. et al. Cognitive changes during the menopausal transition: a longitudinal study in women with and without HIV. Menopause 28, 360–368 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Melo, H. M., Santos, L. E. & Ferreira, S. T. Diet-derived fatty acids, brain inflammation, and mental health. Front. Neurosci. 13, 265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Van Cauter, E. et al. Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J. Clin. Invest. 88, 934–942 (1991).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Tasali, E., Leproult, R., Ehrmann, D. A. & Van Cauter, E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc. Natl Acad. Sci. USA 105, 1044–1049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Spiegel, K., Leproult, R. & Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 354, 1435–1439 (1999).

    Article  CAS  PubMed  Google Scholar 

  174. Roh, J. H. et al. Disruption of the sleep-wake cycle and diurnal fluctuation of beta-amyloid in mice with Alzheimer’s disease pathology. Sci. Transl. Med. 4, 150ra122 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Yaffe, K. et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA 306, 613–619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Schneider, A. L. C. et al. Head injury and 25-year risk of dementia. Alzheimers Dement. 17, 1432–1441 (2021).

    Article  PubMed  Google Scholar 

  177. Schaffert, J. et al. Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer’s disease. Neuropsychology 32, 410–416 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Karelina, K., Sarac, B., Freeman, L. M., Gaier, K. R. & Weil, Z. M. Traumatic brain injury and obesity induce persistent central insulin resistance. Eur. J. Neurosci. 43, 1034–1043 (2016).

    Article  PubMed  Google Scholar 

  179. Franklin, W., Krishnan, B. & Taglialatela, G. Chronic synaptic insulin resistance after traumatic brain injury abolishes insulin protection from amyloid beta and tau oligomer-induced synaptic dysfunction. Sci. Rep. 9, 8228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Ekblad, L. L. et al. Insulin resistance predicts cognitive decline: an 11-year follow-up of a nationally representative adult population sample. Diabetes Care 40, 751–758 (2017).

    Article  PubMed  Google Scholar 

  181. Femminella, G. D. et al. Does insulin resistance influence neurodegeneration in non-diabetic Alzheimer’s subjects? Alzheimers Res. Ther. 13, 47 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hoscheidt, S. M. et al. Insulin resistance is associated with increased levels of cerebrospinal fluid biomarkers of Alzheimer’s disease and reduced memory function in at-risk healthy middle-aged adults. J. Alzheimers Dis. 52, 1373–1383 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kapogiannis, D. et al. Association of extracellular vesicle biomarkers with Alzheimer disease in the Baltimore Longitudinal Study of Aging. JAMA Neurol. 76, 1340–1351 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Nasca, C. et al. Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance. Mol. Psychiatry 26, 5140–5149 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Mansur, R. B. et al. Exploring brain insulin resistance in adults with bipolar depression using extracellular vesicles of neuronal origin. J. Psychiatr. Res. 133, 82–92 (2021).

    Article  PubMed  Google Scholar 

  186. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Clark, H. et al. A future for the world’s children? A WHO-UNICEF-Lancet Commission. Lancet 395, 605–658 (2020).

    Article  PubMed  Google Scholar 

  188. Tomasdottir, M. O. et al. Self reported childhood difficulties, adult multimorbidity and allostatic load. a cross-sectional analysis of the Norwegian HUNT Study. PLoS One 10, e0130591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  189. McEwen, C. A. & McEwen, B. S. Social structure, adversity, toxic stress, and intergenerational poverty: an early childhood model. Annu. Rev. Sociol. 43, 445–472 (2017). This review integrates sociological, neuroscience, epigenetic and psychological evidence to discuss how social factors interact with biology to shape life trajectories and determine health outcomes.

    Article  Google Scholar 

  190. Ioannidis, K., Askelund, A. D., Kievit, R. A. & van Harmelen, A. L. Correction to: The complex neurobiology of resilient functioning after childhood maltreatment. BMC Med. 18, 202 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Stults-Kolehmainen, M. A. & Sinha, R. The effects of stress on physical activity and exercise. Sports Med. 44, 81–121 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Bonhauser, M. et al. Improving physical fitness and emotional well-being in adolescents of low socioeconomic status in Chile: results of a school-based controlled trial. Health Promot. Int. 20, 113–122 (2005).

    Article  PubMed  Google Scholar 

  193. Geda, Y. E. et al. Physical exercise, aging, and mild cognitive impairment: a population-based study. Arch. Neurol. 67, 80–86 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R. & Petersen, R. C. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin. Proc. 86, 876–884 (2011). This study reviews evidence that aerobic exercise is associated with a reduced risk of MCI and dementia and highlights the potential of physical exercise as a preventive and disease-modifying intervention for brain ageing.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Lu, Y. et al. Treadmill exercise exerts neuroprotection and regulates microglial polarization and oxidative stress in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. J. Alzheimers Dis. 56, 1469–1484 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Choi, S. H. et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361, eaan8821 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Lourenco, M. V. et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat. Med. 25, 165–175 (2019). This study shows that the exercise-induced hormone FNDC5/irisin is reduced in the brains of patients with AD and mediates the beneficial effects of exercise in memory in AD mouse models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Moon, H. Y. et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 24, 332–340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Marosi, K. & Mattson, M. P. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol. Metab. 25, 89–98 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Islam, M. R. et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat. Metab. 3, 1058–1070 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Lourenco, M. V. et al. Cerebrospinal fluid irisin correlates with amyloid-β, BDNF, and cognition in Alzheimer’s disease. Alzheimers Dement. 12, e12034 (2020).

    Google Scholar 

  202. Ngandu, T. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385, 2255–2263 (2015).

    Article  PubMed  Google Scholar 

  203. Gil-Bea, F. J. et al. Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimer’s disease. J. Alzheimers Dis. 22, 405–413 (2010).

    Article  CAS  PubMed  Google Scholar 

  204. Molina, J. A. et al. Cerebrospinal fluid levels of insulin in patients with Alzheimer’s disease. Acta Neurol. Scand. 106, 347–350 (2002).

    Article  CAS  PubMed  Google Scholar 

  205. Frölich, L. et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J. Neural Transm. 105, 423–438 (1998).

    Article  PubMed  Google Scholar 

  206. Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K. & Gong, C. X. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J. Pathol. 225, 54–62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ho, L. et al. Insulin receptor expression and activity in the brains of nondiabetic sporadic Alzheimer’s disease cases. Int. J. Alzheimers Dis. 2012, 321280 (2012).

    PubMed  PubMed Central  Google Scholar 

  208. Tramutola, A. et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J. Neurochem. 133, 739–749 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Pei, J. J. et al. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 56, 70–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  210. Lee, H. K., Kumar, P., Fu, Q., Rosen, K. M. & Querfurth, H. W. The insulin/Akt signaling pathway is targeted by intracellular beta-amyloid. Mol. Biol. Cell 20, 1533–1544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Griffin, R. J. et al. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J. Neurochem. 93, 105–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  212. Sun, Y. X. et al. Differential activation of mTOR complex 1 signaling in human brain with mild to severe Alzheimer’s disease. J. Alzheimers Dis. 38, 437–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Lee, H. K. et al. mTORC2 (Rictor) in Alzheimer’s disease and reversal of amyloid-beta expression-induced insulin resistance and toxicity in rat primary cortical neurons. J. Alzheimers Dis. 56, 1015–1036 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Li, X., Alafuzoff, I., Soininen, H., Winblad, B. & Pei, J. J. Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J. 272, 4211–4220 (2005).

    Article  CAS  PubMed  Google Scholar 

  215. Batista, A. F. et al. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease. J. Pathol. 245, 85–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Velazquez, R. et al. Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer’s disease. Neurobiol. Aging 58, 1–13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Ma, Q. L. et al. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J. Neurosci. 29, 9078–9089 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Long-Smith, C. M. et al. The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and signalling in parallel with decreasing both amyloid-β plaque and glial pathology in a mouse model of Alzheimer’s disease. Neuromolecular Med. 15, 102–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Kaminari, A., Giannakas, N., Tzinia, A. & Tsilibary, E. C. Overexpression of matrix metalloproteinase-9 (MMP-9) rescues insulin-mediated impairment in the 5XFAD model of Alzheimer’s disease. Sci. Rep. 7, 683 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Wijesekara, N. et al. Amyloid-β and islet amyloid pathologies link Alzheimer disease and type 2 diabetes in a transgenic model. FASEB J. 31, 5409–5418 (2017).

    Article  CAS  PubMed  Google Scholar 

  221. Ahmad, F. et al. Reactive oxygen species-mediated loss of synaptic akt1 signaling leads to deficient activity-dependent protein translation early in Alzheimer’s disease. Antioxid. Redox Signal. 27, 1269–1280 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Caccamo, A., Majumder, S., Richardson, A., Strong, R. & Oddo, S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J. Biol. Chem. 285, 13107–13120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Francois, A. et al. Longitudinal follow-up of autophagy and inflammation in brain of APPswePS1dE9 transgenic mice. J. Neuroinflammation 11, 139 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ou, Z. et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav. Immun. 69, 351–363 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.G.D.-F. would like to dedicate this review to the memory of Bruce S. McEwen, an exceptionally beautiful and generous mind. The discussions we had over the past 5 years have inspired this review and my research. Research in F.G.D.-F. and S.T.F. labs is supported by grants from the Weston Brain Institute (to F.G.D.-F.), Alzheimer’s Society Canada (to F.G.D.-F.), and from the Brazilian funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (467546/2014-2 to F.G.D.-F., 406436/2016-9 to S.T.F.), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (202.944/2015 to F.G.D.-F., 201.432/2014 to S.T.F.), and the National Institute for Translational Neuroscience (INNT/Brazil) (465346/2014-6 to F.G.D.-F. and S.T.F.). PhD salary (to R.A.G.) was supported by grants from the Weston Brain Institute and Alzheimer’s Society Canada (to F.G.D.-F.).

Author information

Authors and Affiliations

Authors

Contributions

F.G.D.-F. and R.A.G. researched data for article, made substantial contribution to the discussion of content, and wrote, reviewed and edited the manuscript before submission. S.T.F. made substantial contribution to the discussion of content and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Fernanda G. De Felice.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks L. Reagan, J. Fallon, and D. Kapogiannis for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Felice, F.G., Gonçalves, R.A. & Ferreira, S.T. Impaired insulin signalling and allostatic load in Alzheimer disease. Nat Rev Neurosci 23, 215–230 (2022). https://doi.org/10.1038/s41583-022-00558-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00558-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing