Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Forgetting as a form of adaptive engram cell plasticity

Abstract

One leading hypothesis suggests that memories are stored in ensembles of neurons (or ‘engram cells’) and that successful recall involves reactivation of these ensembles. A logical extension of this idea is that forgetting occurs when engram cells cannot be reactivated. Forms of ‘natural forgetting’ vary considerably in terms of their underlying mechanisms, time course and reversibility. However, we suggest that all forms of forgetting involve circuit remodelling that switches engram cells from an accessible state (where they can be reactivated by natural recall cues) to an inaccessible state (where they cannot). In many cases, forgetting rates are modulated by environmental conditions and we therefore propose that forgetting is a form of neuroplasticity that alters engram cell accessibility in a manner that is sensitive to mismatches between expectations and the environment. Moreover, we hypothesize that disease states associated with forgetting may hijack natural forgetting mechanisms, resulting in reduced engram cell accessibility and memory loss.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A broad spectrum of forgetting.
Fig. 2: Hypothesized mechanisms of engram cell-mediated forgetting.
Fig. 3: Forgetting as a form of adaptive neuroplasticity.

References

  1. James, W. The Principles of Psychology (H. Holt and Company, 1890).

  2. Josselyn, S. A., Kohler, S. & Frankland, P. W. Finding the engram. Nat. Rev. Neurosci. 16, 521–534 (2015).

    CAS  PubMed  Google Scholar 

  3. Josselyn, S. A. & Tonegawa, S. Memory engrams: recalling the past and imagining the future. Science 367, eaaw4325 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Semon, R. Die Mneme [German] [English translation: The Mneme] (Wilhelm Engelmann, 1904).

  5. Semon, R. Die Nmemischen Empfindungen [German] [English translation: Mnemic Psychology] (Wilhelm Engelmann, 1909).

  6. Tonegawa, S., Pignatelli, M., Roy, D. S. & Ryan, T. J. Memory engram storage and retrieval. Curr. Opin. Neurobiol. 35, 101–109 (2015).

    CAS  PubMed  Google Scholar 

  7. Davis, R. L. & Zhong, Y. The biology of forgetting — a perspective. Neuron 95, 490–503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Richards, B. A. & Frankland, P. W. The persistence and transience of memory. Neuron 94, 1071–1084 (2017).

    CAS  PubMed  Google Scholar 

  9. Tulving, E. Cue-dependent forgetting. Am. Sci. 62, 74–82 (1974).

    Google Scholar 

  10. Ebbinghaus, H. Ueber das Gedaechtnis [German] (Duncker & Humbolt, 1885).

  11. Murre, J. M. & Dros, J. Replication and analysis of Ebbinghaus’ forgetting curve. PLoS ONE 10, e0120644 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Roediger III, H. L., Weinstein, Y. & Agarwal, P. K. in Forgetting (ed. Sala, S. D.) (Psychology Press, 2010).

  13. Wixted, J. T. & Ebbesen, E. B. On the form of forgetting. Psychol. Sci. 2, 409–415 (1991).

    Google Scholar 

  14. Diamond, N. B., Abdi, H. & Levine, B. Different patterns of recollection for matched real-world and laboratory-based episodes in younger and older adults. Cognition 202, 104309 (2020).

    PubMed  Google Scholar 

  15. Rubin, D. C. & Schulkind, M. D. The distribution of autobiographical memories across the lifespan. Mem. Cogn. 25, 859–866 (1997).

    CAS  Google Scholar 

  16. Wixted, J. T. The psychology and neuroscience of forgetting. Annu. Rev. Psychol. 55, 235–269 (2004).

    PubMed  Google Scholar 

  17. Parker, E. S., Cahill, L. & McGaugh, J. L. A case of unusual autobiographical remembering. Neurocase 12, 35–49 (2006).

    PubMed  Google Scholar 

  18. Kraemer, P. J. & Golding, J. M. Adaptive forgetting in animals. Psychonomic Bull. Rev. 4, 480–491 (1997).

    Google Scholar 

  19. Norby, S. Varieties of graded forgetting. Conscious. Cogn. 84, 102983 (2020).

    PubMed  Google Scholar 

  20. Anderson, M. C. & Hulbert, J. C. Active forgetting: adaptation of memory by prefrontal control. Annu. Rev. Psychol. 72, 1–36 (2021).

    PubMed  Google Scholar 

  21. Poo, M. M. et al. What is memory? The present state of the engram. BMC Biol. 14, 40 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Ryan, T. J. & Tonegawa, S. Rehebbilitating memory. Neuropsychopharmacology 41, 370–371 (2016).

    PubMed  Google Scholar 

  23. Chen, M. B., Jiang, X., Quake, S. R. & Sudhof, T. C. Persistent transcriptional programmes are associated with remote memory. Nature 587, 437–442 (2020).

    CAS  PubMed  Google Scholar 

  24. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Reijmers, L. & Mayford, M. Genetic control of active neural circuits. Front. Mol. Neurosci. 2, 27 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. Reijmers, L. G., Perkins, B. L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007).

    CAS  PubMed  Google Scholar 

  27. Tonegawa, S., Liu, X., Ramirez, S. & Redondo, R. Memory engram cells have come of age. Neuron 87, 918–931 (2015).

    CAS  PubMed  Google Scholar 

  28. Denny, C. A., Lebois, E. & Ramirez, S. From engrams to pathologies of the brain. Front. Neural Circuits 11, 23 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Liu, X., Ramirez, S., Redondo, R. L. & Tonegawa, S. Identification and manipulation of memory engram cells. Cold Spring Harb. Symp. Quant. Biol. 79, 59–65 (2014).

    PubMed  Google Scholar 

  30. Liu, X., Ramirez, S. & Tonegawa, S. Inception of a false memory by optogenetic manipulation of a hippocampal memory engram. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130142 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Queenan, B. N., Ryan, T. J., Gazzaniga, M. S. & Gallistel, C. R. On the research of time past: the hunt for the substrate of memory. Ann. N. Y. Acad. Sci. 1396, 108–125 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Ryan, T. J., Ortega-de San Luis, C., Pezzoli, M. & Sen, S. Engram cell connectivity: an evolving substrate for information storage. Curr. Opin. Neurobiol. 67, 215–225 (2021).

    CAS  PubMed  Google Scholar 

  33. Frankland, P. W., Josselyn, S. A. & Kohler, S. The neurobiological foundation of memory retrieval. Nat. Neurosci. 22, 1576–1585 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A. & Tonegawa, S. Memory. Engram cells retain memory under retrograde amnesia. Science 348, 1007–1013 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Abdou, K. et al. Synapse-specific representation of the identity of overlapping memory engrams. Science 360, 1227–1231 (2018).

    CAS  PubMed  Google Scholar 

  36. Bessieres, B., Travaglia, A., Mowery, T. M., Zhang, X. & Alberini, C. M. Early life experiences selectively mature learning and memory abilities. Nat. Commun. 11, 628 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Guskjolen, A. et al. Recovery of ‘lost’ infant memories in mice. Curr. Biol. 28, 2283–2290.e3 (2018).

    CAS  PubMed  Google Scholar 

  38. Perusini, J. N. et al. Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer’s disease mice. Hippocampus 27, 1110–1122 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Poll, S. et al. Memory trace interference impairs recall in a mouse model of Alzheimer’s disease. Nat. Neurosci. 23, 952–958 (2020).

    CAS  PubMed  Google Scholar 

  40. Roy, D. S. et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 531, 508–512 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bolsius, Y. G. et al. Restoring persistent accessibility to memories after sleep deprivation-induced amnesia. Preprint at https://www.biorxiv.org/content/10.1101/2021.05.11.443364v1 (2021).

  42. Kim, W. B. & Cho, J. H. Encoding of contextual fear memory in hippocampal–amygdala circuit. Nat. Commun. 11, 1382 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Frost, W. N., Castellucci, V. F., Hawkins, R. D. & Kandel, E. R. Monosynaptic connections made by the sensory neurons of the gill- and siphon-withdrawal reflex in Aplysia participate in the storage of long-term memory for sensitization. Proc. Natl Acad. Sci. USA 82, 8266–8269 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, S. et al. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. eLife 3, e03896 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Anggono, V. & Huganir, R. L. Regulation of AMPA receptor trafficking and synaptic plasticity. Curr. Opin. Neurobiol. 22, 461–469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hardt, O., Nader, K. & Wang, Y. T. GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short- and long-term memories. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130141 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Malenka, R. C. Synaptic plasticity and AMPA receptor trafficking. Ann. N. Y. Acad. Sci. 1003, 1–11 (2003).

    CAS  PubMed  Google Scholar 

  49. Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    CAS  PubMed  Google Scholar 

  50. Dong, Z. et al. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J. Clin. Invest. 125, 234–247 (2015).

    PubMed  Google Scholar 

  51. Migues, P. V. et al. Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories. J. Neurosci. 36, 3481–3494 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lopez, J., Gamache, K., Schneider, R. & Nader, K. Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking. J. Neurosci. 35, 2465–2475 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Clem, R. L. & Huganir, R. L. Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330, 1108–1112 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Awasthi, A. et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science 363, eaav1483 (2019).

    CAS  PubMed  Google Scholar 

  55. Migues, P. V., Wong, J., Lyu, J. & Hardt, O. NMDA receptor activity bidirectionally controls active decay of long-term spatial memory in the dorsal hippocampus. Hippocampus 29, 883–888 (2019).

    CAS  PubMed  Google Scholar 

  56. Sachser, R. M. et al. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin. Sci. Rep. 6, 22771 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Villarreal, D. M., Do, V., Haddad, E. & Derrick, B. E. NMDA receptor antagonists sustain LTP and spatial memory: active processes mediate LTP decay. Nat. Neurosci. 5, 48–52 (2002).

    CAS  PubMed  Google Scholar 

  58. Brun, V. H., Ytterbo, K., Morris, R. G., Moser, M. B. & Moser, E. I. Retrograde amnesia for spatial memory induced by NMDA receptor-mediated long-term potentiation. J. Neurosci. 21, 356–362 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Misra, P., Marconi, A., Peterson, M. & Kreiman, G. Minimal memory for details in real life events. Sci. Rep. 8, 16701 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Steele, R. J. & Morris, R. G. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9, 118–136 (1999).

    CAS  PubMed  Google Scholar 

  61. Nonaka, M. et al. Everyday memory: towards a translationally effective method of modelling the encoding, forgetting and enhancement of memory. Eur. J. Neurosci. 46, 1937–1953 (2017).

    PubMed  Google Scholar 

  62. Wally, M. E., Nomoto, M., Abdou, K. & Inokucji, K. Uncovering long-term existence of a silent short-term memory trace. Preprint at https://www.biorxiv.org/content/10.1101/2021.05.08.443276v1 (2021).

  63. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    CAS  PubMed  Google Scholar 

  64. Day, M., Langston, R. & Morris, R. G. Glutamate-receptor-mediated encoding and retrieval of paired-associate learning. Nature 424, 205–209 (2003).

    CAS  PubMed  Google Scholar 

  65. Redondo, R. L. & Morris, R. G. Making memories last: the synaptic tagging and capture hypothesis. Nat. Rev. Neurosci. 12, 17–30 (2011).

    CAS  PubMed  Google Scholar 

  66. Wang, S. H., Redondo, R. L. & Morris, R. G. Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc. Natl Acad. Sci. USA 107, 19537–19542 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Takeuchi, T. et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537, 357–362 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    CAS  PubMed  Google Scholar 

  69. Luo, L. Rho GTPases in neuronal morphogenesis. Nat. Rev. Neurosci. 1, 173–180 (2000).

    CAS  PubMed  Google Scholar 

  70. Nakayama, A. Y., Harms, M. B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Berry, J. A. & Davis, R. L. Active forgetting of olfactory memories in Drosophila. Prog. Brain Res. 208, 39–62 (2014).

    PubMed  Google Scholar 

  72. Shuai, Y. & Zhong, Y. Forgetting and small G protein Rac. Protein Cell 1, 503–506 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shuai, Y. et al. Forgetting is regulated through Rac activity in Drosophila. Cell 140, 579–589 (2010).

    CAS  PubMed  Google Scholar 

  74. Dong, T. et al. Inability to activate Rac1-dependent forgetting contributes to behavioral inflexibility in mutants of multiple autism-risk genes. Proc. Natl Acad. Sci. USA 113, 7644–7649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shuai, Y., Hu, Y., Qin, H., Campbell, R. A. & Zhong, Y. Distinct molecular underpinnings of Drosophila olfactory trace conditioning. Proc. Natl Acad. Sci. USA 108, 20201–20206 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jiang, L. et al. Inhibition of Rac1 activity in the hippocampus impairs the forgetting of contextual fear memory. Mol. Neurobiol. 53, 1247–1253 (2016).

    CAS  PubMed  Google Scholar 

  77. Liu, Y. et al. Hippocampal activation of Rac1 regulates the forgetting of object recognition memory. Curr. Biol. 26, 2351–2357 (2016).

    CAS  PubMed  Google Scholar 

  78. Lv, L. et al. Interplay between α2-chimaerin and Rac1 activity determines dynamic maintenance of long-term memory. Nat. Commun. 10, 5313 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. Hayashi-Takagi, A. et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525, 333–338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Berry, J. A., Cervantes-Sandoval, I., Nicholas, E. P. & Davis, R. L. Dopamine is required for learning and forgetting in Drosophila. Neuron 74, 530–542 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Berry, J. A., Cervantes-Sandoval, I., Chakraborty, M. & Davis, R. L. Sleep facilitates memory by blocking dopamine neuron-mediated forgetting. Cell 161, 1656–1667 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Shuai, Y. et al. Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory. Proc. Natl Acad. Sci. USA 112, E6663–E6672 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Himmelreich, S. et al. Dopamine receptor DAMB signals via Gq to mediate forgetting in Drosophila. Cell Rep. 21, 2074–2081 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cervantes-Sandoval, I., Chakraborty, M., MacMullen, C. & Davis, R. L. Scribble scaffolds a signalosome for active forgetting. Neuron 90, 1230–1242 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Berry, J. A., Phan, A. & Davis, R. L. Dopamine neurons mediate learning and forgetting through bidirectional modulation of a memory trace. Cell Rep. 25, 651–662 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Havekes, R. et al. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1. eLife 5, e13424 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. Cooke, S. F. & Ramaswami, M. in The Cognitive Neurosciences (eds Poeppel, D., Mangun, G. R. & Gazzaniga, M. S.) (MIT Press, 2020).

  88. Das, S. et al. Plasticity of local GABAergic interneurons drives olfactory habituation. Proc. Natl Acad. Sci. USA 108, E646–E654 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Stefanelli, T., Bertollini, C., Luscher, C., Muller, D. & Mendez, P. Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron 89, 1074–1085 (2016).

    CAS  PubMed  Google Scholar 

  90. Sudhakaran, I. P. et al. Plasticity of recurrent inhibition in the Drosophila antennal lobe. J. Neurosci. 32, 7225–7231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Barron, H. C., Vogels, T. P., Behrens, T. E. & Ramaswami, M. Inhibitory engrams in perception and memory. Proc. Natl Acad. Sci. USA 114, 6666–6674 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ramaswami, M. Network plasticity in adaptive filtering and behavioral habituation. Neuron 82, 1216–1229 (2014).

    CAS  PubMed  Google Scholar 

  93. Devaud, J. M., Acebes, A. & Ferrus, A. Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila. J. Neurosci. 21, 6274–6282 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sachse, S. et al. Activity-dependent plasticity in an olfactory circuit. Neuron 56, 838–850 (2007).

    CAS  PubMed  Google Scholar 

  95. Sadanandappa, M. K. et al. Synapsin function in GABA-ergic interneurons is required for short-term olfactory habituation. J. Neurosci. 33, 16576–16585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Paranjpe, P., Rodrigues, V., VijayRaghavan, K. & Ramaswami, M. Gustatory habituation in Drosophila relies on rutabaga (adenylate cyclase)-dependent plasticity of GABAergic inhibitory neurons. Learn. Mem. 19, 627–635 (2012).

    CAS  PubMed  Google Scholar 

  97. Cooke, S. F., Komorowski, R. W., Kaplan, E. S., Gavornik, J. P. & Bear, M. F. Visual recognition memory, manifested as long-term habituation, requires synaptic plasticity in V1. Nat. Neurosci. 18, 262–271 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kaplan, E. S. et al. Contrasting roles for parvalbumin-expressing inhibitory neurons in two forms of adult visual cortical plasticity. eLife 5, e11450 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Barron, H. C. et al. Unmasking latent inhibitory connections in human cortex to reveal dormant cortical memories. Neuron 90, 191–203 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schmitz, T. W., Correia, M. M., Ferreira, C. S., Prescot, A. P. & Anderson, M. C. Hippocampal GABA enables inhibitory control over unwanted thoughts. Nat. Commun. 8, 1311 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Sun, X. et al. Functionally distinct neuronal ensembles within the memory engram. Cell 181, 410–423 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Guo, N. et al. Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. Nat. Med. 24, 438–449 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Trouche, S., Sasaki, J. M., Tu, T. & Reijmers, L. G. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses. Neuron 80, 1054–1065 (2013).

    CAS  PubMed  Google Scholar 

  104. Karunakaran, S. et al. PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation. Nat. Neurosci. 19, 454–464 (2016).

    CAS  PubMed  Google Scholar 

  105. Ruediger, S. et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473, 514–518 (2011).

    CAS  PubMed  Google Scholar 

  106. Amrein, I. Adult hippocampal neurogenesis in natural populations of mammals. Cold Spring Harb. Perspect. Biol. 7, a021295 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. Kempermann, G. et al. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23, 25–30 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Moreno-Jimenez, E. P. et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 25, 554–560 (2019).

    CAS  PubMed  Google Scholar 

  109. Sorrells, S. F. et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377–381 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Frankland, P. W., Kohler, S. & Josselyn, S. A. Hippocampal neurogenesis and forgetting. Trends Neurosci. 36, 497–503 (2013).

    CAS  PubMed  Google Scholar 

  111. Deisseroth, K. et al. Excitation–neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42, 535–552 (2004).

    CAS  PubMed  Google Scholar 

  112. Tran, L. M., Josselyn, S. A., Richards, B. A. & Frankland, P. W. Forgetting at biologically realistic levels of neurogenesis in a large-scale hippocampal model. Behav. Brain Res. 376, 112180 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Weisz, V. I. & Argibay, P. F. Neurogenesis interferes with the retrieval of remote memories: forgetting in neurocomputational terms. Cognition 125, 13–25 (2012).

    PubMed  Google Scholar 

  114. Akers, K. G. et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344, 598–602 (2014).

    CAS  PubMed  Google Scholar 

  115. Cuartero, M. I. et al. Abolition of aberrant neurogenesis ameliorates cognitive impairment after stroke in mice. J. Clin. Invest. 129, 1536–1550 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Epp, J. R., Silva Mera, R., Kohler, S., Josselyn, S. A. & Frankland, P. W. Neurogenesis-mediated forgetting minimizes proactive interference. Nat. Commun. 7, 10838 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gao, A. et al. Elevation of hippocampal neurogenesis induces a temporally graded pattern of forgetting of contextual fear memories. J. Neurosci. 38, 3190–3198 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ishikawa, R., Fukushima, H., Frankland, P. W. & Kida, S. Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval. eLife 5, e17464 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Ishikawa, R., Uchida, C., Kitaoka, S., Furuyashiki, T. & Kida, S. Improvement of PTSD-like behavior by the forgetting effect of hippocampal neurogenesis enhancer memantine in a social defeat stress paradigm. Mol. Brain 12, 68 (2019).

    PubMed  PubMed Central  Google Scholar 

  120. Wang, C. et al. Microglia mediate forgetting via complement-dependent synaptic elimination. Science 367, 688–694 (2020).

    CAS  PubMed  Google Scholar 

  121. McAvoy, K. M. et al. Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits. Neuron 91, 1356–1373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Toni, N. et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat. Neurosci. 11, 901–907 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Toni, N. et al. Synapse formation on neurons born in the adult hippocampus. Nat. Neurosci. 10, 727–734 (2007).

    CAS  PubMed  Google Scholar 

  124. Kitamura, T. et al. Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139, 814–827 (2009).

    CAS  PubMed  Google Scholar 

  125. Harel, A. & Ryan, T. J. The memory toolbox: how genetic manipulations and cellular imaging are transforming our understanding of learned information. Curr. Opin. Behav. Sci. 32, 136–147 (2020).

    Google Scholar 

  126. Choi, J. H. et al. Interregional synaptic maps among engram cells underlie memory formation. Science 360, 430–435 (2018).

    CAS  PubMed  Google Scholar 

  127. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  PubMed  Google Scholar 

  129. Kuhl, B. A., Shah, A. T., DuBrow, S. & Wagner, A. D. Resistance to forgetting associated with hippocampus-mediated reactivation during new learning. Nat. Neurosci. 13, 501–506 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Madore, C., Yin, Z., Leibowitz, J. & Butovsky, O. Microglia, lifestyle stress, and neurodegeneration. Immunity 52, 222–240 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Marr, D. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. 261, 23–81 (1971).

    Google Scholar 

  132. Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49–62 (2006).

    PubMed  Google Scholar 

  133. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsaki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    CAS  PubMed  Google Scholar 

  134. Gridchyn, I., Schoenenberger, P., O’Neill, J. & Csicsvari, J. Assembly-specific disruption of hippocampal replay leads to selective memory deficit. Neuron 106, 291–300 e296 (2020).

    CAS  PubMed  Google Scholar 

  135. Xia, F. et al. Parvalbumin-positive interneurons mediate neocortical–hippocampal interactions that are necessary for memory consolidation. eLife 6, e27868 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Torrado Pacheco, A., Bottorff, J., Gao, Y. & Turrigiano, G. G. Sleep promotes downward firing rate homeostasis. Neuron 109, 530–544 (2020).

    PubMed  Google Scholar 

  137. Crick, F. & Mitchison, G. The funciton of dream sleep. Nature 304, 111–114 (1983).

    CAS  PubMed  Google Scholar 

  138. Feld, G. B. & Born, J. Sculpting memory during sleep: concurrent consolidation and forgetting. Curr. Opin. Neurobiol. 44, 20–27 (2017).

    CAS  PubMed  Google Scholar 

  139. de Vivo, L. et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Diering, G. H. et al. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355, 511–515 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Izawa, S. et al. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 365, 1308–1313 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wiltgen, B. J. & Silva, A. J. Memory for context becomes less specific with time. Learn. Mem. 14, 313–317 (2007).

    PubMed  Google Scholar 

  143. Wiltgen, B. J. et al. The hippocampus plays a selective role in the retrieval of detailed contextual memories. Curr. Biol. 20, 1336–1344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Winocur, G., Frankland, P. W., Sekeres, M., Fogel, S. & Moscovitch, M. Changes in context-specificity during memory reconsolidation: selective effects of hippocampal lesions. Learn. Mem. 16, 722–729 (2009).

    PubMed  Google Scholar 

  145. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    PubMed  Google Scholar 

  146. Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. Richards, B. A. et al. Patterns across multiple memories are identified over time. Nat. Neurosci. 17, 981–986 (2014).

    CAS  PubMed  Google Scholar 

  148. Santoro, A., Frankland, P. W. & Richards, B. A. Memory transformation enhances reinforcement learning in dynamic environments. J. Neurosci. 36, 12228–12242 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Gilboa, A. & Moscovitch, M. No consolidation without representation: correspondence between neural and psychological representations in recent and remote memory. Neuron 109, 2239–2255 (2021).

    CAS  PubMed  Google Scholar 

  150. Riccio, D. C., Ackil, J. & Burch-Vernon, A. Forgetting of stimulus attributes: methodological implications for assessing associative phenomena. Psychol. Bull. 112, 433–445 (1992).

    CAS  PubMed  Google Scholar 

  151. Benna, M. K. & Fusi, S. Computational principles of synaptic memory consolidation. Nat. Neurosci. 19, 1697–1706 (2016).

    CAS  PubMed  Google Scholar 

  152. Sangha, S. et al. Impairing forgetting by preventing new learning and memory. Behav. Neurosci. 119, 787–796 (2005).

    PubMed  Google Scholar 

  153. Miller, R. R. Failures of memory and the fate of forgotten memories. Neurobiol. Learn. Mem. 181, 107426 (2021).

    PubMed  Google Scholar 

  154. Abraham, W. C., Logan, B., Greenwood, J. M. & Dragunow, M. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J. Neurosci. 22, 9626–9634 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ferrari, M. C., Brown, G. E. & Chivers, D. P. Temperature-mediated changes in rates of predator forgetting in woodfrog tadpoles. PLoS ONE 7, e51143 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Nithianantharajah, J. & Hannan, A. J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 7, 697–709 (2006).

    CAS  PubMed  Google Scholar 

  157. Zeleznikow-Johnston, A., Burrows, E. L., Renoir, T. & Hannan, A. J. Environmental enrichment enhances cognitive flexibility in C57BL/6 mice on a touchscreen reversal learning task. Neuropharmacology 117, 219–226 (2017).

    CAS  PubMed  Google Scholar 

  158. Ramirez, S. et al. Activating positive memory engrams suppresses depression-like behaviour. Nature 522, 335–339 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Senapati, B. et al. A neural mechanism for deprivation state-specific expression of relevant memories in Drosophila. Nat. Neurosci. 22, 2029–2039 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Liu, Y., Lv, L., Wang, L. & Zhong, Y. Social isolation induces rac1-dependent forgetting of social memory. Cell Rep. 25, 288–295.e3 (2018).

    CAS  PubMed  Google Scholar 

  161. Anderson, M. C., Bjork, E. L. & Bjork, R. A. Retrieval-induced forgetting: evidence for a recall-specific mechanism. Psychon. Bull. Rev. 7, 522–530 (2000).

    CAS  PubMed  Google Scholar 

  162. Murayama, K., Miyatsu, T., Buchli, D. & Storm, B. C. Forgetting as a consequence of retrieval: a meta-analytic review of retrieval-induced forgetting. Psychol. Bull. 140, 1383–1409 (2014).

    PubMed  Google Scholar 

  163. Wimber, M., Alink, A., Charest, I., Kriegeskorte, N. & Anderson, M. C. Retrieval induces adaptive forgetting of competing memories via cortical pattern suppression. Nat. Neurosci. 18, 582–589 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Bekinschtein, P., Weisstaub, N. V., Gallo, F., Renner, M. & Anderson, M. C. A retrieval-specific mechanism of adaptive forgetting in the mammalian brain. Nat. Commun. 9, 4660 (2018).

    PubMed  PubMed Central  Google Scholar 

  165. Gallo, F. T. et al. Dopamine modulates adaptive forgetting in medial prefrontal cortex. Preprint at https://www.biorxiv.org/content/10.1101/2021.04.08.438979v1 (2021).

  166. Wu, J. Q., Peters, G. J., Rittner, P., Cleland, T. A. & Smith, D. M. The hippocampus, medial prefrontal cortex, and selective memory retrieval: evidence from a rodent model of the retrieval-induced forgetting effect. Hippocampus 24, 1070–1080 (2014).

    PubMed  PubMed Central  Google Scholar 

  167. Miguez, G., Mash, L. E., Polack, C. W. & Miller, R. R. Failure to observe renewal following retrieval-induced forgetting. Behav. Process. 103, 43–51 (2014).

    Google Scholar 

  168. Smolen, P., Zhang, Y. & Byrne, J. H. The right time to learn: mechanisms and optimization of spaced learning. Nat. Rev. Neurosci. 17, 77–88 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Kogan, J. H. et al. Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol. 7, 1–11 (1997).

    CAS  PubMed  Google Scholar 

  170. Menzel, R., Manz, G., Menzel, R. & Greggers, U. Massed and spaced learning in honeybees: the role of CS, US, the intertrial interval, and the test interval. Learn. Mem. 8, 198–208 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Tully, T., Preat, T., Boynton, S. C. & Del Vecchio, M. Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47 (1994).

    CAS  PubMed  Google Scholar 

  172. Brea, J., Urbanczik, R. & Senn, W. A normative theory of forgetting: lessons from the fruit fly. PLoS Comput. Biol. 10, e1003640 (2014).

    PubMed  PubMed Central  Google Scholar 

  173. Gao, Y. et al. Genetic dissection of active forgetting in labile and consolidated memories in Drosophila. Proc. Natl Acad. Sci. USA 116, 21191–21197 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang, X., Li, Q., Wang, L., Liu, Z. J. & Zhong, Y. Cdc42-dependent forgetting regulates repetition effect in prolonging memory retention. Cell Rep. 16, 817–825 (2016).

    CAS  PubMed  Google Scholar 

  175. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    CAS  PubMed  Google Scholar 

  176. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).

    CAS  PubMed  Google Scholar 

  177. Gershman, S. J. & Uchida, N. Believing in dopamine. Nat. Rev. Neurosci. 20, 703–714 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Starkweather, C. K., Babayan, B. M., Uchida, N. & Gershman, S. J. Dopamine reward prediction errors reflect hidden-state inference across time. Nat. Neurosci. 20, 581–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Khalaf, O. et al. Reactivation of recall-induced neurons contributes to remote fear memory attenuation. Science 360, 1239–1242 (2018).

    CAS  PubMed  Google Scholar 

  180. Morris, R. G. et al. Memory reconsolidation: sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron 50, 479–489 (2006).

    CAS  PubMed  Google Scholar 

  181. Tronel, S., Milekic, M. H. & Alberini, C. M. Linking new information to a reactivated memory requires consolidation and not reconsolidation mechanisms. PLoS Biol. 3, e293 (2005).

    PubMed  PubMed Central  Google Scholar 

  182. Tronson, N. C., Wiseman, S. L., Olausson, P. & Taylor, J. R. Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nat. Neurosci. 9, 167–169 (2006).

    CAS  PubMed  Google Scholar 

  183. Monfils, M. H., Cowansage, K. K., Klann, E. & LeDoux, J. E. Extinction–reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324, 951–955 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Schiller, D. et al. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463, 49–53 (2010).

    CAS  PubMed  Google Scholar 

  185. Sevenster, D., Beckers, T. & Kindt, M. Prediction error governs pharmacologically induced amnesia for learned fear. Science 339, 830–833 (2013).

    CAS  PubMed  Google Scholar 

  186. Exton-McGuinness, M. T., Lee, J. L. & Reichelt, A. C. Updating memories — the role of prediction errors in memory reconsolidation. Behav. Brain Res. 278, 375–384 (2015).

    PubMed  Google Scholar 

  187. Reichelt, A. C., Exton-McGuinness, M. T. & Lee, J. L. Ventral tegmental dopamine dysregulation prevents appetitive memory destabilization. J. Neurosci. 33, 14205–14210 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Bouton, M. E., Westbrook, R. F., Corcoran, K. A. & Maren, S. Contextual and temporal modulation of extinction: behavioral and biological mechanisms. Biol. Psychiatry 60, 352–360 (2006).

    PubMed  Google Scholar 

  189. McNally, G. P., Johansen, J. P. & Blair, H. T. Placing prediction into the fear circuit. Trends Neurosci. 34, 283–292 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Cai, L. X. et al. Distinct signals in medial and lateral VTA dopamine neurons modulate fear extinction at different times. eLife 9, e54936 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Luo, R. et al. A dopaminergic switch for fear to safety transitions. Nat. Commun. 9, 2483 (2018).

    PubMed  PubMed Central  Google Scholar 

  192. Salinas-Hernandez, X. I. et al. Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes. eLife 7, e38818 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Abraham, A. D., Neve, K. A. & Lattal, K. M. Dopamine and extinction: a convergence of theory with fear and reward circuitry. Neurobiol. Learn. Mem. 108, 65–77 (2014).

    PubMed  Google Scholar 

  194. Salinas-Hernandez, X. I. & Duvarci, S. Dopamine in fear extinction. Front. Synaptic Neurosci. 13, 635879 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Felsenberg, J., Barnstedt, O., Cognigni, P., Lin, S. & Waddell, S. Re-evaluation of learned information in Drosophila. Nature 544, 240–244 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Felsenberg, J. et al. Integration of parallel opposing memories underlies memory extinction. Cell 175, 709–722.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Maren, S., Phan, K. L. & Liberzon, I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 14, 417–428 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Rescorla, R. A. Behavioral studies of Pavlovian conditioning. Annu. Rev. Neurosci. 11, 329–352 (1988).

    CAS  PubMed  Google Scholar 

  199. Lacagnina, A. F. et al. Distinct hippocampal engrams control extinction and relapse of fear memory. Nat. Neurosci. 22, 753–761 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Likhtik, E. & Johansen, J. P. Neuromodulation in circuits of aversive emotional learning. Nat. Neurosci. 22, 1586–1597 (2019).

    CAS  PubMed  Google Scholar 

  201. Uematsu, A. et al. Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nat. Neurosci. 20, 1602–1611 (2017).

    CAS  PubMed  Google Scholar 

  202. Kok, P., Rait, L. I. & Turk-Browne, N. B. Content-based dissociation of hippocampal involvement in prediction. J. Cogn. Neurosci. 32, 527–545 (2020).

    PubMed  PubMed Central  Google Scholar 

  203. Kim, G., Lewis-Peacock, J. A., Norman, K. A. & Turk-Browne, N. B. Pruning of memories by context-based prediction error. Proc. Natl Acad. Sci. USA 111, 8997–9002 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Kim, H., Schlichting, M. L., Preston, A. R. & Lewis-Peacock, J. A. Predictability changes what we remember in familiar temporal contexts. J. Cogn. Neurosci. 32, 124–140 (2020).

    PubMed  Google Scholar 

  205. Hemmer, P. & Persaud, K. Interaction between categorical knowledge and episodic memory across domains. Front. Psychol. 5, 584 (2014).

    PubMed  PubMed Central  Google Scholar 

  206. Kok, P. & Turk-Browne, N. B. Associative prediction of visual shape in the hippocampus. J. Neurosci. 38, 6888–6899 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Wu, W. et al. Inhibition of Rac1-dependent forgetting alleviates memory deficits in animal models of Alzheimer’s disease. Protein Cell 10, 745–759 (2019).

    PubMed  PubMed Central  Google Scholar 

  208. Hsieh, H. et al. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron 52, 831–843 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Ohno, M. Accelerated long-term forgetting is a BACE1 inhibitor-reversible incipient cognitive phenotype in Alzheimer’s disease model mice. Neuropsychopharmacol. Rep. 41, 255–259 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Wearn, A. R. et al. Accelerated long-term forgetting in healthy older adults predicts cognitive decline over 1 year. Alzheimers Res. Ther. 12, 119 (2020).

    PubMed  PubMed Central  Google Scholar 

  211. Weston, P. S. J. et al. Accelerated long-term forgetting in presymptomatic autosomal dominant Alzheimer’s disease: a cross-sectional study. Lancet Neurol. 17, 123–132 (2018).

    PubMed  PubMed Central  Google Scholar 

  212. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Vasek, M. J. et al. A complement–microglial axis drives synapse loss during virus-induced memory impairment. Nature 534, 538–543 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Papenberg, G. et al. Dopaminergic gene polymorphisms affect long-term forgetting in old age: further support for the magnification hypothesis. J. Cogn. Neurosci. 25, 571–579 (2013).

    PubMed  Google Scholar 

  215. Wang, C., Wang, L. & Gu, Y. Microglia, synaptic dynamics and forgetting. Brain Res. Bull. 174, 173–183 (2021).

    CAS  PubMed  Google Scholar 

  216. Ko, S. Y. & Frankland, P. W. Neurogenesis-dependent transformation of hippocampal engrams. Neurosci. Lett. 762, 136176 (2021).

    CAS  PubMed  Google Scholar 

  217. Denny, C. A. et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83, 189–201 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Tanaka, K. Z. et al. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84, 347–354 (2014).

    CAS  PubMed  Google Scholar 

  219. Trouche, S. et al. A hippocampus–accumbens tripartite neuronal motif guides appetitive memory in space. Cell 176, 1393–1406.e16 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Ramirez, S. et al. Creating a false memory in the hippocampus. Science 341, 387–391 (2013).

    CAS  PubMed  Google Scholar 

  221. Pignatelli, M. et al. Engram cell excitability state determines the efficacy of memory retrieval. Neuron 101, 274–284.e5 (2019).

    CAS  PubMed  Google Scholar 

  222. Choi, D. I. et al. Synaptic correlates of associative fear memory in the lateral amygdala. Neuron 109, 2717–2726.e3 (2021).

    CAS  PubMed  Google Scholar 

  223. Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Castello-Waldow, T. P. et al. Hippocampal neurons with stable excitatory connectivity become part of neuronal representations. PLoS Biol. 18, e3000928 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Park, S. W., Dijkstra, T. M. & Sternad, D. Learning to never forget-time scales and specificity of long-term memory of a motor skill. Front. Comput. Neurosci. 7, 111 (2013).

    PubMed  PubMed Central  Google Scholar 

  226. Wolpert, D. M. & Flanagan, J. R. Computations underlying sensorimotor learning. Curr. Opin. Neurobiol. 37, 7–11 (2016).

    CAS  PubMed  Google Scholar 

  227. Bartlett, F. C. Remembering: A Study in Experimental and Social Psychology (Cambridge Univ. Press, 1932).

  228. Sekeres, M. J. et al. Recovering and preventing loss of detailed memory: differential rates of forgetting for detail types in episodic memory. Learn. Mem. 23, 72–82 (2016).

    PubMed  PubMed Central  Google Scholar 

  229. Wang, S. H. & Morris, R. G. Hippocampal–neocortical interactions in memory formation, consolidation, and reconsolidation. Annu. Rev. Psychol. 61, 49–79 (2010).

    PubMed  Google Scholar 

  230. Brennan, A. E. & Smith, M. A. The decay of motor memories is independent of context change detection. PLoS Comput. Biol. 11, e1004278 (2015).

    PubMed  PubMed Central  Google Scholar 

  231. Shmuelof, L. et al. Overcoming motor ‘forgetting’ through reinforcement of learned actions. J. Neurosci. 32, 14617–14621 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Vaswani, P. A. & Shadmehr, R. Decay of motor memories in the absence of error. J. Neurosci. 33, 7700–7709 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Davidson, P. R. & Wolpert, D. M. Motor learning and prediction in a variable environment. Curr. Opin. Neurobiol. 13, 232–237 (2003).

    CAS  PubMed  Google Scholar 

  234. McIntyre, J., Zago, M., Berthoz, A. & Lacquaniti, F. Does the brain model Newton’s laws? Nat. Neurosci. 4, 693–694 (2001).

    CAS  PubMed  Google Scholar 

  235. Akers, K. G., Arruda-Carvalho, M., Josselyn, S. A. & Frankland, P. W. Ontogeny of contextual fear memory formation, specificity, and persistence in mice. Learn. Mem. 19, 598–604 (2012).

    PubMed  Google Scholar 

  236. Campbell, B. A. & Spear, N. E. Ontogeny of memory. Psychol. Rev. 79, 215–236 (1972).

    CAS  PubMed  Google Scholar 

  237. Kim, J. H., McNally, G. P. & Richardson, R. Recovery of fear memories in rats: role of γ-amino butyric acid (GABA) in infantile amnesia. Behav. Neurosci. 120, 40–48 (2006).

    CAS  PubMed  Google Scholar 

  238. Travaglia, A., Bisaz, R., Sweet, E. S., Blitzer, R. D. & Alberini, C. M. Infantile amnesia reflects a developmental critical period for hippocampal learning. Nat. Neurosci. 19, 1225–1233 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Callaghan, B. L. & Richardson, R. Maternal separation results in early emergence of adult-like fear and extinction learning in infant rats. Behav. Neurosci. 125, 20–28 (2011).

    PubMed  Google Scholar 

  240. Callaghan, B. L. & Richardson, R. The effect of adverse rearing environments on persistent memories in young rats: removing the brakes on infant fear memories. Transl. Psychiatry 2, e138 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Josselyn for comments on earlier drafts of this manuscript, and C. Ortega-de San Luis, L. Autore and A. Harel for help with figure design. T.J.R. is supported by the European Research Council, Science Foundation Ireland, the Lister Institute of Preventive Medicine, the US AFRL, the Jacobs Foundation and the Canadian Institute for Advanced Research. P.W.F. is supported by Canadian Institutes of Health Research and the Canadian Institute for Advanced Research.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Tomás J. Ryan or Paul W. Frankland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryan, T.J., Frankland, P.W. Forgetting as a form of adaptive engram cell plasticity. Nat Rev Neurosci 23, 173–186 (2022). https://doi.org/10.1038/s41583-021-00548-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00548-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing