Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A hypothalamomedullary network for physiological responses to environmental stresses

Abstract

Various environmental stressors, such as extreme temperatures (hot and cold), pathogens, predators and insufficient food, can threaten life. Remarkable progress has recently been made in understanding the central circuit mechanisms of physiological responses to such stressors. A hypothalamomedullary neural pathway from the dorsomedial hypothalamus (DMH) to the rostral medullary raphe region (rMR) regulates sympathetic outflows to effector organs for homeostasis. Thermal and infection stress inputs to the preoptic area dynamically alter the DMH → rMR transmission to elicit thermoregulatory, febrile and cardiovascular responses. Psychological stress signalling from a ventromedial prefrontal cortical area to the DMH drives sympathetic and behavioural responses for stress coping, representing a psychosomatic connection from the corticolimbic emotion circuit to the autonomic and somatic motor systems. Under starvation stress, medullary reticular neurons activated by hunger signalling from the hypothalamus suppress thermogenic drive from the rMR for energy saving and prime mastication to promote food intake. This Perspective presents a combined neural network for environmental stress responses, providing insights into the central circuit mechanism for the integrative regulation of systemic organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic diagram of the central pathways for environmental stress signalling in rodents.
Fig. 2: A model of the network mechanism for physiological responses to environmental stresses.
Fig. 3: Preoptic area local circuit for thermal and infection stress responses.
Fig. 4: Indispensable roles of the DP/DTT → DMH pathway in physiological responses to psychological stress but not in basal homeostasis.
Fig. 5: A model of the hypothalamomedullary network mechanism for physiological responses to starvation stress.

Similar content being viewed by others

References

  1. Nagashima, K., Nakai, S., Tanaka, M. & Kanosue, K. Neuronal circuitries involved in thermoregulation. Auton. Neurosci. 85, 18–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Morrison, S. F. Central pathways controlling brown adipose tissue thermogenesis. N. Physiol. Sci. 19, 67–74 (2004).

    Google Scholar 

  3. Nakamura, K., Matsumura, K., Kobayashi, S. & Kaneko, T. Sympathetic premotor neurons mediating thermoregulatory functions. Neurosci. Res. 51, 1–8 (2005).

    Article  PubMed  Google Scholar 

  4. Dimicco, J. A. & Zaretsky, D. V. The dorsomedial hypothalamus: a new player in thermoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R47–R63 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Nakamura, K. Central circuitries for body temperature regulation and fever. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1207–R1228 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ootsuka, Y. & Tanaka, M. Control of cutaneous blood flow by central nervous system. Temperature 2, 392–405 (2015).

    Article  Google Scholar 

  8. Blessing, W., McAllen, R. & McKinley, M. Control of the cutaneous circulation by the central nervous system. Compr. Physiol. 6, 1161–1197 (2016).

    Article  PubMed  Google Scholar 

  9. Tan, C. L. & Knight, Z. A. Regulation of body temperature by the nervous system. Neuron 98, 31–48 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Madden, C. J. & Morrison, S. F. Central nervous system circuits that control body temperature. Neurosci. Lett. 696, 225–232 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Morrison, S. F. & Nakamura, K. Central mechanisms for thermoregulation. Annu. Rev. Physiol. 81, 285–308 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura, K. & Morrison, S. F. A thermosensory pathway that controls body temperature. Nat. Neurosci. 11, 62–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura, K. & Morrison, S. F. A thermosensory pathway mediating heat-defense responses. Proc. Natl Acad. Sci. USA 107, 8848–8853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakamura, K. et al. The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J. Neurosci. 22, 4600–4610 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lazarus, M. et al. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat. Neurosci. 10, 1131–1133 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Tan, C. L. et al. Warm-sensitive neurons that control body temperature. Cell 167, 47–59.e15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, Z. D. et al. A hypothalamic circuit that controls body temperature. Proc. Natl Acad. Sci. USA 114, 2042–2047 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kataoka, N., Shima, Y., Nakajima, K. & Nakamura, K. A central master driver of psychosocial stress responses in the rat. Science 367, 1105–1112 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakamura, Y., Yanagawa, Y., Morrison, S. F. & Nakamura, K. Medullary reticular neurons mediate neuropeptide Y-induced metabolic inhibition and mastication. Cell Metab. 25, 322–334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morrison, S. F., Sved, A. F. & Passerin, A. M. GABA-mediated inhibition of raphe pallidus neurons regulates sympathetic outflow to brown adipose tissue. Am. J. Physiol. 276, R290–R297 (1999).

    CAS  PubMed  Google Scholar 

  22. Blessing, W. W., Yu, Y. H. & Nalivaiko, E. Raphe pallidus and parapyramidal neurons regulate ear pinna vascular conductance in the rabbit. Neurosci. Lett. 270, 33–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura, K. et al. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J. Neurosci. 24, 5370–5380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stornetta, R. L. et al. Coexpression of vesicular glutamate transporter-3 and gamma-aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. J. Comp. Neurol. 492, 477–494 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Nakamura, K. et al. Independent inputs by VGLUT2- and VGLUT3-positive glutamatergic terminals onto rat sympathetic preganglionic neurons. NeuroReport 15, 431–436 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Blessing, W. W. & Nalivaiko, E. Raphe magnus/pallidus neurons regulate tail but not mesenteric arterial blood flow in rats. Neuroscience 105, 923–929 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Cao, W. H. & Morrison, S. F. Disinhibition of rostral raphe pallidus neurons increases cardiac sympathetic nerve activity and heart rate. Brain Res. 980, 1–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Nason, M. W. Jr. & Mason, P. Modulation of sympathetic and somatomotor function by the ventromedial medulla. J. Neurophysiol. 92, 510–522 (2004).

    Article  PubMed  Google Scholar 

  29. Nakamura, K. & Morrison, S. F. Central efferent pathways for cold-defensive and febrile shivering. J. Physiol. 589, 3641–3658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeng, X. et al. Innervation of thermogenic adipose tissue via a calsyntenin 3β-S100b axis. Nature 569, 229–235 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. McAllen, R. M., Tanaka, M., Ootsuka, Y. & McKinley, M. J. Multiple thermoregulatory effectors with independent central controls. Eur. J. Appl. Physiol. 109, 27–33 (2010).

    Article  PubMed  Google Scholar 

  32. Madden, C. J. & Morrison, S. F. Serotonin potentiates sympathetic responses evoked by spinal NMDA. J. Physiol. 577, 525–537 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hodges, M. R. et al. Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J. Neurosci. 28, 2495–2505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dampney, R. A. L. Functional organization of central pathways regulating the cardiovascular system. Physiol. Rev. 74, 323–364 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Stornetta, R. L., Sevigny, C. P., Schreihofer, A. M., Rosin, D. L. & Guyenet, P. G. Vesicular glutamate transporter DNPI/VGLUT2 is expressed by both C1 adrenergic and nonaminergic presympathetic vasomotor neurons of the rat medulla. J. Comp. Neurol. 444, 207–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Willette, R. N., Punnen-Grandy, S., Krieger, A. J. & Sapru, H. N. Differential regulation of regional vascular resistance by the rostral and caudal ventrolateral medulla in the rat. J. Auton. Nerv. Syst. 18, 143–151 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Kanbar, R., Stornetta, R. L., Cash, D. R., Lewis, S. J. & Guyenet, P. G. Photostimulation of Phox2b medullary neurons activates cardiorespiratory function in conscious rats. Am. J. Respir. Crit. Care Med. 182, 1184–1194 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Samuels, B. C., Zaretsky, D. V. & DiMicco, J. A. Dorsomedial hypothalamic sites where disinhibition evokes tachycardia correlate with location of raphe-projecting neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R472–R478 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura, Y. et al. Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus. Eur. J. Neurosci. 22, 3137–3146 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates 6th edn (Academic Press, 2007).

  41. Hosoya, Y., Ito, R. & Kohno, K. The topographical organization of neurons in the dorsal hypothalamic area that project to the spinal cord or to the nucleus raphé pallidus in the rat. Exp. Brain Res. 66, 500–506 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Cao, W. H., Fan, W. & Morrison, S. F. Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus. Neuroscience 126, 229–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka, M. et al. Hypothalamic region facilitating shivering in rats. Jpn. J. Physiol. 51, 625–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Zaretskaia, M. V., Zaretsky, D. V., Shekhar, A. & DiMicco, J. A. Chemical stimulation of the dorsomedial hypothalamus evokes non-shivering thermogenesis in anesthetized rats. Brain Res. 928, 113–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Rathner, J. A., Madden, C. J. & Morrison, S. F. Central pathway for spontaneous and prostaglandin E2-evoked cutaneous vasoconstriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R343–R354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanaka, M., Owens, N. C., Nagashima, K., Kanosue, K. & McAllen, R. M. Reflex activation of rat fusimotor neurons by body surface cooling, and its dependence on the medullary raphe. J. Physiol. 572, 569–583 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kataoka, N., Hioki, H., Kaneko, T. & Nakamura, K. Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metab. 20, 346–358 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Horiuchi, J. et al. Descending vasomotor pathways from the dorsomedial hypothalamic nucleus: role of medullary raphe and RVLM. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R824–R832 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Ootsuka, Y. & McAllen, R. M. Interactive drives from two brain stem premotor nuclei are essential to support rat tail sympathetic activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1107–R1115 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka, M. & McAllen, R. M. Functional topography of the dorsomedial hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R477–R486 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Houtz, J., Liao, G. Y., An, J. J. & Xu, B. Discrete TrkB-expressing neurons of the dorsomedial hypothalamus regulate feeding and thermogenesis. Proc. Natl. Acad. Sci. USA 118, e2017218118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rezai-Zadeh, K. et al. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol. Metab. 3, 681–693 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Piñol, R. A. et al. Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake. Nat. Neurosci. 21, 1530–1540 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Liao, G. Y., Kinney, C. E., An, J. J. & Xu, B. TrkB-expressing neurons in the dorsomedial hypothalamus are necessary and sufficient to suppress homeostatic feeding. Proc. Natl Acad. Sci. USA 116, 3256–3261 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Enriori, P. J., Sinnayah, P., Simonds, S. E., Garcia Rudaz, C. & Cowley, M. A. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J. Neurosci. 31, 12189–12197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simonds, S. E. et al. Leptin mediates the increase in blood pressure associated with obesity. Cell 159, 1404–1416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jeong, J. H. et al. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism. Mol. Metab. 4, 483–492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Crandall, C. G. & Wilson, T. E. Human cardiovascular responses to passive heat stress. Compr. Physiol. 5, 17–43 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Morrison, S. F. & Nakamura, K. Central neural pathways for thermoregulation. Front. Biosci. 16, 74–104 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  60. Kluger, M. J. & Vaughn, L. K. Fever and survival in rabbits infected with Pasteurella multocida. J. Physiol. 282, 243–251 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mackowiak, P. A., Browne, R. H., Southern, P. M. Jr. & Smith, J. W. Polymicrobial sepsis: an analysis of 184 cases using log linear models. Am. J. Med. Sci. 280, 73–80 (1980).

    Article  CAS  PubMed  Google Scholar 

  62. Blatteis, C. M. Fever: is it beneficial? Yale J. Biol. Med. 59, 107–116 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Miyamoto, H. et al. Temperature effects on Legionella pneumophila killing by and multiplication in phagocytes of guinea pigs. Microbiol. Immunol. 39, 647–654 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Rosenspire, A. J., Kindzelskii, A. L. & Petty, H. R. Cutting edge: fever-associated temperatures enhance neutrophil responses to lipopolysaccharide: a potential mechanism involving cell metabolism. J. Immunol. 169, 5396–5400 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Sarkar, S., Zaretskaia, M. V., Zaretsky, D. V., Moreno, M. & DiMicco, J. A. Stress- and lipopolysaccharide-induced c-fos expression and nNOS in hypothalamic neurons projecting to medullary raphe in rats: a triple immunofluorescent labeling study. Eur. J. Neurosci. 26, 2228–2238 (2007).

    Article  PubMed  Google Scholar 

  66. Yoshida, K., Li, X., Cano, G., Lazarus, M. & Saper, C. B. Parallel preoptic pathways for thermoregulation. J. Neurosci. 29, 11954–11964 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Morrison, S. F. Raphe pallidus neurons mediate prostaglandin E2-evoked increases in brown adipose tissue thermogenesis. Neuroscience 121, 17–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Zaretskaia, M. V., Zaretsky, D. V. & DiMicco, J. A. Role of the dorsomedial hypothalamus in thermogenesis and tachycardia caused by microinjection of prostaglandin E2 into the preoptic area in anesthetized rats. Neurosci. Lett. 340, 1–4 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Nakamura, K. & Morrison, S. F. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R127–R136 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Korsak, A. & Gilbey, M. P. Rostral ventromedial medulla and the control of cutaneous vasoconstrictor activity following i.c.v. prostaglandin E1. Neuroscience 124, 709–717 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Ootsuka, Y., Blessing, W. W. & McAllen, R. M. Inhibition of rostral medullary raphé neurons prevents cold-induced activity in sympathetic nerves to rat tail and rabbit ear arteries. Neurosci. Lett. 357, 58–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29, 355–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Vriens, J., Nilius, B. & Voets, T. Peripheral thermosensation in mammals. Nat. Rev. Neurosci. 15, 573–589 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Nakamura, K. Afferent pathways for autonomic and shivering thermoeffectors. Handb. Clin. Neurol. 156, 263–279 (2018).

    Article  PubMed  Google Scholar 

  75. Hylden, J. L. K., Anton, F. & Nahin, R. L. Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience 28, 27–37 (1989).

    Article  CAS  PubMed  Google Scholar 

  76. Craig, A. D., Krout, K. & Andrew, D. Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J. Neurophysiol. 86, 1459–1480 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Andrew, D. & Craig, A. D. Spinothalamic lamina I neurones selectively responsive to cutaneous warming in cats. J. Physiol. 537, 489–495 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, J. et al. Medullary dorsal horn neurons providing axons to both the parabrachial nucleus and thalamus. J. Comp. Neurol. 498, 539–551 (2006).

    Article  PubMed  Google Scholar 

  79. Craig, A. D., Bushnell, M. C., Zhang, E. T. & Blomqvist, A. A thalamic nucleus specific for pain and temperature sensation. Nature 372, 770–773 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Yahiro, T., Kataoka, N., Nakamura, Y. & Nakamura, K. The lateral parabrachial nucleus, but not the thalamus, mediates thermosensory pathways for behavioural thermoregulation. Sci. Rep. 7, 5031 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Fulwiler, C. E. & Saper, C. B. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. 319, 229–259 (1984).

    Article  CAS  PubMed  Google Scholar 

  83. Geerling, J. C. et al. Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R41–R54 (2016).

    Article  PubMed  Google Scholar 

  84. Huang, D., Grady, F. S., Peltekian, L. & Geerling, J. C. Efferent projections of Vglut2, Foxp2 and Pdyn parabrachial neurons in mice. J. Comp. Neurol. 529, 657–693 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Miller, R. L. et al. Fos-activation of FoxP2 and Lmx1b neurons in the parabrachial nucleus evoked by hypotension and hypertension in conscious rats. Neuroscience 218, 110–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Grady, F., Peltekian, L., Iverson, G. & Geerling, J. C. Direct parabrachial-cortical connectivity. Cereb. Cortex 30, 4811–4833 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. McKinley, M. J. et al. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol. 214, 8–32 (2015).

    Article  CAS  Google Scholar 

  88. Agarwal, S. K. & Calaresu, F. R. Supramedullary inputs to cardiovascular neurons of rostral ventrolateral medulla in rats. Am. J. Physiol. 265, R111–R116 (1993).

    CAS  PubMed  Google Scholar 

  89. Cintron-Colon, R. et al. Activation of kappa opioid receptor regulates the hypothermic response to calorie restriction and limits body weight loss. Curr. Biol. 29, 4291–4299.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, W. Z. et al. Parabrachial neuron types categorically encode thermoregulation variables during heat defense. Sci. Adv. 6, eabb9414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Norris, A. J., Shaker, J. R., Cone, A. L., Ndiokho, I. B. & Bruchas, M. R. Parabrachial opioidergic projections to preoptic hypothalamus mediate behavioral and physiological thermal defenses. eLife 10, e60779 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cao, C., Matsumura, K., Yamagata, K. & Watanabe, Y. Induction by lipopolysaccharide of cyclooxygenase-2 mRNA in rat brain; its possible role in the febrile response. Brain Res. 697, 187–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Matsumura, K. et al. Brain endothelial cells express cyclooxygenase-2 during lipopolysaccharide-induced fever: light and electron microscopic immunocytochemical studies. J. Neurosci. 18, 6279–6289 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Laflamme, N., Lacroix, S. & Rivest, S. An essential role of interleukin-1β in mediating NF-κB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J. Neurosci. 19, 10923–10930 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ek, M. et al. Inflammatory response: pathway across the blood-brain barrier. Nature 410, 430–431 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Yamagata, K. et al. Coexpression of microsomal-type prostaglandin E synthase with cyclooxygenase-2 in brain endothelial cells of rats during endotoxin-induced fever. J. Neurosci. 21, 2669–2677 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wilhelms, D. B. et al. Deletion of prostaglandin E2 synthesizing enzymes in brain endothelial cells attenuates inflammatory fever. J. Neurosci. 34, 11684–11690 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ivanov, A. I., Pero, R. S., Scheck, A. C. & Romanovsky, A. A. Prostaglandin E2-synthesizing enzymes in fever: differential transcriptional regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R1104–R1117 (2002).

    Article  PubMed  Google Scholar 

  99. Steiner, A. A. et al. Cellular and molecular bases of the initiation of fever. PLoS Biol. 4, e284 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ootsuka, Y., Blessing, W. W., Steiner, A. A. & Romanovsky, A. A. Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1294–R1303 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Nakamura, K. et al. Immunocytochemical localization of prostaglandin EP3 receptor in the rat hypothalamus. Neurosci. Lett. 260, 117–120 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Nakamura, K. et al. Immunohistochemical localization of prostaglandin EP3 receptor in the rat nervous system. J. Comp. Neurol. 421, 543–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Sugimoto, Y. et al. Distribution of the messenger RNA for the prostaglandin E receptor subtype EP3 in the mouse nervous system. Neuroscience 62, 919–928 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Ek, M., Arias, C., Sawchenko, P. & Ericsson-Dahlstrand, A. Distribution of the EP3 prostaglandin E2 receptor subtype in the rat brain: relationship to sites of interleukin-1-induced cellular responsiveness. J. Comp. Neurol. 428, 5–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Scammell, T. E., Elmquist, J. K., Griffin, J. D. & Saper, C. B. Ventromedial preoptic prostaglandin E2 activates fever-producing autonomic pathways. J. Neurosci. 16, 6246–6254 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tanaka, M., McKinley, M. J. & McAllen, R. M. Role of an excitatory preoptic-raphé pathway in febrile vasoconstriction of the rat’s tail. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R1479–R1489 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Ushikubi, F. et al. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 395, 281–284 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Narumiya, S., Sugimoto, Y. & Ushikubi, F. Prostanoid receptors: structures, properties, and functions. Physiol. Rev. 79, 1193–1226 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Steiner, A. A., Antunes-Rodrigues, J. & Branco, L. G. S. Role of preoptic second messenger systems (cAMP and cGMP) in the febrile response. Brain Res. 944, 135–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Chen, X. M., Hosono, T., Yoda, T., Fukuda, Y. & Kanosue, K. Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J. Physiol. 512, 883–892 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nakamura, K. & Morrison, S. F. Preoptic mechanism for cold-defensive responses to skin cooling. J. Physiol. 586, 2611–2620 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Osaka, T. Cold-induced thermogenesis mediated by GABA in the preoptic area of anesthetized rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R306–R313 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Zaretsky, D. V., Hunt, J. L., Zaretskaia, M. V. & DiMicco, J. A. Microinjection of prostaglandin E2 and muscimol into the preoptic area in conscious rats: comparison of effects on plasma adrenocorticotrophic hormone (ACTH), body temperature, locomotor activity, and cardiovascular function. Neurosci. Lett. 397, 291–296 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Tanaka, M., McKinley, M. J. & McAllen, R. M. Preoptic-raphé connections for thermoregulatory vasomotor control. J. Neurosci. 31, 5078–5088 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Conceição, E. P. S., Madden, C. J. & Morrison, S. F. Neurons in the rat ventral lateral preoptic area are essential for the warm-evoked inhibition of brown adipose tissue and shivering thermogenesis. Acta Physiol. 225, e13213 (2019).

    Article  CAS  Google Scholar 

  116. Song, K. et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353, 1393–1398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nakamura, Y., Nakamura, K. & Morrison, S. F. Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions. Neuroscience 161, 614–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Nakamura, Y. Glutamatergic and GABAergic populations of prostaglandin EP3 receptor-expressing preoptic neurons are heat-responsive. J. Physiol. Sci. 70, S139 (2020).

    Google Scholar 

  119. Nakayama, T., Eisenman, J. S. & Hardy, J. D. Single unit activity of anterior hypothalamus during local heating. Science 134, 560–561 (1961).

    Article  CAS  PubMed  Google Scholar 

  120. Boulant, J. A. & Dean, J. B. Temperature receptors in the central nervous system. Ann. Rev. Physiol. 48, 639–654 (1986).

    Article  CAS  Google Scholar 

  121. Schoener, E. P. & Wang, S. C. Effects of locally administered prostaglandin E1 on anterior hypothalamic neurons. Brain Res. 117, 157–162 (1976).

    Article  CAS  PubMed  Google Scholar 

  122. Gordon, C. J. & Heath, J. E. Effects of prostaglandin E2 on the activity of thermosensitive and insensitive single units in the preoptic/anterior hypothalamus of unanesthetized rabbits. Brain Res. 183, 113–121 (1980).

    Article  CAS  PubMed  Google Scholar 

  123. Ranels, H. J. & Griffin, J. D. The effects of prostaglandin E2 on the firing rate activity of thermosensitive and temperature insensitive neurons in the ventromedial preoptic area of the rat hypothalamus. Brain Res. 964, 42–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Eberwine, J. & Bartfai, T. Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response Signaling asymmetry and an extension of chemical neuroanatomy. Pharmacol. Ther. 129, 241–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Kroeger, D. et al. Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nat. Commun. 9, 4129 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Ma, Y. et al. Galanin neurons unite sleep homeostasis and α2-adrenergic sedation. Curr. Biol. 29, 3315–3322.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yu, S. et al. Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis. J. Neurosci. 36, 5034–5046 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Harding, E. C. et al. A neuronal hub binding sleep initiation and body cooling in response to a warm external stimulus. Curr. Biol. 28, 2263–2273.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Abbott, S. & Saper, C. B. Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice. J. Physiol. 595, 6569–6583 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 583, 115–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Machado, N., Bandaru, S. S., Abbott, S. B. G. & Saper, C. B. EP3R-expressing glutamatergic preoptic neurons mediate inflammatory fever. J. Neurosci. 40, 2573–2588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Madden, C. J. & Morrison, S. F. Excitatory amino acid receptor activation in the raphe pallidus area mediates prostaglandin-evoked thermogenesis. Neuroscience 122, 5–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Madden, C. J. & Morrison, S. F. Excitatory amino acid receptors in the dorsomedial hypothalamus mediate prostaglandin-evoked thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R320–R325 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Dimitrov, E. L., Kim, Y. Y. & Usdin, T. B. Regulation of hypothalamic signaling by tuberoinfundibular peptide of 39 residues is critical for the response to cold: a novel peptidergic mechanism of thermoregulation. J. Neurosci. 31, 18166–18179 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. da Conceição, E. P. S., Morrison, S. F., Cano, G., Chiavetta, P. & Tupone, D. Median preoptic area neurons are required for the cooling and febrile activations of brown adipose tissue thermogenesis in rat. Sci. Rep. 10, 18072 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Piñol, R. A. et al. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metab. 33, 1389–1403.e6 (2021).

    Article  PubMed  CAS  Google Scholar 

  138. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Cannon, W. B. Bodily Changes in Pain, Hunger, Fear, and Rage (D. Appleton and Company, 1915).

  140. Lkhagvasuren, B., Nakamura, Y., Oka, T., Sudo, N. & Nakamura, K. Social defeat stress induces hyperthermia through activation of thermoregulatory sympathetic premotor neurons in the medullary raphe region. Eur. J. Neurosci. 34, 1442–1452 (2011).

    Article  PubMed  Google Scholar 

  141. Mohammed, M., Ootsuka, Y. & Blessing, W. Brown adipose tissue thermogenesis contributes to emotional hyperthermia in a resident rat suddenly confronted with an intruder rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R394–R400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Robinson, L. J., Law, J. M., Symonds, M. E. & Budge, H. Brown adipose tissue activation as measured by infrared thermography by mild anticipatory psychological stress in lean healthy females. Exp. Physiol. 101, 549–557 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Bishop, D. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Med. 33, 439–454 (2003).

    Article  PubMed  Google Scholar 

  144. Falcon-Lesses, M. & Proger, S. H. Psychogenic fever. N. Engl. J. Med. 203, 1034–1036 (1930).

    Article  Google Scholar 

  145. Timmerman, R. J., Thompson, J., Noordzij, H. M. & van der Meer, J. W. Psychogenic periodic fever. Neth. J. Med. 41, 158–160 (1992).

    CAS  PubMed  Google Scholar 

  146. Nozu, T. & Uehara, A. The diagnoses and outcomes of patients complaining of fever without any abnormal findings on diagnostic tests. Intern. Med. 44, 901–902 (2005).

    Article  PubMed  Google Scholar 

  147. Oka, T. & Oka, K. Age and gender differences of psychogenic fever: a review of the Japanese literature. Biopsychosoc. Med. 1, 11 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Oka, T. Psychogenic fever: how psychological stress affects body temperature in the clinical population. Temperature 2, 368–378 (2015).

    Article  Google Scholar 

  149. Vinkers, C. H. et al. Stress-induced hyperthermia and infection-induced fever: two of a kind? Physiol. Behav. 98, 37–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Park, J. et al. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder. J. Physiol. 595, 4893–4908 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Roy-Byrne, P. P., Craske, M. G. & Stein, M. B. Panic disorder. Lancet 368, 1023–1032 (2006).

    Article  PubMed  Google Scholar 

  152. Johnson, P. L., Truitt, W. A., Fitz, S. D., Lowry, C. A. & Shekhar, A. Neural pathways underlying lactate-induced panic. Neuropsychopharmacology 33, 2093–2107 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. DiMicco, J. A., Sarkar, S., Zaretskaia, M. V. & Zaretsky, D. V. Stress-induced cardiac stimulation and fever: common hypothalamic origins and brainstem mechanisms. Auton. Neurosci. 126-127, 106–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Dampney, R. A. L., Horiuchi, J. & McDowall, L. M. Hypothalamic mechanisms coordinating cardiorespiratory function during exercise and defensive behaviour. Auton. Neurosci. 142, 3–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Björkqvist, K. Social defeat as a stressor in humans. Physiol. Behav. 73, 435–442 (2001).

    Article  PubMed  Google Scholar 

  156. Stotz-Potter, E. H., Willis, L. R. & DiMicco, J. A. Muscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress. J. Neurosci. 16, 1173–1179 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stotz-Potter, E. H., Morin, S. M. & DiMicco, J. A. Effect of microinjection of muscimol into the dorsomedial or paraventricular hypothalamic nucleus on air stress-induced neuroendocrine and cardiovascular changes in rats. Brain Res. 742, 219–224 (1996).

    Article  CAS  PubMed  Google Scholar 

  158. McDougall, S. J., Widdop, R. E. & Lawrence, A. J. Medial prefrontal cortical integration of psychological stress in rats. Eur. J. Neurosci. 20, 2430–2440 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Zaretsky, D. V., Zaretskaia, M. V., Samuels, B. C., Cluxton, L. K. & DiMicco, J. A. Microinjection of muscimol into raphe pallidus suppresses tachycardia associated with air stress in conscious rats. J. Physiol. 546, 243–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Pham-Le, N. M., Cockburn, C., Nowell, K. & Brown, J. Activation of GABAA or 5HT1A receptors in the raphé pallidus abolish the cardiovascular responses to exogenous stress in conscious rats. Brain Res. Bull. 86, 360–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Lkhagvasuren, B. et al. Distribution of Fos-immunoreactive cells in rat forebrain and midbrain following social defeat stress and diazepam treatment. Neuroscience 272, 34–57 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Charmandari, E., Tsigos, C. & Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 67, 259–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Silva, J. E. Thermogenic mechanisms and their hormonal regulation. Physiol. Rev. 86, 435–464 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Morin, S. M., Stotz-Potter, E. H. & DiMicco, J. A. Injection of muscimol in dorsomedial hypothalamus and stress-induced Fos expression in paraventricular nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1276–R1284 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. Anthony, T. E. et al. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156, 522–536 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Badoer, E., McKinley, M. J., Oldfield, B. J. & McAllen, R. M. A comparison of hypotensive and non-hypotensive hemorrhage on Fos expression in spinally projecting neurons of the paraventricular nucleus and rostral ventrolateral medulla. Brain Res. 610, 216–223 (1993).

    Article  CAS  PubMed  Google Scholar 

  167. Yang, H., Wang, L. & Ju, G. Evidence for hypothalamic paraventricular nucleus as an integrative center of neuroimmunomodulation. Neuroimmunomodulation 4, 120–127 (1997).

    Article  CAS  PubMed  Google Scholar 

  168. Zhang, Y. H., Lu, J., Elmquist, J. K. & Saper, C. B. Lipopolysaccharide activates specific populations of hypothalamic and brainstem neurons that project to the spinal cord. J. Neurosci. 20, 6578–6586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Stocker, S. D., Cunningham, J. T. & Toney, G. M. Water deprivation increases Fos immunoreactivity in PVN autonomic neurons with projections to the spinal cord and rostral ventrolateral medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1172–R1183 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Carrive, P. & Gorissen, M. Premotor sympathetic neurons of conditioned fear in the rat. Eur. J. Neurosci. 28, 428–446 (2008).

    Article  PubMed  Google Scholar 

  171. Furlong, T. M., McDowall, L. M., Horiuchi, J., Polson, J. W. & Dampney, R. A. L. The effect of air puff stress on c-Fos expression in rat hypothalamus and brainstem: central circuitry mediating sympathoexcitation and baroreflex resetting. Eur. J. Neurosci. 39, 1429–1438 (2014).

    Article  PubMed  Google Scholar 

  172. Chen, Q. H. & Toney, G. M. In vivo discharge properties of hypothalamic paraventricular nucleus neurons with axonal projections to the rostral ventrolateral medulla. J. Neurophysiol. 103, 4–15 (2010).

    Article  PubMed  Google Scholar 

  173. Koba, S. et al. Sympathoexcitation by hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla. J. Physiol. 596, 4581–4595 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Horn, T., Wilkinson, M. F., Landgraf, R. & Pittman, Q. J. Reduced febrile responses to pyrogens after lesions of the hypothalamic paraventricular nucleus. Am. J. Physiol. 267, R323–R328 (1994).

    CAS  PubMed  Google Scholar 

  175. Caldeira, J. C., Franci, C. R. & Pelá, I. R. Bilateral lesion of hypothalamic paraventricular nucleus abolishes fever induced by endotoxin and bradykinin in rats. Ann. N. Y. Acad. Sci. 856, 294–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Lu, J. et al. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J. Neurosci. 21, 4864–4874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Almeida, M. C., Steiner, A. A., Branco, L. G. S. & Romanovsky, A. A. Neural substrate of cold-seeking behavior in endotoxin shock. PLoS One 1, e1 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Dampney, R. A. L. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R429–R443 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Nakamura, K. Neural circuit for psychological stress-induced hyperthermia. Temperature 2, 352–361 (2015).

    Article  Google Scholar 

  180. Holden, C. Paul MacLean and the triune brain. Science 204, 1066–1068 (1979).

    Article  CAS  PubMed  Google Scholar 

  181. Thompson, R. H. & Swanson, L. W. Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat. Brain Res. Brain Res. Rev. 27, 89–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  182. Myers, B., Mark Dolgas, C., Kasckow, J., Cullinan, W. E. & Herman, J. P. Central stress-integrative circuits: forebrain glutamatergic and GABAergic projections to the dorsomedial hypothalamus, medial preoptic area, and bed nucleus of the stria terminalis. Brain Struct. Funct. 219, 1287–1303 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Diorio, D., Viau, V. & Meaney, M. J. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J. Neurosci. 13, 3839–3847 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tavares, R. F. & Corrêa, F. M. A. Role of the medial prefrontal cortex in cardiovascular responses to acute restraint in rats. Neuroscience 143, 231–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Figueiredo, H. F., Bruestle, A., Bodie, B., Dolgas, C. M. & Herman, J. P. The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur. J. Neurosci. 18, 2357–2364 (2003).

    Article  PubMed  Google Scholar 

  186. Radley, J. J., Arias, C. M. & Sawchenko, P. E. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J. Neurosci. 26, 12967–12976 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Adhikari, A. et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527, 179–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Johnson, S. B. et al. Prefrontal-bed nucleus circuit modulation of a passive coping response set. J. Neurosci. 39, 1405–1419 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bicks, L. K., Koike, H., Akbarian, S. & Morishita, H. Prefrontal cortex and social cognition in mouse and man. Front. Psychol. 6, 1805 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Price, J. L. & Drevets, W. C. Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192–216 (2010).

    Article  PubMed  Google Scholar 

  191. Rudebeck, P. H. et al. A role for primate subgenual cingulate cortex in sustaining autonomic arousal. Proc. Natl Acad. Sci. USA 111, 5391–5396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ootsuka, Y., Blessing, W. W. & Nalivaiko, E. Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats. Stress 11, 125–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Ootsuka, Y., Mohammed, M. & Blessing, W. W. Lateral habenula regulation of emotional hyperthermia: mediation via the medullary raphé. Sci. Rep. 7, 4102 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Brizuela, M. & Ootsuka, Y. Inhibition of the dorsomedial hypothalamus substantially decreases brown adipose tissue sympathetic discharge induced by activation of the lateral habenula. Auton. Neurosci. 230, 102745 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Shekhar, A. & Katner, J. S. Dorsomedial hypothalamic GABA regulates anxiety in the social interaction test. Pharmacol. Biochem. Behav. 50, 253–258 (1995).

    Article  CAS  PubMed  Google Scholar 

  196. Li, X. B., Inoue, T., Nakagawa, S. & Koyama, T. Effect of mediodorsal thalamic nucleus lesion on contextual fear conditioning in rats. Brain Res. 1008, 261–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  197. Penzo, M. A. et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature 519, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Furlong, T. & Carrive, P. Neurotoxic lesions centered on the perifornical hypothalamus abolish the cardiovascular and behavioral responses of conditioned fear to context but not of restraint. Brain Res. 1128, 107–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. Zhang, W. et al. Orexin neurons are indispensable for stress-induced thermogenesis in mice. J. Physiol. 588, 4117–4129 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Tupone, D., Madden, C. J., Cano, G. & Morrison, S. F. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J. Neurosci. 31, 15944–15955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Takahashi, Y. et al. Orexin neurons are indispensable for prostaglandin E2-induced fever and defence against environmental cooling in mice. J. Physiol. 591, 5623–5643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Li, T. L., Lee, Y. H., Wu, F. H. & Hwang, L. L. Orexin-A directly depolarizes dorsomedial hypothalamic neurons, including those innervating the rostral ventrolateral medulla. Eur. J. Pharmacol. 899, 174033 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Iigaya, K. et al. Blockade of orexin receptors with Almorexant reduces cardiorespiratory responses evoked from the hypothalamus but not baro- or chemoreceptor reflex responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R1011–R1022 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. Bandler, R., Keay, K. A., Floyd, N. & Price, J. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res. Bull. 53, 95–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  206. Dampney, R. A. L., Furlong, T. M., Horiuchi, J. & Iigaya, K. Role of dorsolateral periaqueductal grey in the coordinated regulation of cardiovascular and respiratory function. Auton. Neurosci. 175, 17–25 (2013).

    Article  PubMed  Google Scholar 

  207. Canteras, N. S. & Goto, M. Fos-like immunoreactivity in the periaqueductal gray of rats exposed to a natural predator. NeuroReport 10, 413–418 (1999).

    Article  CAS  PubMed  Google Scholar 

  208. Motta, S. C. et al. Dissecting the brain’s fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proc. Natl. Acad. Sci. USA 106, 4870–4875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Iigaya, K., Horiuchi, J., McDowall, L. M. & Dampney, R. A. L. Topographical specificity of regulation of respiratory and renal sympathetic activity by the midbrain dorsolateral periaqueductal gray. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R853–R861 (2010).

    Article  CAS  PubMed  Google Scholar 

  210. Silva, B. A. et al. Independent hypothalamic circuits for social and predator fear. Nat. Neurosci. 16, 1731–1733 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wang, L., Chen, I. Z. & Lin, D. Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. Neuron 85, 1344–1358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. de Menezes, R. C. A., Zaretsky, D. V., Fontes, M. A. P. & DiMicco, J. A. Cardiovascular and thermal responses evoked from the periaqueductal grey require neuronal activity in the hypothalamus. J. Physiol. 587, 1201–1215 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Horiuchi, J., McDowall, L. M. & Dampney, R. A. L. Vasomotor and respiratory responses evoked from the dorsolateral periaqueductal grey are mediated by the dorsomedial hypothalamus. J. Physiol. 587, 5149–5162 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Dielenberg, R. A., Leman, S. & Carrive, P. Effect of dorsal periaqueductal gray lesions on cardiovascular and behavioral responses to cat odor exposure in rats. Behav. Brain Res. 153, 487–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  215. Satoh, N. et al. Satiety effect and sympathetic activation of leptin are mediated by hypothalamic melanocortin system. Neurosci. Lett. 249, 107–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  216. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  217. Butler, A. A. et al. Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat. Neurosci. 4, 605–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  218. Kohno, D., Gao, H. Z., Muroya, S., Kikuyama, S. & Yada, T. Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes 52, 948–956 (2003).

    Article  CAS  PubMed  Google Scholar 

  219. Kojima, M. & Kangawa, K. Ghrelin: structure and function. Physiol. Rev. 85, 495–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  220. Stanley, B. G. & Leibowitz, S. F. Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc. Natl Acad. Sci. USA 82, 3940–3943 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Walker, H. C. & Romsos, D. R. Similar effects of NPY on energy metabolism and on plasma insulin in adrenalectomized ob/ob and lean mice. Am. J. Physiol. 264, E226–E230 (1993).

    CAS  PubMed  Google Scholar 

  222. Székely, M., Pétervári, E., Pákai, E., Hummel, Z. & Szelényi, Z. Acute, subacute and chronic effects of central neuropeptide Y on energy balance in rats. Neuropeptides 39, 103–115 (2005).

    Article  PubMed  CAS  Google Scholar 

  223. Egawa, M., Yoshimatsu, H. & Bray, G. A. Neuropeptide Y suppresses sympathetic activity to interscapular brown adipose tissue in rats. Am. J. Physiol. 260, R328–R334 (1991).

    CAS  PubMed  Google Scholar 

  224. Moore, J. D., Kleinfeld, D. & Wang, F. How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci. 37, 370–380 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Travers, J. B., Herman, K. & Travers, S. P. Suppression of third ventricular NPY-elicited feeding following medullary reticular formation infusions of muscimol. Behav. Neurosci. 124, 225–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Li, Y. Q., Takada, M., Kaneko, T. & Mizuno, N. GABAergic and glycinergic neurons projecting to the trigeminal motor nucleus: a double labeling study in the rat. J. Comp. Neurol. 373, 498–510 (1996).

    Article  CAS  PubMed  Google Scholar 

  227. Travers, J. B., Yoo, J. E., Chandran, R., Herman, K. & Travers, S. P. Neurotransmitter phenotypes of intermediate zone reticular formation projections to the motor trigeminal and hypoglossal nuclei in the rat. J. Comp. Neurol. 488, 28–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  228. Stanek, E. IV, Cheng, S., Takatoh, J., Han, B. X. & Wang, F. Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. eLife 3, e02511 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Han, W. et al. Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 168, 311–324.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Nakamura, Y. & Katakura, N. Generation of masticatory rhythm in the brainstem. Neurosci. Res. 23, 1–19 (1995).

    Article  CAS  PubMed  Google Scholar 

  231. Nakamura, K. & Nakamura, Y. Hunger and satiety signaling: modeling two hypothalamomedullary pathways for energy homeostasis. BioEssays 40, e1700252 (2018).

    Article  PubMed  Google Scholar 

  232. Li, B. H., Xu, B., Rowland, N. E. & Kalra, S. P. c-fos expression in the rat brain following central administration of neuropeptide Y and effects of food consumption. Brain Res. 665, 277–284 (1994).

    Article  CAS  PubMed  Google Scholar 

  233. Cowley, M. A. et al. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 24, 155–163 (1999).

    Article  CAS  PubMed  Google Scholar 

  234. Pronchuk, N., Beck-Sickinger, A. G. & Colmers, W. F. Multiple NPY receptors Inhibit GABAA synaptic responses of rat medial parvocellular effector neurons in the hypothalamic paraventricular nucleus. Endocrinology 143, 535–543 (2002).

    Article  CAS  PubMed  Google Scholar 

  235. Madden, C. J. & Morrison, S. F. Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R831–R843 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Geerling, J. C., Shin, J. W., Chimenti, P. C. & Loewy, A. D. Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J. Comp. Neurol. 518, 1460–1499 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Kotz, C. M., Grace, M. K., Briggs, J., Levine, A. S. & Billington, C. J. Effects of opioid antagonists naloxone and naltrexone on neuropeptide Y-induced feeding and brown fat thermogenesis in the rat. Neural site of action. J. Clin. Invest. 96, 163–170 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Madden, C. J., Santos da Conceicao, E. P. S. & Morrison, S. F. Vagal afferent activation decreases brown adipose tissue (BAT) sympathetic nerve activity and BAT thermogenesis. Temperature 4, 89–96 (2016).

    Article  Google Scholar 

  239. Ghamari-Langroudi, M., Srisai, D. & Cone, R. D. Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin. Proc. Natl Acad. Sci. USA 108, 355–360 (2011).

    Article  CAS  PubMed  Google Scholar 

  240. Garfield, A. S. et al. A neural basis for melanocortin-4 receptor-regulated appetite. Nat. Neurosci. 18, 863–871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Lu, D. et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 371, 799–802 (1994).

    Article  CAS  PubMed  Google Scholar 

  242. Kanosue, K., Crawshaw, L. I., Nagashima, K. & Yoda, T. Concepts to utilize in describing thermoregulation and neurophysiological evidence for how the system works. Eur. J. Appl. Physiol. 109, 5–11 (2010).

    Article  PubMed  Google Scholar 

  243. Zaretsky, D. V., Zaretskaia, M. V. & DiMicco, J. A. Stimulation and blockade of GABAA receptors in the raphe pallidus: effects on body temperature, heart rate, and blood pressure in conscious rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R110–R116 (2003).

    Article  CAS  PubMed  Google Scholar 

  244. Strack, A. M., Sawyer, W. B., Hughes, J. H., Platt, K. B. & Loewy, A. D. A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res. 491, 156–162 (1989).

    Article  CAS  PubMed  Google Scholar 

  245. Smith, J. E., Jansen, A. S. P., Gilbey, M. P. & Loewy, A. D. CNS cell groups projecting to sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat. Brain Res. 786, 153–164 (1998).

    Article  CAS  PubMed  Google Scholar 

  246. Bamshad, M., Song, C. K. & Bartness, T. J. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am. J. Physiol. 276, R1569–R1578 (1999).

    CAS  PubMed  Google Scholar 

  247. Cano, G. et al. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J. Comp. Neurol. 460, 303–326 (2003).

    Article  PubMed  Google Scholar 

  248. Yoshida, K. et al. Neurons of the rat preoptic area and the raphe pallidus nucleus innervating the brown adipose tissue express the prostaglandin E receptor subtype EP3. Eur. J. Neurosci. 18, 1848–1860 (2003).

    Article  PubMed  Google Scholar 

  249. Thompson, H. J., Tkacs, N. C., Saatman, K. E., Raghupathi, R. & McIntosh, T. K. Hyperthermia following traumatic brain injury: a critical evaluation. Neurobiol. Dis. 12, 163–173 (2003).

    Article  PubMed  Google Scholar 

  250. Johnson, P. L. & Shekhar, A. Panic-prone state induced in rats with GABA dysfunction in the dorsomedial hypothalamus is mediated by NMDA receptors. J. Neurosci. 26, 7093–7104 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Warden, M. R., Cardin, J. A. & Deisseroth, K. Optical neural interfaces. Annu. Rev. Biomed. Eng. 16, 103–129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Bando, Y., Grimm, C., Cornejo, V. H. & Yuste, R. Genetic voltage indicators. BMC Biol. 17, 71 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. D’Angelo, E. et al. Realistic modeling of neurons and networks: towards brain simulation. Funct. Neurol. 28, 153–166 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors have been supported by the Funding Program for Next Generation World-Leading Researchers from the Japan Society for the Promotion of Science (LS070 to K.N.); Grants-in-Aid for Scientific Research (20H03418, 16H05128, 15H05932, 26118508, 26713009 and 22689007 to K.N.; 21K06767, 17K08568, 26860159 and 23790271 to Y.N.; 19K06954 and 16K19006 to N.K.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; the PRESTO program (JPMJPR13M9 to K.N.) and Moonshot R&D (JPMJMS2023 to K.N.) of the Japan Science and Technology Agency; the Japan Agency for Medical Research and Development (JP21gm5010002 to K.N.; JP21wm0525002 to N.K.); and by grants from the Takeda Science Foundation, Nakajima Foundation, Uehara Memorial Foundation, Ono Medical Research Foundation, Brain Science Foundation, Kowa Life Science Foundation (to K.N.), Hori Sciences and Arts Foundation (to Y.N.), Kato Memorial Bioscience Foundation and Foundation of Kinoshita Memorial Enterprise (to N.K.).

Author information

Authors and Affiliations

Authors

Contributions

K.N. wrote the article. All the authors researched data for the article and made substantial contributions to discussions of its content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Kazuhiro Nakamura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks R. Dampney, J. Geerling and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, K., Nakamura, Y. & Kataoka, N. A hypothalamomedullary network for physiological responses to environmental stresses. Nat Rev Neurosci 23, 35–52 (2022). https://doi.org/10.1038/s41583-021-00532-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00532-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing