Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A neuropeptide code for itch

Abstract

Itch is one of the most primal sensations, being both ubiquitous and important for the well-being of animals. For more than a century, a desire to understand how itch is encoded by the nervous system has prompted the advancement of many theories. Within the past 15 years, our understanding of the molecular and neural mechanisms of itch has undergone a major transformation, and this remarkable progress continues today without any sign of abating. Here I describe accumulating evidence that indicates that itch is distinguished from pain through the actions of itch-specific neuropeptides that relay itch information to the spinal cord. According to this model, classical neurotransmitters transmit, inhibit and modulate itch information in a context-, space- and time-dependent manner but do not encode itch specificity. Gastrin-releasing peptide (GRP) is proposed to be a key itch-specific neuropeptide, with spinal neurons expressing GRP receptor (GRPR) functioning as a key part of a convergent circuit for the conveyance of peripheral itch information to the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dorsal horn architecture and coding theories for itch.
Fig. 2: Hypothetical model for the neuropeptide coding of itch and pain.
Fig. 3: Neuropeptide coding in peripheral and central itch pathways.
Fig. 4: GRPR neural and signalling pathways.

Similar content being viewed by others

References

  1. Rothman, S. Physiology of itching. Physiol. Rev. 21, 357–381 (1941).

    Google Scholar 

  2. Ikoma, A., Steinhoff, M., Stander, S., Yosipovitch, G. & Schmelz, M. The neurobiology of itch. Nat. Rev. Neurosci. 7, 535–547 (2006).

    CAS  PubMed  Google Scholar 

  3. McMahon, S. B. & Koltzenburg, M. Itching for an explanation. Trends Neurosci. 15, 497–501 (1992).

    CAS  PubMed  Google Scholar 

  4. von Frey, M. Zur Physiologie der Juckempfindung. Arch. Neerland. Physiol. 7, 142–145 (1922).

    Google Scholar 

  5. Shelley, W. B. & Arthur, R. P. The neurohistology and neurophysiology of the itch sensation in man. AMA Arch. Dermatol. 76, 296–323 (1957).

    CAS  Google Scholar 

  6. Sherrington, C. S. The Integrative Action of the Nervous System (Scribner, 1906).

  7. Keele, C. & Armstrong, D. Substances Producing Pain and Itch (Williams & Wilkins, 1964).

  8. Liu, X. Y. et al. Unidirectional cross-activation of GRPR by MOR1D uncouples itch and analgesia induced by opioids. Cell 147, 447–458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ballantyne, J. C., Loach, A. B. & Carr, D. B. Itching after epidural and spinal opiates. Pain 33, 149–160 (1988).

    PubMed  Google Scholar 

  10. Bishop, G. H. The skin as an organ of senses with special reference to the itching sensation. J. Invest. Dermatol. 11, 143–154 (1948).

    CAS  PubMed  Google Scholar 

  11. Bickford, R. G. Experiments relating to the itch sensation, its peripheral mechanism, and central pathways. Clin. Sci. 3, 377–386 (1938).

    Google Scholar 

  12. Graham, D. T., Goodell, H. & Wolff, H. G. Neural mechanisms involved in itch, itchy skin, and tickle sensations. J. Clin. Invest. 30, 37–49 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lewis, T. & Zotterman, Y. Vascular reactions of the skin to injury: part VIII. The resistance of the human skin to constant currents, in relation to injury and vascular response. J. Physiol. 62, 280–288 (1927).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, F. & Kim, B. S. Itch: a paradigm of neuroimmune crosstalk. Immunity 52, 753–766 (2020).

    CAS  PubMed  Google Scholar 

  15. Fukuoka, M., Miyachi, Y. & Ikoma, A. Mechanically evoked itch in humans. Pain 154, 897–904 (2013).

    PubMed  Google Scholar 

  16. Lloyd, D. M., Hall, E., Hall, S. & McGlone, F. P. Can itch-related visual stimuli alone provoke a scratch response in healthy individuals? Br. J. Dermatol. 168, 106–111 (2013).

    CAS  PubMed  Google Scholar 

  17. Holle, H., Warne, K., Seth, A. K., Critchley, H. D. & Ward, J. Neural basis of contagious itch and why some people are more prone to it. Proc. Natl Acad. Sci. USA 109, 19816–19821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

    CAS  PubMed  Google Scholar 

  19. Patel, T., Ishiuji, Y. & Yosipovitch, G. Nocturnal itch: why do we itch at night? Acta Derm. Venereol. 87, 295–298 (2007).

    CAS  PubMed  Google Scholar 

  20. Spruijt, B. M., van Hooff, J. A. & Gispen, W. H. Ethology and neurobiology of grooming behavior. Physiol. Rev. 72, 825–852 (1992).

    CAS  PubMed  Google Scholar 

  21. Sanders, K. M. & Akiyama, T. The vicious cycle of itch and anxiety. Neurosci. Biobehav. Rev. 87, 17–26 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. Paus, R., Schmelz, M., Biro, T. & Steinhoff, M. Frontiers in pruritus research: scratching the brain for more effective itch therapy. J. Clin. Invest. 116, 1174–1186 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yosipovitch, G. & Samuel, L. S. Neuropathic and psychogenic itch. Dermatol. Ther. 21, 32–41 (2008).

    PubMed  Google Scholar 

  24. Stander, S. et al. Clinical classification of itch: a position paper of the International Forum for the Study of Itch. Acta Derm. Venereol. 87, 291–294 (2007).

    PubMed  Google Scholar 

  25. Liu, X. T. et al. Spinal GRPR and NPRA contribute to chronic itch in a murine model of allergic contact dermatitis. J. Invest. Dermatol. 140, 1856–1866 (2020).

    CAS  PubMed  Google Scholar 

  26. Zhao, Z. Q. et al. Chronic itch development in sensory neurons requires BRAF signaling pathways. J. Clin. Invest. 123, 4769–4780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ross, S. E. et al. Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron 65, 886–898 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Escalante, A. & Klein, R. Spinal inhibitory Ptf1a-derived neurons prevent self-generated itch. Cell Rep. 33, 108422 (2020).

    CAS  PubMed  Google Scholar 

  29. Kini, S. P. et al. The impact of pruritus on quality of life: the skin equivalent of pain. Arch. Dermatol. 147, 1153–1156 (2011).

    PubMed  Google Scholar 

  30. Dong, X. T. & Dong, X. Z. Peripheral and central mechanisms of itch. Neuron 98, 482–494 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Steinhoff, M., Buddenkotte, J. & Lerner, E. A. Role of mast cells and basophils in pruritus. Immunol. Rev. 282, 248–264 (2018).

    CAS  PubMed  Google Scholar 

  32. Abraira, V. E. & Ginty, D. D. The sensory neurons of touch. Neuron 79, 618–639 (2013).

    CAS  PubMed  Google Scholar 

  33. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Carstens, E. Responses of rat spinal dorsal horn neurons to intracutaneous microinjection of histamine, capsaicin, and other irritants. J. Neurophysiol. 77, 2499–2514 (1997).

    CAS  PubMed  Google Scholar 

  35. Ma, Q. Labeled lines meet and talk: population coding of somatic sensations. J. Clin. Invest. 120, 3773–3778 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. LaMotte, R. H., Dong, X. & Ringkamp, M. Sensory neurons and circuits mediating itch. Nat. Rev. Neurosci. 15, 19–31 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Namer, B. et al. Separate peripheral pathways for pruritus in man. J. Neurophysiol. 100, 2062–2069 (2008).

    PubMed  PubMed Central  Google Scholar 

  38. Müller, J. Elements of Physiology (Taylor & Walton, 1840).

  39. Han, L. et al. A subpopulation of nociceptors specifically linked to itch. Nat. Neurosci. 16, 174–182 (2013).

    CAS  PubMed  Google Scholar 

  40. Sharif, B., Ase, A. R., Ribeiro-da-Silva, A. & Seguela, P. Differential coding of itch and pain by a subpopulation of primary afferent neurons. Neuron 106, 940–951 (2020).

    CAS  PubMed  Google Scholar 

  41. Perl, E. R. Cutaneous polymodal receptors: characteristics and plasticity. Prog. Brain Res. 113, 21–37 (1996).

    CAS  PubMed  Google Scholar 

  42. Snider, W. D. & McMahon, S. B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).

    CAS  PubMed  Google Scholar 

  43. Carstens, E., Follansbee, T. & Iodi Carstens, M. The challenge of basic itch research. Acta Derm. Venereol. 100, adv00023 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumazawa, T. The polymodal receptor: bio-warning and defense system. Prog. Brain Res. 113, 3–18 (1996).

    CAS  PubMed  Google Scholar 

  45. Wang, F. et al. Sensory afferents use different coding strategies for heat and cold. Cell Rep. 23, 2001–2013 (2018).

    CAS  PubMed  Google Scholar 

  46. Lynn, B. & Carpenter, S. E. Primary afferent units from the hairy skin of the rat hind limb. Brain Res. 238, 29–43 (1982).

    CAS  PubMed  Google Scholar 

  47. Takashima, Y. et al. Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J. Neurosci. 27, 14147–14157 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bromm, B., Scharein, E., Darsow, U. & Ring, J. Effects of menthol and cold on histamine-induced itch and skin reactions in man. Neurosci. Lett. 187, 157–160 (1995).

    CAS  PubMed  Google Scholar 

  49. Palkar, R. et al. Cooling relief of acute and chronic itch requires TRPM8 channels and neurons. J. Invest. Dermatol. 138, 1391–1399 (2018).

    CAS  PubMed  Google Scholar 

  50. Proudfoot, C. J. et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol. 16, 1591–1605 (2006).

    CAS  PubMed  Google Scholar 

  51. Tuckett, R. P. Itch evoked by electrical stimulation of the skin. J. Invest. Dermatol. 79, 368–373 (1982).

    CAS  PubMed  Google Scholar 

  52. Torebjork, H. E. & Ochoa, J. L. Specific sensations evoked by activity in single identified sensory units in man. Acta Physiol. Scand. 110, 445–447 (1980).

    CAS  PubMed  Google Scholar 

  53. Barry, D. M. et al. Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors. Nat. Commun. 11, 1397 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, M. Z. et al. Molecular mapping of developing dorsal horn-enriched genes by microarray and dorsal/ventral subtractive screening. Dev. Biol. 292, 555–564 (2006).

    CAS  PubMed  Google Scholar 

  55. Sun, Y. G. & Chen, Z. F. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 448, 700–703 (2007).

    CAS  PubMed  Google Scholar 

  56. Wan, L. et al. Distinct roles of NMB and GRP in itch transmission. Sci. Rep. 7, 15466 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Bardoni, R. et al. Pain inhibits GRPR neurons via GABAergic signaling in the spinal cord. Sci. Rep. 9, 15804 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. Chen, S. et al. A spinal neural circuitry for converting touch to itch sensation. Nat. Commun. 11, 5074 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Barry, D. M. et al. Critical evaluation of the expression of gastrin-releasing peptide in dorsal root ganglia and spinal cord. Mol. Pain 12, 1744806916643724 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Aresh, B. et al. Spinal cord interneurons expressing the gastrin-releasing peptide receptor convey itch through VGLUT2-mediated signaling. Pain 158, 945–961 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mu, D. et al. A central neural circuit for itch sensation. Science 357, 695–698 (2017).

    CAS  PubMed  Google Scholar 

  62. Wang, X. et al. Excitatory superficial dorsal horn interneurons are functionally heterogeneous and required for the full behavioral expression of pain and itch. Neuron 78, 312–324 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mishra, S. K., Holzman, S. & Hoon, M. A. A nociceptive signaling role for neuromedin B. J. Neurosci. 32, 8686–8695 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jensen, R. T., Battey, J. F., Spindel, E. R. & Benya, R. V. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol. Rev. 60, 1–42 (2008).

    CAS  PubMed  Google Scholar 

  65. Sun, Y. G. et al. Cellular basis of itch sensation. Science 325, 1531–1534 (2009).

    CAS  PubMed  Google Scholar 

  66. Chen, Z. F. et al. The paired homeodomain protein DRG11 is required for the projection of cutaneous sensory afferent fibers to the dorsal spinal cord. Neuron 31, 59–73 (2001).

    CAS  PubMed  Google Scholar 

  67. Liu, M. Z. et al. Synaptic control of spinal GRPR+ neurons by local and long-range inhibitory inputs. Proc. Natl Acad. Sci. USA 116, 27011–27017 (2019).

    CAS  PubMed Central  Google Scholar 

  68. Atanassoff, P. G. et al. Enhancement of experimental pruritus and mechanically evoked dysesthesiae with local anesthesia. Somatosens. Mot. Res. 16, 291–298 (1999).

    CAS  PubMed  Google Scholar 

  69. Sikand, P., Shimada, S. G., Green, B. G. & LaMotte, R. H. Similar itch and nociceptive sensations evoked by punctate cutaneous application of capsaicin, histamine and cowhage. Pain 144, 66–75 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Aghahowa, S. E., Obianwu, H. O., Isah, A. O. & Arhewoh, I. M. Chloroquine-induced pruritus. Indian. J. Pharm. Sci. 72, 283–289 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsagareli, M. G. et al. Thermal hyperalgesia and mechanical allodynia elicited by histamine and non-histaminergic itch mediators: respective involvement of TRPV1 and TRPA1. Neuroscience 449, 35–45 (2020).

    CAS  PubMed  Google Scholar 

  72. Hassler, S. N. et al. The cellular basis of protease-activated receptor 2-evoked mechanical and affective pain. JCI Insight 5, e137393 (2020).

    PubMed Central  Google Scholar 

  73. Ward, L., Wright, E. & McMahon, S. B. A comparison of the effects of noxious and innocuous counterstimuli on experimentally induced itch and pain. Pain 64, 129–138 (1996).

    PubMed  Google Scholar 

  74. Akiyama, T., Carstens, M. I. & Carstens, E. Transmitters and pathways mediating inhibition of spinal itch-signaling neurons by scratching and other counterstimuli. PLoS ONE 6, e22665 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Davidson, S., Zhang, X., Khasabov, S. G., Simone, D. A. & Giesler, G. J. Jr. Relief of itch by scratching: state-dependent inhibition of primate spinothalamic tract neurons. Nat. Neurosci. 12, 544–546 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kroog, G. S., Jensen, R. T. & Battey, J. F. Mammalian bombesin receptors. Med. Res. Rev. 15, 389–417 (1995).

    CAS  PubMed  Google Scholar 

  77. Erspamer, V., Erpamer, G. F. & Inselvini, M. Some pharmacological actions of alytesin and bombesin. J. Pharm. Pharmacol. 22, 875–876 (1970).

    CAS  PubMed  Google Scholar 

  78. Anastasi, A., Erspamer, V. & Bucci, M. Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 27, 166–167 (1971).

    CAS  PubMed  Google Scholar 

  79. Nagalla, S. R., Gibson, B. W., Tang, D. Z., Reeve, J. R. & Spindel, E. R. Gastrin-releasing peptide (GRP) Is not mammalian bombesin. Identification and molecular-cloning of a true amphibian GRP distinct from amphibian bombesin in Bombina orientalis. J. Biol. Chem. 267, 6916–6922 (1992).

    CAS  PubMed  Google Scholar 

  80. Wang, P. et al. Characterization of GRP as a functional neuropeptide in basal chordate amphioxus. Int. J. Biol. Macromol. 142, 384–394 (2020).

    CAS  PubMed  Google Scholar 

  81. Takanami, K. et al. Distribution of gastrin-releasing peptide in the rat trigeminal and spinal somatosensory systems. J. Comp. Neurol. 522, 1858–1873 (2014).

    CAS  PubMed  Google Scholar 

  82. Fleming, M. S. et al. The majority of dorsal spinal cord gastrin releasing peptide is synthesized locally whereas neuromedin B is highly expressed in pain- and itch-sensing somatosensory neurons. Mol. Pain 8, 52 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Solorzano, C. et al. Primary afferent and spinal cord expression of gastrin-releasing Peptide: message, protein, and antibody concerns. J. Neurosci. 35, 648–657 (2015).

    PubMed  PubMed Central  Google Scholar 

  84. Fuxe, K. et al. Immunohistochemical indications of gastrin releasing peptide–bombesin-like immunoreactivity in the nervous system of the rat. Codistribution with substance P-like immunoreactive nerve terminal systems and coexistence with substance P-like immunoreactivity in dorsal root ganglion cell bodies. Neurosci. Lett. 37, 17–22 (1983).

    CAS  PubMed  Google Scholar 

  85. Nattkemper, L. A. et al. Overexpression of the gastrin-releasing peptide in cutaneous nerve fibers and its receptor in the spinal cord in primates with chronic itch. J. Invest. Dermatol. 133, 2489–2492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Timmes, T. R. et al. Gastrin-releasing peptide-expressing nerves comprise subsets of human cutaneous Adelta and C fibers that may sense pruritus. J. Invest. Dermatol. 133, 2645–2647 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Akiyama, T. et al. Roles for substance P and gastrin-releasing peptide as neurotransmitters released by primary afferent pruriceptors. J. Neurophysiol. 109, 742–748 (2013).

    CAS  PubMed  Google Scholar 

  88. Wheeler, J. J., Lascelles, B. D., Olivry, T. & Mishra, S. K. Itch-associated neuropeptides and their receptor expression in dog dorsal root ganglia and spinal cord. Acta Derm. Venereol. 99, 1131–1135 (2019).

    CAS  PubMed  Google Scholar 

  89. Alemi, F. et al. The TGR5 receptor mediates bile acid-induced itch and analgesia. J. Clin. Invest. 123, 1513–1530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, T. et al. TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J. Clin. Invest. 122, 2195–2207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, T., Xu, Z. Z., Park, C. K., Berta, T. & Ji, R. R. Toll-like receptor 7 mediates pruritus. Nat. Neurosci. 13, 1460–1462 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Panula, P., Hadjiconstantinou, M., Yang, H. Y. & Costa, E. Immunohistochemical localization of bombesin/gastrin-releasing peptide and substance P in primary sensory neurons. J. Neurosci. 3, 2021–2029 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Panula, P., Yang, H. Y. & Costa, E. Neuronal location of the bombesin-like immunoreactivity in the central nervous system of the rat. Regul. Pept. 4, 275–283 (1982).

    CAS  PubMed  Google Scholar 

  94. Goswami, S. C. et al. Itch-associated peptides: RNA-Seq and bioinformatic analysis of natriuretic precursor peptide B and gastrin releasing peptide in dorsal root and trigeminal ganglia, and the spinal cord. Mol. Pain 10, 44 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

    CAS  PubMed  Google Scholar 

  96. Sha, Y., Phan, J. H. & Wang, M. D. Effect of low-expression gene filtering on detection of differentially expressed genes in RNA-seq data. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 6461–6464 (2015).

    PubMed  Google Scholar 

  97. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).

    PubMed  PubMed Central  Google Scholar 

  98. Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hokfelt, T. et al. Neuropeptides–an overview. Neuropharmacology 39, 1337–1356 (2000).

    CAS  PubMed  Google Scholar 

  100. Massari, V. J. et al. Distribution and origin of bombesin, substance P and somatostatin in cat spinal cord. Peptides 4, 673–681 (1983).

    CAS  PubMed  Google Scholar 

  101. Mikkelsen, J. D., Larsen, P. J., O’Hare, M. M. & Wiegand, S. J. Gastrin releasing peptide in the rat suprachiasmatic nucleus: an immunohistochemical, chromatographic and radioimmunological study. Neuroscience 40, 55–66 (1991).

    CAS  PubMed  Google Scholar 

  102. Abrahamson, E. E. & Moore, R. Y. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 916, 172–191 (2001).

    CAS  PubMed  Google Scholar 

  103. Karatsoreos, I. N., Yan, L., LeSauter, J. & Silver, R. Phenotype matters: identification of light-responsive cells in the mouse suprachiasmatic nucleus. J. Neurosci. 24, 68–75 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yu, Y. Q., Barry, D. M., Hao, Y., Liu, X. T. & Chen, Z. F. Molecular and neural basis of contagious itch behavior in mice. Science 355, 1072–1076 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhao, Z. Q. et al. Cross-inhibition of NMBR and GRPR signaling maintains normal histaminergic itch transmission. J. Neurosci. 34, 12402–12414 (2014).

    PubMed  PubMed Central  Google Scholar 

  106. Tuckett, R. P. in Itch: Mechanisms and Management of Pruritus (ed. Bernhard, J. D.) 1–22 (McGraw-Hill, 1994).

  107. Steinhoff, M. S., von Mentzer, B., Geppetti, P., Pothoulakis, C. & Bunnett, N. W. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol. Rev. 94, 265–301 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Otsuka, M. & Yoshioka, K. Neurotransmitter functions of mammalian tachykinins. Physiol. Rev. 73, 229–308 (1993).

    CAS  PubMed  Google Scholar 

  109. Ding, Y. Q. et al. Two major distinct subpopulations of neurokinin-3 receptor-expressing neurons in the superficial dorsal horn of the rat spinal cord. Eur. J. Neurosci. 16, 551–556 (2002).

    PubMed  Google Scholar 

  110. Seybold, V. S. et al. Relationship of NK3 receptor-immunoreactivity to subpopulations of neurons in rat spinal cord. J. Comp. Neurol. 381, 439–448 (1997).

    CAS  PubMed  Google Scholar 

  111. McCarson, K. E. & Krause, J. E. NK-1 and NK-3 type tachykinin receptor mRNA expression in the rat spinal cord dorsal horn is increased during adjuvant or formalin-induced nociception. J. Neurosci. 14, 712–720 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Schmid, G., Carita, F., Bonanno, G. & Raiteri, M. NK-3 receptors mediate enhancement of substance P release from capsaicin-sensitive spinal cord afferent terminals. Br. J. Pharmacol. 125, 621–626 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zaratin, P. et al. NK3 receptor blockade prevents hyperalgesia and the associated spinal cord substance P release in monoarthritic rats. Neuropharmacology 39, 141–149 (2000).

    CAS  PubMed  Google Scholar 

  114. Akiyama, T., Tominaga, M., Takamori, K., Carstens, M. I. & Carstens, E. Roles of glutamate, substance P, and gastrin-releasing peptide as spinal neurotransmitters of histaminergic and nonhistaminergic itch. Pain 155, 80–92 (2014).

    CAS  PubMed  Google Scholar 

  115. Azimi, E. et al. Dual action of neurokinin-1 antagonists on Mas-related GPCRs. JCI Insight 1, e89362 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Swett, J. E. & Woolf, C. J. The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord. J. Comp. Neurol. 231, 66–77 (1985).

    CAS  PubMed  Google Scholar 

  117. Light, A. R. & Perl, E. R. Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J. Comp. Neurol. 186, 117–131 (1979).

    CAS  PubMed  Google Scholar 

  118. Lu, Y. & Perl, E. R. A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J. Neurosci. 23, 8752–8758 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lu, Y. & Perl, E. R. Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J. Neurosci. 25, 3900–3907 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Shim, W. S. & Oh, U. Histamine-induced itch and its relationship with pain. Mol. Pain. 4, 29 (2008).

    PubMed  PubMed Central  Google Scholar 

  121. Green, K. B. & Lim, H. W. Effects of chloroquine on release of mediators from mast cells. Skin Pharmacol. 2, 77–85 (1989).

    CAS  PubMed  Google Scholar 

  122. Liu, Q. et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139, 1353–1365 (2009).

    PubMed  PubMed Central  Google Scholar 

  123. Li, R. et al. Intradermal injection of oxytocin aggravates chloroquine-induced itch responses via activating the vasopressin-1a receptor/nitric oxide pathway in mice. Front. Pharmacol. 10, 1380 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Than, J. Y. X. L., Li, L., Hasan, R. & Zhang, X. Excitation and modulation of TRPA1, TRPV1, and TRPM8 channel-expressing sensory neurons by the pruritogen chloroquine. J. Biol. Chem. 288, 12818–12827 (2013).

    PubMed  PubMed Central  Google Scholar 

  125. Kim, S. et al. Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations. Sci. Signal. 9, ra71 (2016).

    PubMed  PubMed Central  Google Scholar 

  126. Wilson, S. R. et al. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat. Neurosci. 14, 595–602 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Deshpande, D. A. et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med. 16, 1299–1304 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mack, M. R. & Kim, B. S. The Itch-scratch cycle: a neuroimmune perspective. Trends Immunol. 39, 980–991 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Herkenham, M. Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23, 1–38 (1987).

    CAS  PubMed  Google Scholar 

  130. Hylden, J. L. & Wilcox, G. L. Intrathecal substance P elicits a caudally-directed biting and scratching behavior in mice. Brain Res. 217, 212–215 (1981).

    CAS  PubMed  Google Scholar 

  131. Pagani, M. et al. How gastrin-releasing peptide opens the spinal gate for itch. Neuron 103, 102–117 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Marvizon, J. C. G., Martinez, V., Grady, E. F., Bunnett, N. W. & Mayer, E. A. Neurokinin 1 receptor internalization in spinal cord slices induced by dorsal root stimulation is mediated by NMDA receptors. J. Neurosci. 17, 8129–8136 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Koga, K. et al. Glutamate acts as a neurotransmitter for gastrin releasing peptide-sensitive and insensitive itch-related synaptic transmission in mammalian spinal cord. Mol. Pain 7, 47 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Baraban, S. C. & Tallent, M. K. Interneuron diversity series: interneuronal neuropeptides–endogenous regulators of neuronal excitability. Trends Neurosci. 27, 135–142 (2004).

    CAS  PubMed  Google Scholar 

  135. Yoshimura, M. & Nishi, S. Blind patch-clamp recordings from substantia gelatinosa neurons in adult rat spinal cord slices: pharmacological properties of synaptic currents. Neuroscience 53, 519–526 (1993).

    CAS  PubMed  Google Scholar 

  136. Bardoni, R., Magherini, P. C. & MacDermott, A. B. NMDA EPSCs at glutamatergic synapses in the spinal cord dorsal horn of the postnatal rat. J. Neurosci. 18, 6558–6567 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Cao, Y. Q. et al. Primary afferent tachykinins are required to experience moderate to intense pain. Nature 392, 390–394 (1998).

    CAS  PubMed  Google Scholar 

  138. Lagerstrom, M. C. et al. A sensory subpopulation depends on vesicular glutamate transporter 2 for mechanical pain, and together with substance P, inflammatory pain. Proc. Natl Acad. Sci. USA 108, 5789–5794 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Scherrer, G. et al. VGLUT2 expression in primary afferent neurons is essential for normal acute pain and injury-induced heat hypersensitivity. Proc. Natl Acad. Sci. USA 107, 22296–22301 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. van den Pol, A. N. Neuropeptide transmission in brain circuits. Neuron 76, 98–115 (2012).

    PubMed  PubMed Central  Google Scholar 

  141. Waxman, S. G. & Zamponi, G. W. Regulating excitability of peripheral afferents: emerging ion channel targets. Nat. Neurosci. 17, 153–163 (2014).

    CAS  PubMed  Google Scholar 

  142. Bourinet, E. et al. Calcium-permeable ion channels in pain signaling. Physiol. Rev. 94, 81–140 (2014).

    CAS  PubMed  Google Scholar 

  143. Verhage, M. et al. Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron 6, 517–524 (1991).

    CAS  PubMed  Google Scholar 

  144. Munanairi, A. et al. Non-canonical opioid signaling inhibits itch transmission in the spinal cord of mice. Cell Rep. 23, 866–877 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Li, H. P. et al. 100 Hz electroacupuncture alleviated chronic itch and GRPR expression through activation of kappa opioid receptors in spinal dorsal horn. Front. Neurosci. 15, 625471 (2021).

    PubMed  PubMed Central  Google Scholar 

  146. Ikoma, A. et al. Painful stimuli evoke itch in patients with chronic pruritus: central sensitization for itch. Neurology 62, 212–217 (2004).

    CAS  PubMed  Google Scholar 

  147. Hosogi, M., Schmelz, M., Miyachi, Y. & Ikoma, A. Bradykinin is a potent pruritogen in atopic dermatitis: a switch from pain to itch. Pain 126, 16–23 (2006).

    CAS  PubMed  Google Scholar 

  148. Roberson, D. P. et al. Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons. Nat. Neurosci. 16, 910–918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Johanek, L. M. et al. Psychophysical and physiological evidence for parallel afferent pathways mediating the sensation of itch. J. Neurosci. 27, 7490–7497 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ohki-Hamazaki, H. Neuromedin B. Prog. Neurobiol. 62, 297–312 (2000).

    CAS  PubMed  Google Scholar 

  151. Sukhtankar, D. D. & Ko, M. C. Physiological function of gastrin-releasing peptide and neuromedin B receptors in regulating itch scratching behavior in the spinal cord of mice. PLoS ONE 8, e67422 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kokumai, S., Imamura, T., Masuyama, K., Kambara, T. & Ishikawa, T. Effect of capsaicin as a neuropeptide-releasing substance on sneezing reflex in a type I allergic animal model. Int. Arch. Allergy Immunol. 98, 256–261 (1992).

    CAS  PubMed  Google Scholar 

  153. Li, F. et al. Sneezing reflex is mediated by a peptidergic pathway from nose to brainstem. Cell 184, 3762–3773 (2021).

    CAS  PubMed  Google Scholar 

  154. Mishra, S. K. & Hoon, M. A. The cells and circuitry for itch responses in mice. Science 340, 968–971 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Meng, Q. T. et al. BNP facilitates NMB-mediated histaminergic itch via NPRC-NMBR crosstalk. Preprint at bioRxiv https://doi.org/10.1101/2021.01.26.428310 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Meng, J. et al. New mechanism underlying IL-31-induced atopic dermatitis. J. Allergy Clin. Immunol. 141, 1677–1689 (2018).

    CAS  PubMed  Google Scholar 

  157. Koller, K. J. et al. Selective activation of the B-natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252, 120–123 (1991).

    CAS  PubMed  Google Scholar 

  158. Solinski, H. J. et al. Inhibition of natriuretic peptide receptor 1 reduces itch in mice. Sci. Transl. Med. 11, eaav5464 (2019).

    PubMed  PubMed Central  Google Scholar 

  159. Potter, L. R., Abbey-Hosch, S. & Dickey, D. M. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr. Rev. 27, 47–72 (2006).

    CAS  PubMed  Google Scholar 

  160. Liu, X. Y. et al. B-type natriuretic peptide is neither itch-specific nor functions upstream of the GRP-GRPR signaling pathway. Mol. Pain 10, 4 (2014).

    PubMed  PubMed Central  Google Scholar 

  161. Zhang, F. X. et al. Inhibition of inflammatory pain by activating B-type natriuretic peptide signal pathway in nociceptive sensory neurons. J. Neurosci. 30, 10927–10938 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Vilotti, S., Marchenkova, A., Ntamati, N. & Nistri, A. B-type natriuretic peptide-induced delayed modulation of TRPV1 and P2X3 receptors of mouse trigeminal sensory neurons. PLoS ONE 8, e81138 (2013).

    PubMed  PubMed Central  Google Scholar 

  163. Li, Z. W., Wu, B., Ye, P., Tan, Z. Y. & Ji, Y. H. Brain natriuretic peptide suppresses pain induced by BmK I, a sodium channel-specific modulator, in rats. J. Headache Pain 17, 90 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Solinski, H. J. et al. Nppb neurons are sensors of mast cell-induced itch. Cell Rep. 26, 3561–3573 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Miyamoto, T., Nojima, H., Shinkado, T., Nakahashi, T. & Kuraishi, Y. Itch-associated response induced by experimental dry skin in mice. Jpn. J. Pharmacol. 88, 285–292 (2002).

    CAS  PubMed  Google Scholar 

  166. Poole, D. P. et al. Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J. Biol. Chem. 288, 5790–5802 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Arcourt, A. et al. Touch receptor-derived sensory information alleviates acute pain signaling and fine-tunes nociceptive reflex coordination. Neuron 93, 179–193 (2017).

    CAS  PubMed  Google Scholar 

  168. Qi, L. et al. Nuclear factor I/A controls A-fiber nociceptor development. Neurosci. Bull. 36, 685–695 (2020).

    PubMed  PubMed Central  Google Scholar 

  169. Zhao, J. et al. PAR2 mediates itch via TRPV3 signaling in keratinocytes. J. Invest. Dermatol. 140, 1524–1532 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Steinhoff, M. et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J. Neurosci. 23, 6176–6180 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Huang, J. et al. Circuit dissection of the role of somatostatin in itch and pain. Nat. Neurosci. 21, 707–716 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Sun, S. et al. Leaky gate model: intensity-dependent coding of pain and itch in the spinal cord. Neuron 93, 840–853 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Albisetti, G. W. et al. Dorsal horn gastrin-releasing peptide expressing neurons transmit spinal itch but not pain signals. J. Neurosci. 39, 2238–2250 (2019).

    PubMed  PubMed Central  Google Scholar 

  174. Geppetti, P., Veldhuis, N. A., Lieu, T. & Bunnett, N. W. G protein-coupled receptors: dynamic machines for signaling pain and itch. Neuron 88, 635–649 (2015).

    CAS  PubMed  Google Scholar 

  175. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    CAS  PubMed  Google Scholar 

  176. Dickie, A. C. et al. Morphological and functional properties distinguish the substance P and gastrin-releasing peptide subsets of excitatory interneuron in the spinal cord dorsal horn. Pain 160, 442–462 (2019).

    CAS  PubMed  Google Scholar 

  177. Dymecki, S. M., Ray, R. S. & Kim, J. C. Mapping cell fate and function using recombinase-based intersectional strategies. Method. Enzymol. 477, 183–213 (2010).

    CAS  Google Scholar 

  178. Haring, M. et al. Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat. Neurosci. 21, 869–880 (2018).

    PubMed  Google Scholar 

  179. Bell, A. M., Gutierrez-Mecinas, M., Polgar, E. & Todd, A. J. Spinal neurons that contain gastrin-releasing peptide seldom express Fos or phosphorylate extracellular signal-regulated kinases in response to intradermal chloroquine. Mol. Pain 12, 1744806916649602 (2016).

    PubMed  PubMed Central  Google Scholar 

  180. Marti, E. et al. Ontogeny of peptide- and amine-containing neurones in motor, sensory, and autonomic regions of rat and human spinal cord, dorsal root ganglia, and rat skin. J. Comp. Neurol. 266, 332–359 (1987).

    CAS  PubMed  Google Scholar 

  181. Freire, M. A., Guimaraes, J. S., Leal, W. G. & Pereira, A. Pain modulation by nitric oxide in the spinal cord. Front. Neurosci. 3, 175–181 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Todd, A. J. Identifying functional populations among the interneurons in laminae I-III of the spinal dorsal horn. Mol. Pain 13, 1–19 (2017).

    Google Scholar 

  183. Sanes, J. R. & Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu. Rev. Neurosci. 38, 221–246 (2015).

    CAS  PubMed  Google Scholar 

  184. Giardino, W. J. & Pomrenze, M. B. Extended amygdala neuropeptide circuitry of emotional arousal: waking up on the wrong side of the bed nuclei of stria terminalis. Front. Behav. Neurosci. 15, 613025 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Provine, R. R. Curious Behavior (Belknap Press of Harvard University Press, 2012).

  186. Feng, J. et al. Piezo2 channel-Merkel cell signaling modulates the conversion of touch to itch. Science 360, 530–533 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Schut, C., Grossman, S., Gieler, U., Kupfer, J. & Yosipovitch, G. Contagious itch: what we know and what we would like to know. Front. Hum. Neurosci. 9, 57 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Pan, H. et al. Identification of a spinal circuit for mechanical and persistent spontaneous itch. Neuron 103, 1135–1149 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Nelson, T. S. et al. Facilitation of neuropathic pain by the NPY Y1 receptor-expressing subpopulation of excitatory interneurons in the dorsal horn. Sci. Rep. 9, 7248 (2019).

    PubMed  PubMed Central  Google Scholar 

  190. Solway, B., Bose, S. C., Corder, G., Donahue, R. R. & Taylor, B. K. Tonic inhibition of chronic pain by neuropeptide Y. Proc. Natl Acad. Sci. USA 108, 7224–7229 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Gao, T. L. et al. The neuropeptide Y system regulates both mechanical and histaminergic itch. J. Invest. Dermatol. 138, 2405–2411 (2018).

    CAS  PubMed  Google Scholar 

  192. Wang, Z. et al. Central opioid receptors mediate morphine-induced itch and chronic itch via disinhibition. Brain 144, 665–681 (2021).

    PubMed  Google Scholar 

  193. Bourane, S. et al. Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science 350, 550–554 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Acton, D. et al. Spinal neuropeptide Y1 receptor-expressing neurons form an essential excitatory pathway for mechanical itch. Cell Rep. 28, 625–639 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Akiyama, T. et al. Mouse model of touch-evoked itch (alloknesis). J. Invest. Dermatol. 132, 1886–1891 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Schemlz, M. & Handwerker, H. O. in Itch; Basic Mechanisms and Therapy (eds Yosipovitch, G., Greaves, M. W., Fleischer Jr, A. B. & McGlone, F.) 13–20 (Marcel Dekker, 2004).

  198. Sandkuhler, J. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 89, 707–758 (2009).

    PubMed  Google Scholar 

  199. Hill, R. Z. & Bautista, D. M. Getting in touch with mechanical pain mechanisms. Trends Neurosci. 43, 311–325 (2020).

    CAS  PubMed  Google Scholar 

  200. Feneran, A. N. et al. Monkey see, monkey do: contagious itch in nonhuman primates. Acta Derm. Venereol. 93, 27–29 (2013).

    PubMed  Google Scholar 

  201. Liljencrantz, J., Pitcher, M. H., Low, L. A., Bauer, L. & Bushnell, M. C. Comment on “Molecular and neural basis of contagious itch behavior in mice”. Science 357, eaan4749 (2017).

    PubMed  PubMed Central  Google Scholar 

  202. Barry, D. M., Yu, Y. Q., Hao, Y., Liu, X. T. & Chen, Z. F. Response to Comment on “Molecular and neural basis of contagious itch behavior in mice”. Science 357, eaan5000 (2017).

    PubMed  Google Scholar 

  203. Gonzales-Rojas, R. et al. The mouse model of fragile X syndrome exhibits deficits in contagious itch behavior. Sci. Rep. 10, 17679 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Langford, D. J. et al. Social modulation of pain as evidence for empathy in mice. Science 312, 1967–1970 (2006).

    CAS  PubMed  Google Scholar 

  205. Chen, J. Empathy for distress in humans and rodents. Neurosci. Bull. 34, 216–236 (2018).

    PubMed  Google Scholar 

  206. de Waal, F. B. M. & Preston, S. D. Mammalian empathy: behavioural manifestations and neural basis. Nat. Rev. Neurosci. 18, 498–509 (2017).

    PubMed  Google Scholar 

  207. Schmidt, T. M., Chen, S. K. & Hattar, S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 34, 572–580 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. True, J. R. & Carroll, S. B. Gene co-option in physiological and morphological evolution. Annu. Rev. Cell Dev. Biol. 18, 53–80 (2002).

    CAS  PubMed  Google Scholar 

  209. Podvin, S., Yaksh, T. & Hook, V. The emerging role of spinal dynorphin in chronic pain: a therapeutic perspective. Annu. Rev. Pharmacol. Toxicol. 56, 511–533 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Chen, S., Liu, X. Y., Jiao, Y., Chen, Z. F. & Yu, W. NPY2R signaling gates spontaneous and mechanical, but not thermal, pain transmission. Mol. Pain 15, 1744806919887830 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhang, Y. et al. Timing mechanisms underlying gate control by feedforward inhibition. Neuron 99, 941–955 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Duan, B. et al. Identification of spinal circuits transmitting and gating mechanical pain. Cell 159, 1417–1432 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Sardella, T. C. P. et al. Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn. Mol. Pain 7, 76 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang, Z. et al. Pronociceptive actions of dynorphin maintain chronic neuropathic pain. J. Neurosci. 21, 1779–1786 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Xu, M. et al. Neuropathic pain activates the endogenous kappa opioid system in mouse spinal cord and induces opioid receptor tolerance. J. Neurosci. 24, 4576–4584 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Glasgow, S. M., Henke, R. M., Macdonald, R. J., Wright, C. V. & Johnson, J. E. Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 132, 5461–5469 (2005).

    CAS  PubMed  Google Scholar 

  217. Wildner, H. et al. Genome-wide expression analysis of Ptf1a- and Ascl1-deficient mice reveals new markers for distinct dorsal horn interneuron populations contributing to nociceptive reflex plasticity. J. Neurosci. 33, 7299–7307 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Petitjean, H. et al. Dorsal horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve Injury. Cell Rep. 13, 1246–1257 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Polgar, E. et al. Functional differences between neurochemically defined populations of inhibitory interneurons in the rat spinal dorsal horn. Pain 154, 2606–2615 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Naveilhan, P. et al. Reduced antinociception and plasma extravasation in mice lacking a neuropeptide Y receptor. Nature 409, 513–517 (2001).

    CAS  PubMed  Google Scholar 

  221. Foster, E. et al. Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron 85, 1289–1304 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Freitag, F. B., Ahemaiti, A., Jakobsson, J. E. T., Weman, H. M. & Lagerstrom, M. C. Spinal gastrin releasing peptide receptor expressing interneurons are controlled by local phasic and tonic inhibition. Sci. Rep. 9, 16573 (2019).

    PubMed  PubMed Central  Google Scholar 

  223. Liu, Y. et al. VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch. Neuron 68, 543–556 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Lagerstrom, M. C. et al. VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and itch. Neuron 68, 529–542 (2010).

    PubMed  PubMed Central  Google Scholar 

  225. Hnasko, T. S. & Edwards, R. H. Neurotransmitter corelease: mechanism and physiological role. Annu. Rev. Physiol. 74, 225–243 (2012).

    CAS  PubMed  Google Scholar 

  226. Papoiu, A. D. et al. Brain’s reward circuits mediate itch relief. a functional MRI study of active scratching. PLoS ONE 8, e82389 (2013).

    PubMed  PubMed Central  Google Scholar 

  227. Su, X. Y. et al. Central processing of itch in the midbrain reward center. Neuron 102, 858–871 (2019).

    CAS  PubMed  Google Scholar 

  228. McGlone, F., Wessberg, J. & Olausson, H. Discriminative and affective touch: sensing and feeling. Neuron 82, 737–755 (2014).

    CAS  PubMed  Google Scholar 

  229. Choi, S. et al. Parallel ascending spinal pathways for affective touch and pain. Nature 587, 258–263 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Gao, Z. R. et al. Tac1-expressing neurons in the periaqueductal gray facilitate the itch-scratching cycle via descending regulation. Neuron 101, 45–59 (2019).

    CAS  PubMed  Google Scholar 

  231. Samineni, V. K., Grajales-Reyes, J. G., Sundaram, S. S., Yoo, J. J. & Gereau, R. W. T. Cell type-specific modulation of sensory and affective components of itch in the periaqueductal gray. Nat. Commun. 10, 4356 (2019).

    PubMed  PubMed Central  Google Scholar 

  232. Gao, T. et al. GPER in the rostral ventromedial medulla is essential for mobilizing descending inhibition of itch. J. Neurosci. 4, 7727–7741 (2021).

    Google Scholar 

  233. Zhao, Z. Q. et al. Descending control of itch transmission by the serotonergic system via 5-HT1A-facilitated GRP-GRPR signaling. Neuron 84, 821–834 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Gotoh, Y., Omori, Y., Andoh, T. & Kuraishi, Y. Tonic inhibition of allergic itch signaling by the descending noradrenergic system in mice. J. Pharmacol. Sci. 115, 417–420 (2011).

    CAS  PubMed  Google Scholar 

  235. Koga, K. et al. Intrinsic braking role of descending locus coeruleus noradrenergic neurons in acute and chronic itch in mice. Mol. Brain 13, 144 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Pasternak, G. W. & Pan, Y. X. Mu opioids and their receptors: evolution of a concept. Pharmacol. Rev. 65, 1257–1317 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Abbadie, C., Pan, Y., Drake, C. T. & Pasternak, G. W. Comparative immunohistochemical distributions of carboxy terminus epitopes from the mu-opioid receptor splice variants MOR-1D, MOR-1 and MOR-1C in the mouse and rat CNS. Neuroscience 100, 141–153 (2000).

    CAS  PubMed  Google Scholar 

  238. Liu, X. Y., Ginosar, Y., Yazdi, J., Hincker, A. & Chen, Z. F. Cross-talk between human spinal cord mu-opioid receptor 1Y isoform and gastrin-releasing peptide receptor mediates opioid-induced scratching behavior. Anesthesiology 131, 381–391 (2019).

    CAS  PubMed  Google Scholar 

  239. Nguyen, E. et al. Morphine acts on spinal dynorphin neurons to cause itch through disinhibition. Sci. Transl. Med. 13, eabc3774 (2021).

    CAS  PubMed  Google Scholar 

  240. Zhang, X. Y. et al. Different neuronal populations mediate inflammatory pain analgesia by exogenous and endogenous opioids. eLife 9, e55289 (2020).

    PubMed  PubMed Central  Google Scholar 

  241. Charbogne, P. et al. Mu opioid receptors in gamma-aminobutyric acidergic forebrain neurons moderate motivation for heroin and palatable food. Biol. Psychiatry 81, 778–788 (2017).

    CAS  PubMed  Google Scholar 

  242. Cowan, A., Kehner, G. B. & Inan, S. Targeting itch with ligands selective for kappa opioid receptors. Handb. Exp. Pharmacol. 226, 291–314 (2015).

    CAS  PubMed  Google Scholar 

  243. Braz, J. M., Juarez-Salinas, D., Ross, S. E. & Basbaum, A. I. Transplant restoration of spinal cord inhibitory controls ameliorates neuropathic itch. J. Clin. Invest. 124, 3612–3616 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Zeilhofer, H. U., Wildner, H. & Yevenes, G. E. Fast synaptic inhibition in spinal sensory processing and pain control. Physiol. Rev. 92, 193–235 (2012).

    CAS  PubMed  Google Scholar 

  245. Holmes, F. E., Vanderplank, P. & Wynick, D. Galanin-expression and galanin-dependent sensory neurons are not required for itch. Mol. Pain 8, 87 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits: a decade of progress. Neuron 98, 256–281 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Todd, A. J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 11, 823–836 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Andrew, D. & Craig, A. D. Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nat. Neurosci. 4, 72–77 (2001).

    CAS  PubMed  Google Scholar 

  249. Lever, I. J. et al. Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. J. Neurosci. 21, 4469–4477 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Ueda, M., Kuraishi, Y., Sugimoto, K. & Satoh, M. Evidence that glutamate Is released from capsaicin-sensitive primary afferent-fibers in rats - study with online continuous monitoring of glutamate. Neurosci. Res. 20, 231–237 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks X. Liu for help with the figure preparation, and R. Bardoni and B. Kim for constructive comments. The research was supported by NIH grants 1R01 AR056318-06, R01NS094344 and R01 DA037261-01 A1 to Z.-F.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-Feng Chen.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZF. A neuropeptide code for itch. Nat Rev Neurosci 22, 758–776 (2021). https://doi.org/10.1038/s41583-021-00526-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00526-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing