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I thank Mootaz Salman, Philip Kitchen, Jeffrey 
Iliff and Roslyn Bill for their additions to my 
recent Review (Molecular mechanisms of 
brain water transport. Nat. Rev. Neurosci. 22,  
326–344 (2021))1. In their correspondence, 
the authors argue that glymphatic flow  
deserves more attention (Aquaporin 4 and 
glymphatic flow have central roles in brain  
fluid homeostasis. Nat Rev. Neurosci. https://
doi.org/10.1038/s41583-021-00514-z 
(2021))2. This topic has been reviewed 
extensively by researchers both in favour 
of3 and in opposition to4,5 the concept (see 
the Review1 and correspondence for addi-
tional references). The concept was consid-
ered outside the scope of the present Review  
as it relates to paracellular fluid transport, as  
pointed out by the authors of the correspon
dence, rather than transmembrane water 
flow, which is the focus of my article (as spec-
ified in the opening pages of the Review).  
I therefore, again, refer the interested reader 
to the many reviews published on the topic. 
However, here, I briefly address the proposed 
role of AQP4 in this system in a reply to 
Salman and colleagues.

AQP4 has been implicated in glymphatic 
flow, as mentioned in the Review and high-
lighted by the authors of the correspondence. 

Although AQP4 has been assigned a role in 
the paracellular flow of fluorescent probes 
by their reduced penetration from cerebro-
spinal fluid into Aqp4–/–, Snat1–/– and mdx 
mouse brains (see the correspondence for 
references), the mechanism by which cellular 
AQP4 could contribute to paracellular fluo
rescent tracer movement remains incom-
pletely, if at all, understood. In the original 
publication by Iliff et al.6, in which the glym-
phatic system was coined, the authors pro-
posed that water would flow freely through 
AQP4 across the astrocytic endfoot and exit 
again towards the interstitium (see supplemen-
tary figure 9A and associated legend in ref.6  
and figure 1 in the correspondence2).  
The fluorescent tracer would then “follow the 
resulting osmotic gradient” between the para
vascular space and the interstitium and thus 
represent glymphatic flow6. However beautiful 
such a strategy may be, it is challenging to align 
it with basic biophysical considerations. First, 
pressure-​dependent AQP4-mediated water 
entry into the astrocyte would be prevented by 
the resulting oppositely directed osmotic gra-
dient. Second, the proposed interstitial osmotic 
gradient could only arise by (the non-​endfeet) 
AQP4 permitting water transport against an 
osmotic gradient, which it does not. Third, 

Reply to ‘Aquaporin 4 and glymphatic 
flow have central roles in brain fluid 
homeostasis’
Nanna MacAulay   

the fluorescent particles will not “follow the 
resulting osmotic gradient into the interstit-
ium through intercellular clefts”6 as water 
follows particles by osmosis, not the opposite. 
Last, osmosis occurs across a semipermeable  
membrane and not through intercellular clefts.

To my knowledge, AQP4-​dependent 
water transport through AQP4 has not been 
documented in the glymphatic hypothesis, 
which, however, does not prevent AQP4 
from serving a structural role in the system. 
Notably, Aqp4–/– mice display severely 
reduced expression of protein anchoring 
complexes in the astrocytic endfeet7, which 
may affect endfoot polarization of other 
astrocytic membrane proteins and thereby 
indirectly influence astrocyte function in 
a manner that could affect the paracellular 
flow of fluorescent particles. A specific 
and efficient inhibitor of AQP4 would 
provide the tool to reveal a requirement for 
AQP4-​dependent transcellular water flux 
to support paracellular flow of fluorescent 
molecules. The authors rightly point out the 
futile search for such inhibitors. However, 
TGN-020 is among the most promising 
of its kind: it displays near-​absent binding 
to Aqp4–/– mouse brain tissue8, it causes 
reduced rodent brain oedema formation9 
and it acts directly on the pore of AQP4 in an 
isoform-​specific manner10. I highly welcome 
future determination of direct versus indirect 
roles of AQP4 in a glymphatic system, as well 
as in its pathological relocalization promoting 
oedema formation11, and anticipate the 
associated delineation of the underlying 
driving forces supporting the proposed 
AQP4-​dependent transmembrane water 
flow. It will be my pleasure to include such 
mechanistic findings in future review articles 
on the molecular mechanisms of brain water 
transport.
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