Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS

Abstract

Almost 60 years have passed since the initial discovery by Hubel and Wiesel that changes in neuronal activity can elicit developmental rewiring of the central nervous system (CNS). Over this period, we have gained a more comprehensive picture of how both spontaneous neural activity and sensory experience-induced changes in neuronal activity guide CNS circuit development. Here we review activity-dependent synaptic pruning in the mammalian CNS, which we define as the removal of a subset of synapses, while others are maintained, in response to changes in neural activity in the developing nervous system. We discuss the mounting evidence that immune and cell-death molecules are important mechanistic links by which changes in neural activity guide the pruning of specific synapses, emphasizing the role of glial cells in this process. Finally, we discuss how these developmental pruning programmes may go awry in neurodevelopmental disorders of the human CNS, focusing on autism spectrum disorder and schizophrenia. Together, our aim is to give an overview of how the field of activity-dependent pruning research has evolved, led to exciting new questions and guided the identification of new, therapeutically relevant mechanisms that result in aberrant circuit development in neurodevelopmental disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model circuits for studying activity-dependent synaptic pruning.
Fig. 2: Glial cell engulfment mechanisms that regulate synaptic pruning.
Fig. 3: Cell death molecules involved in synaptic pruning.
Fig. 4: Synaptic pruning and neurodevelopmental disorders.

Similar content being viewed by others

References

  1. Riccomagno, M. M. & Kolodkin, A. L. Sculpting neural circuits by axon and dendrite pruning. Annu. Rev. Cell Dev. Biol. 31, 779–805 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Schuldiner, O. & Yaron, A. Mechanisms of developmental neurite pruning. Cell Mol. Life Sci. 72, 101–119 (2015).

    Article  PubMed  CAS  Google Scholar 

  3. Luo, L. & O’Leary, D. D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. Hua, J. Y. & Smith, S. J. Neural activity and the dynamics of central nervous system development. Nat. Neurosci. 7, 327–332 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. Kano, M. & Hashimoto, K. Synapse elimination in the central nervous system. Curr. Opin. Neurobiol. 19, 154–161 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. Shatz, C. & Stryker, M. Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242, 87–89 (1988).

    Article  PubMed  CAS  Google Scholar 

  9. Cang, J. et al. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48, 797–809 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Muir-Robinson, G., Hwang, B. J. & Feller, M. B. Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J. Neurosci. 22, 5259–5264 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Penn, A., Riquelme, P., Feller, M. B. & Shatz, C. Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 2108–2112 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. Torborg, C. L. & Feller, M. B. Spontaneous patterned retinal activity and the refinement of retinal projections. Prog. Neurobiol. 76, 213–235 (2005).

    Article  PubMed  Google Scholar 

  13. Butts, D. A., Kanold, P. O. & Shatz, C. J. A burst-based “Hebbian” learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement. PLoS Biol. 5, e61 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Huberman, A. D. et al. Eye-specific retinogeniculate segregation independent of normal neuronal activity. Science 300, 994–998 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. McLaughlin, T., Torborg, C. L., Feller, M. B. & O’Leary, D. D. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40, 1147–1160 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Grubb, M. S., Rossi, F. M., Changeux, J. P. & Thompson, I. D. Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40, 1161–1172 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. Burbridge, T. J. et al. Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors. Neuron 84, 1049–1064 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ziburkus, J. & Guido, W. Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation. J. Neurophysiol. 96, 2775–2784 (2006).

    Article  PubMed  Google Scholar 

  19. Rossi, F. M. et al. Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc. Natl Acad. Sci. USA 98, 6453–6458 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Stellwagen, D. & Shatz, C. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33, 357–367 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, J., Ackman, J. B., Xu, H. P. & Crair, M. C. Visual map development depends on the temporal pattern of binocular activity in mice. Nat. Neurosci. 15, 298–307 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kano, M. & Watanabe, T. Developmental synapse remodeling in the cerebellum and visual thalamus. F1000Res. https://doi.org/10.12688/f1000research.18903.1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Watanabe, M. & Kano, M. Climbing fiber synapse elimination in cerebellar Purkinje cells. Eur. J. Neurosci. 34, 1697–1710 (2011).

    Article  PubMed  Google Scholar 

  24. Andjus, P. R., Zhu, L., Cesa, R., Carulli, D. & Strata, P. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum. Neuroscience 121, 563–572 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. Hashimoto, K. et al. Postsynaptic P/Q-type Ca2+ channel in Purkinje cell mediates synaptic competition and elimination in developing cerebellum. Proc. Natl Acad. Sci. USA 108, 9987–9992 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miyazaki, T. et al. Cav2.1 in cerebellar Purkinje cells regulates competitive excitatory synaptic wiring, cell survival, and cerebellar biochemical compartmentalization. J. Neurosci. 32, 1311–1328 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mikuni, T. et al. Arc/Arg3.1 is a postsynaptic mediator of activity-dependent synapse elimination in the developing cerebellum. Neuron 78, 1024–1035 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lorenzetto, E. et al. Genetic perturbation of postsynaptic activity regulates synapse elimination in developing cerebellum. Proc. Natl Acad. Sci. USA 106, 16475–16480 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kawamura, Y. et al. Spike timing-dependent selective strengthening of single climbing fibre inputs to Purkinje cells during cerebellar development. Nat. Commun. 4, 2732 (2013).

    Article  PubMed  CAS  Google Scholar 

  30. Nakayama, H. et al. GABAergic inhibition regulates developmental synapse elimination in the cerebellum. Neuron 74, 384–396 (2012).

    Article  PubMed  CAS  Google Scholar 

  31. Kano, M. et al. Impaired synapse elimination during cerebellar development in PKC gamma mutant mice. Cell 83, 1223–1231 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. Ichikawa, R. et al. Territories of heterologous inputs onto Purkinje cell dendrites are segregated by mGluR1-dependent parallel fiber synapse elimination. Proc. Natl Acad. Sci. USA 113, 2282–2287 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ichise, T. et al. mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288, 1832–1835 (2000).

    Article  PubMed  CAS  Google Scholar 

  34. Kano, M. et al. Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron 18, 71–79 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. Kano, M., Hashimoto, K. & Tabata, T. Type-1 metabotropic glutamate receptor in cerebellar Purkinje cells: a key molecule responsible for long-term depression, endocannabinoid signalling and synapse elimination. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 2173–2186 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kano, M. et al. Phospholipase cbeta4 is specifically involved in climbing fiber synapse elimination in the developing cerebellum. Proc. Natl Acad. Sci. USA 95, 15724–15729 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Uesaka, N. et al. Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science 344, 1020–1023 (2014).

    Article  PubMed  CAS  Google Scholar 

  38. Uesaka, N. et al. Retrograde signaling for climbing fiber synapse elimination. Cerebellum 14, 4–7 (2015).

    Article  PubMed  Google Scholar 

  39. Choo, M. et al. Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat. Commun. 8, 195 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Uesaka, N. et al. Retrograde signaling from progranulin to Sort1 counteracts synapse elimination in the developing cerebellum. Neuron 97, 796–805 e795 (2018).

    Article  PubMed  CAS  Google Scholar 

  41. Miyazaki, T. et al. Glutamate transporter GLAST controls synaptic wrapping by Bergmann glia and ensures proper wiring of Purkinje cells. Proc. Natl Acad. Sci. USA 114, 7438–7443 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Nakayama, H. et al. Microglia permit climbing fiber elimination by promoting GABAergic inhibition in the developing cerebellum. Nat. Commun. 9, 2830 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wiesel, T. N. & Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  PubMed  CAS  Google Scholar 

  44. Antonini, A., Fagiolini, M. & Stryker, M. P. Anatomical correlates of functional plasticity in mouse visual cortex. J. Neurosci. 19, 4388–4406 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Antonini, A. & Stryker, M. P. Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat. J. Comp. Neurol. 369, 64–82 (1996).

    Article  PubMed  CAS  Google Scholar 

  46. Antonini, A. & Stryker, M. P. Effect of sensory disuse on geniculate afferents to cat visual cortex. Vis. Neurosci. 15, 401–409 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhou, Y., Lai, B. & Gan, W. B. Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex. Sci. Rep. 7, 4977 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sun, Y. J., Espinosa, J. S., Hoseini, M. S. & Stryker, M. P. Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex. Proc. Natl Acad. Sci. USA 116, 21812–21820 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Huh, C. Y. L. et al. Long-term monocular deprivation during juvenile critical period disrupts binocular integration in mouse visual thalamus. J. Neurosci. 40, 585–604 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yu, H., Majewska, A. K. & Sur, M. Rapid experience-dependent plasticity of synapse function and structure in ferret visual cortex in vivo. Proc. Natl Acad. Sci. USA 108, 21235–21240 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tremblay, M. E., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zhou, Y. et al. REM sleep promotes experience-dependent dendritic spine elimination in the mouse cortex. Nat. Commun. 11, 4819 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Rittenhouse, C. D., Shouval, H. Z., Paradiso, M. A. & Bear, M. F. Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature 397, 347–350 (1999).

    Article  PubMed  CAS  Google Scholar 

  54. Sidorov, M. S., Kaplan, E. S., Osterweil, E. K., Lindemann, L. & Bear, M. F. Metabotropic glutamate receptor signaling is required for NMDA receptor-dependent ocular dominance plasticity and LTD in visual cortex. Proc. Natl Acad. Sci. USA 112, 12852–12857 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhou, Q., Homma, K. J. & Poo, M. M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757 (2004).

    Article  PubMed  CAS  Google Scholar 

  56. Shinoda, Y., Tanaka, T., Tominaga-Yoshino, K. & Ogura, A. Persistent synapse loss induced by repetitive LTD in developing rat hippocampal neurons. PLoS ONE 5, e10390 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wiegert, J. S. & Oertner, T. G. Long-term depression triggers the selective elimination of weakly integrated synapses. Proc. Natl Acad. Sci. USA 110, E4510–E4519 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hensch, T. K. et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Mataga, N., Mizuguchi, Y. & Hensch, T. K. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron 44, 1031–1041 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. Hooks, B. M. & Chen, C. Vision triggers an experience-dependent sensitive period at the retinogeniculate synapse. J. Neurosci. 28, 4807–4817 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hong, Y. K. et al. Refinement of the retinogeniculate synapse by bouton clustering. Neuron 84, 332–339 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Cheadle, L. et al. Sensory experience engages microglia to shape neural connectivity through a non-phagocytic mechanism. Neuron 108, 451–468 e459 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Wimmer, V. C., Broser, P. J., Kuner, T. & Bruno, R. M. Experience-induced plasticity of thalamocortical axons in both juveniles and adults. J. Comp. Neurol. 518, 4629–4648 (2010).

    Article  PubMed  Google Scholar 

  64. Sadaka, Y., Weinfeld, E., Lev, D. L. & White, E. L. Changes in mouse barrel synapses consequent to sensory deprivation from birth. J. Comp. Neurol. 457, 75–86 (2003).

    Article  PubMed  Google Scholar 

  65. Gunner, G. et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat. Neurosci. 22, 1075–1088 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Chen, C. C., Bajnath, A. & Brumberg, J. C. The impact of development and sensory deprivation on dendritic protrusions in the mouse barrel cortex. Cereb. Cortex 25, 1638–1653 (2015).

    Article  PubMed  Google Scholar 

  67. Zuo, Y., Yang, G., Kwon, E. & Gan, W. B. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436, 261–265 (2005).

    Article  PubMed  CAS  Google Scholar 

  68. Bian, W. J., Miao, W. Y., He, S. J., Qiu, Z. & Yu, X. Coordinated spine pruning and maturation mediated by inter-spine competition for cadherin/catenin complexes. Cell 162, 808–822 (2015).

    Article  PubMed  CAS  Google Scholar 

  69. Midorikawa, M. & Miyata, M. Distinct functional developments of surviving and eliminated presynaptic terminals. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2022423118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yang, J. et al. Astrocytes contribute to synapse elimination via type 2 inositol 1,4,5-trisphosphate receptor-dependent release of ATP. eLife 5, e15043 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Morimoto, K. & Nakajima, K. Role of the immune system in the development of the central nervous system. Front. Neurosci. 13, 916 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Corriveau, R. A., Huh, G. S. & Shatz, C. J. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21, 505–520 (1998).

    Article  PubMed  CAS  Google Scholar 

  73. Lee, H. et al. Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature 509, 195–200 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Huh, G. S. et al. Functional requirement for class I MHC in CNS development and plasticity. Science 290, 2155–2159 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Syken, J., Grandpre, T., Kanold, P. O. & Shatz, C. J. PirB restricts ocular-dominance plasticity in visual cortex. Science 313, 1795–1800 (2006).

    Article  PubMed  CAS  Google Scholar 

  76. Adelson, J. D. et al. Developmental sculpting of intracortical circuits by MHC class I H2-Db and H2-Kb. Cereb. Cortex 26, 1453–1463 (2016).

    Article  PubMed  Google Scholar 

  77. Glynn, M. W. et al. MHCI negatively regulates synapse density during the establishment of cortical connections. Nat. Neurosci. 14, 442–451 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. McAllister, A. K. Major histocompatibility complex I in brain development and schizophrenia. Biol. Psychiatry 75, 262–268 (2014).

    Article  PubMed  CAS  Google Scholar 

  79. Du Clos, T. W. Pentraxins: structure, function, and role in inflammation. ISRN Inflamm. 2013, 379040 (2013).

    PubMed  PubMed Central  Google Scholar 

  80. Schlimgen, A. K., Helms, J. A., Vogel, H. & Perin, M. S. Neuronal pentraxin, a secreted protein with homology to acute phase proteins of the immune system. Neuron 14, 519–526 (1995).

    Article  PubMed  CAS  Google Scholar 

  81. Tsui, C. C. et al. Narp, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity. J. Neurosci. 16, 2463–2478 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Dodds, D. C., Omeis, I. A., Cushman, S. J., Helms, J. A. & Perin, M. S. Neuronal pentraxin receptor, a novel putative integral membrane pentraxin that interacts with neuronal pentraxin 1 and 2 and taipoxin-associated calcium-binding protein 49. J. Biol. Chem. 272, 21488–21494 (1997).

    Article  PubMed  CAS  Google Scholar 

  83. Xu, D. et al. Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity. Neuron 39, 513–528 (2003).

    Article  PubMed  CAS  Google Scholar 

  84. Figueiro-Silva, J. et al. Neuronal pentraxin 1 negatively regulates excitatory synapse density and synaptic plasticity. J. Neurosci. 35, 5504–5521 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Bjartmar, L. et al. Neuronal pentraxins mediate synaptic refinement in the developing visual system. J. Neurosci. 26, 6269–6281 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Ma, Y. J. & Garred, P. Pentraxins in complement activation and regulation. Front. Immunol. 9, 3046 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Lu, J., Mold, C., Du Clos, T. W. & Sun, P. D. Pentraxins and Fc receptor-mediated immune responses. Front. Immunol. 9, 2607 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kovacs, R. A. et al. Identification of neuronal pentraxins as synaptic binding partners of C1q and the involvement of NP1 in synaptic pruning in adult mice. Front. Immunol. 11, 599771 (2020).

    Article  PubMed  CAS  Google Scholar 

  89. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  PubMed  CAS  Google Scholar 

  90. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Sipe, G. O. et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat. Commun. 7, 10905 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Milinkeviciute, G. et al. Microglia regulate pruning of specialized synapses in the auditory brainstem. Front. Neural Circuits 13, 55 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Mallya, A. P., Wang, H. D., Lee, H. N. R. & Deutch, A. Y. Microglial pruning of synapses in the prefrontal cortex during adolescence. Cereb. Cortex 29, 1634–1643 (2019).

    Article  PubMed  Google Scholar 

  94. Kopec, A. M., Smith, C. J., Ayre, N. R., Sweat, S. C. & Bilbo, S. D. Microglial dopamine receptor elimination defines sex-specific nucleus accumbens development and social behavior in adolescent rats. Nat. Commun. 9, 3769 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kim, H. J. et al. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol. Psychiatry https://doi.org/10.1038/mp.2016.103 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Weinhard, L. et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 9, 1228 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Lim, T. K. & Ruthazer, E. S. Microglial trogocytosis and the complement system regulate axonal pruning in vivo. eLife https://doi.org/10.7554/eLife.62167 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  PubMed  CAS  Google Scholar 

  99. Zhan, Y. et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    Article  PubMed  CAS  Google Scholar 

  100. Bialas, A. R. & Stevens, B. TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat. Neurosci. 16, 1773–1782 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 20, 4106–4114 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Lee, M., Lee, Y., Song, J., Lee, J. & Chang, S. Y. Tissue-specific role of CX3CR1 expressing immune cells and their relationships with human disease. Immune Netw. 18, e5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhao, W., Lu, H., Wang, X., Ransohoff, R. M. & Zhou, L. CX3CR1 deficiency delays acute skeletal muscle injury repair by impairing macrophage functions. FASEB J. 30, 380–393 (2016).

    Article  PubMed  CAS  Google Scholar 

  104. Blomster, L. V. et al. CX3CR1 deficiency exacerbates neuronal loss and impairs early regenerative responses in the target-ablated olfactory epithelium. Mol. Cell. Neurosci. 48, 236–245 (2011).

    Article  PubMed  CAS  Google Scholar 

  105. Ingram, G., Hakobyan, S., Robertson, N. P. & Morgan, B. P. Complement in multiple sclerosis: its role in disease and potential as a biomarker. Clin. Exp. Immunol. 155, 128–139 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Barrington, R., Zhang, M., Fischer, M. & Carroll, M. C. The role of complement in inflammation and adaptive immunity. Immunol. Rev. 180, 5–15 (2001).

    Article  PubMed  CAS  Google Scholar 

  107. Chu, Y. et al. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc. Natl Acad. Sci. USA 107, 7975–7980 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lehrman, E. K. et al. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron 100, 120–134 e126 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Cong, Q., Soteros, B. M., Wollet, M., Kim, J. H. & Sia, G. M. The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. Nat. Neurosci. 23, 1067–1078 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Linnartz, B., Kopatz, J., Tenner, A. J. & Neumann, H. Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia. J. Neurosci. 32, 946–952 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Gyorffy, B. A. et al. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning. Proc. Natl Acad. Sci. USA 115, 6303–6308 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Scott-Hewitt, N. et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 39, e105380 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Schecter, R. W. et al. Experience-dependent synaptic plasticity in V1 occurs without microglial CX3CR1. J. Neurosci. 37, 10541–10553 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kaiser, N., Patz, C., Brachtendorf, S., Eilers, J. & Bechmann, I. Undisturbed climbing fiber pruning in the cerebellar cortex of CX3CR1-deficient mice. Glia 68, 2316–2329 (2020).

    PubMed  Google Scholar 

  115. Shi, Q. et al. Complement C3-deficient mice fail to display age-related hippocampal decline. J. Neurosci. 35, 13029–13042 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Lowery, R. L., Tremblay, M. E., Hopkins, B. E. & Majewska, A. K. The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system. Glia 65, 1744–1761 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Welsh, C. A., Stephany, C. E., Sapp, R. W. & Stevens, B. Ocular dominance plasticity in binocular primary visual cortex does not require C1q. J. Neurosci. 40, 769–783 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Badimon, A. et al. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Peng, J. et al. Microglial P2Y12 receptor regulates ventral hippocampal CA1 neuronal excitability and innate fear in mice. Mol. Brain 12, 71 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Favuzzi, E. et al. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 184, 4048–4063 (2021).

    Article  PubMed  CAS  Google Scholar 

  121. Chung, W. S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Lee, J. H. et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature https://doi.org/10.1038/s41586-020-03060-3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Byun, Y. G. & Chung, W. S. A novel in vitro live-imaging assay of astrocyte-mediated phagocytosis using pH indicator-conjugated synaptosomes. J. Vis. Exp. https://doi.org/10.3791/56647 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Risher, W. C. et al. Astrocytes refine cortical connectivity at dendritic spines. eLife https://doi.org/10.7554/eLife.04047 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269–1273 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Filipello, F. et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity 48, 979–991 e978 (2018).

    Article  PubMed  CAS  Google Scholar 

  127. Jay, T. R. et al. TREM2 is required for microglial instruction of astrocytic synaptic engulfment in neurodevelopment. Glia 67, 1873–1892 (2019).

    PubMed  Google Scholar 

  128. Yasuda, M., Nagappan-Chettiar, S., Johnson-Venkatesh, E. M. & Umemori, H. An activity-dependent determinant of synapse elimination in the mammalian brain. Neuron 109, 1333–1349 e1336 (2021).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  129. Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 36, 489–517 (2018).

    Article  PubMed  CAS  Google Scholar 

  130. Li, Z. et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141, 859–871 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Jiao, S. & Li, Z. Nonapoptotic function of BAD and BAX in long-term depression of synaptic transmission. Neuron 70, 758–772 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Erturk, A., Wang, Y. & Sheng, M. Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J. Neurosci. 34, 1672–1688 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Xu, Z. X. et al. Caspase-2 promotes AMPA receptor internalization and cognitive flexibility via mTORC2-AKT-GSK3beta signaling. Nat. Commun. 10, 3622 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Creamer, T. P. Calcineurin. Cell Commun. Signal. 18, 137 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Flavell, S. W. et al. Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–1012 (2006).

    Article  PubMed  CAS  Google Scholar 

  136. Tian, X., Kai, L., Hockberger, P. E., Wokosin, D. L. & Surmeier, D. J. MEF-2 regulates activity-dependent spine loss in striatopallidal medium spiny neurons. Mol. Cell. Neurosci. 44, 94–108 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Wilkerson, J. R. et al. A role for dendritic mGluR5-mediated local translation of Arc/Arg3.1 in MEF2-dependent synapse elimination. Cell Rep. 7, 1589–1600 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Zagorska, A., Traves, P. G., Lew, E. D., Dransfield, I. & Lemke, G. Diversification of TAM receptor tyrosine kinase function. Nat. Immunol. 15, 920–928 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Li, T. et al. A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J. 39, e104136 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Paidassi, H. et al. C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition. J. Immunol. 180, 2329–2338 (2008).

    Article  PubMed  CAS  Google Scholar 

  141. Owen, K. L., Brockwell, N. K. & Parker, B. S. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancers (Basel) https://doi.org/10.3390/cancers11122002 (2019).

    Article  Google Scholar 

  142. Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Lees, R. M., Johnson, J. D. & Ashby, M. C. Presynaptic boutons that contain mitochondria are more stable. Front. Synaptic Neurosci. 11, 37 (2019).

    Article  PubMed  CAS  Google Scholar 

  144. Sun, T., Qiao, H., Pan, P. Y., Chen, Y. & Sheng, Z. H. Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep. 4, 413–419 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Koyama, R. & Ikegaya, Y. Microglia in the pathogenesis of autism spectrum disorders. Neurosci. Res. 100, 1–5 (2015).

    Article  PubMed  CAS  Google Scholar 

  146. Pardo, C. A., Vargas, D. L. & Zimmerman, A. W. Immunity, neuroglia and neuroinflammation in autism. Int. Rev. Psychiatry 17, 485–495 (2005).

    Article  PubMed  Google Scholar 

  147. Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W. & Pardo, C. A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67–81 (2005).

    Article  PubMed  CAS  Google Scholar 

  148. Belmonte, M. K. et al. Autism and abnormal development of brain connectivity. J. Neurosci. 24, 9228–9231 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Peca, J. & Feng, G. Cellular and synaptic network defects in autism. Curr. Opin. Neurobiol. 22, 866–872 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Thomas, M. S., Davis, R., Karmiloff-Smith, A., Knowland, V. C. & Charman, T. The over-pruning hypothesis of autism. Dev. Sci. 19, 284–305 (2016).

    Article  PubMed  Google Scholar 

  151. Waites, C. L. & Garner, C. C. Presynaptic function in health and disease. Trends Neurosci. 34, 326–337 (2011).

    Article  PubMed  CAS  Google Scholar 

  152. Melom, J. E. & Littleton, J. T. Synapse development in health and disease. Curr. Opin. Genet. Dev. 21, 256–261 (2011).

    Article  PubMed  CAS  Google Scholar 

  153. Penzes, P., Cahill, M. E., Jones, K. A., VanLeeuwen, J. E. & Woolfrey, K. M. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285–293 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Maenner, M. J. et al. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveill. Summ. 69, 1–12 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Tang, G. et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83, 1131–1143 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Hutsler, J. J. & Zhang, H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309, 83–94 (2010).

    Article  PubMed  CAS  Google Scholar 

  157. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Nardone, S. et al. DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Transl. Psychiatry 4, e433 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat. Rev. Neurosci. 16, 551–563 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Darnell, J. C. & Richter, J. D. Cytoplasmic RNA-binding proteins and the control of complex brain function. Cold Spring Harb. Perspect. Biol. 4, a012344 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Antar, L. N., Afroz, R., Dictenberg, J. B., Carroll, R. C. & Bassell, G. J. Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J. Neurosci. 24, 2648–2655 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Weiler, I. J. et al. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl Acad. Sci. USA 94, 5395–5400 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Huber, K. M., Gallagher, S. M., Warren, S. T. & Bear, M. F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl Acad. Sci. USA 99, 7746–7750 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Li, J., Pelletier, M. R., Perez Velazquez, J. L. & Carlen, P. L. Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol. Cell. Neurosci. 19, 138–151 (2002).

    Article  PubMed  CAS  Google Scholar 

  166. Le Meur, N. et al. MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations. J. Med. Genet. 47, 22–29 (2010).

    Article  PubMed  CAS  Google Scholar 

  167. Nowakowska, B. A. et al. Severe mental retardation, seizures, and hypotonia due to deletions of MEF2C. Am. J. Med. Genet. B Neuropsychiatric Genet. 153B, 1042–1051 (2010).

    CAS  Google Scholar 

  168. Paciorkowski, A. R. et al. MEF2C haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways. Neurogenetics 14, 99–111 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Pfeiffer, B. E. et al. Fragile X mental retardation protein is required for synapse elimination by the activity-dependent transcription factor MEF2. Neuron 66, 191–197 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Tsai, N. P., Wilkerson, J. R., Guo, W. & Huber, K. M. FMRP-dependent Mdm2 dephosphorylation is required for MEF2-induced synapse elimination. Hum. Mol. Genet. 26, 293–304 (2017).

    PubMed  CAS  Google Scholar 

  171. Tsai, N. P. et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 151, 1581–1594 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Hinton, V. J., Brown, W. T., Wisniewski, K. & Rudelli, R. D. Analysis of neocortex in three males with the fragile X syndrome. Am. J. Med. Genet. 41, 289–294 (1991).

    Article  PubMed  CAS  Google Scholar 

  173. Rudelli, R. D. et al. Adult fragile X syndrome. Clinico-neuropathologic findings. Acta Neuropathol. 67, 289–295 (1985).

    Article  PubMed  CAS  Google Scholar 

  174. He, C. X. & Portera-Cailliau, C. The trouble with spines in fragile X syndrome: density, maturity and plasticity. Neuroscience 251, 120–128 (2013).

    Article  PubMed  CAS  Google Scholar 

  175. Jawaid, S. et al. Alterations in CA1 hippocampal synapses in a mouse model of fragile X syndrome. Glia 66, 789–800 (2018).

    Article  PubMed  Google Scholar 

  176. Dolen, G. et al. Correction of fragile X syndrome in mice. Neuron 56, 955–962 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Cruz-Martin, A., Crespo, M. & Portera-Cailliau, C. Delayed stabilization of dendritic spines in fragile X mice. J. Neurosci. 30, 7793–7803 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Pan, F., Aldridge, G. M., Greenough, W. T. & Gan, W. B. Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome. Proc. Natl Acad. Sci. USA 107, 17768–17773 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Patel, A. B., Loerwald, K. W., Huber, K. M. & Gibson, J. R. Postsynaptic FMRP promotes the pruning of cell-to-cell connections among pyramidal neurons in the L5A neocortical network. J. Neurosci. 34, 3413–3418 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Isshiki, M. et al. Enhanced synapse remodelling as a common phenotype in mouse models of autism. Nat. Commun. 5, 4742 (2014).

    Article  PubMed  CAS  Google Scholar 

  181. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Gabrielli, A. P., Manzardo, A. M. & Butler, M. G. GeneAnalytics pathways and profiling of shared autism and cancer genes. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20051166 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kwon, C. H. et al. Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377–388 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Tsai, P. T. et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488, 647–651 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Ebrahimi-Fakhari, D. et al. Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep. 17, 1053–1070 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Wang, T. et al. Flux of signalling endosomes undergoing axonal retrograde transport is encoded by presynaptic activity and TrkB. Nat. Commun. 7, 12976 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Wang, T. et al. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a. J. Neurosci. 35, 6179–6194 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Binotti, B. et al. The GTPase Rab26 links synaptic vesicles to the autophagy pathway. eLife 4, e05597 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Hernandez, D. et al. Regulation of presynaptic neurotransmission by macroautophagy. Neuron 74, 277–284 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Shehata, M., Matsumura, H., Okubo-Suzuki, R., Ohkawa, N. & Inokuchi, K. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J. Neurosci. 32, 10413–10422 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Nikoletopoulou, V., Sidiropoulou, K., Kallergi, E., Dalezios, Y. & Tavernarakis, N. Modulation of autophagy by BDNF underlies synaptic plasticity. Cell Metab. 26, 230–242 e235 (2017).

    Article  PubMed  CAS  Google Scholar 

  192. Xu, Z. X. et al. Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations. Nat. Commun. 11, 1797 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Gkogkas, C. G. et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493, 371–377 (2013).

    Article  PubMed  CAS  Google Scholar 

  194. Santini, E. et al. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493, 411–415 (2013).

    Article  PubMed  CAS  Google Scholar 

  195. American Psychiatric Association DSM-5 Task Force. Diagnostic and Statistical Manual of Mental Disorders: DSM-5. 5th Edn. (American Psychiatric Association, 2020).

  196. Fusar-Poli, P. et al. The psychosis high-risk state: a comprehensive state-of-the-art review. JAMA Psychiatry 70, 107–120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Feinberg, I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J. Psychiatr. Res. 17, 319–334 (1982).

    Article  PubMed  Google Scholar 

  198. Zipursky, R. B., Lim, K. O., Sullivan, E. V., Brown, B. W. & Pfefferbaum, A. Widespread cerebral gray matter volume deficits in schizophrenia. Arch. Gen. Psychiatry 49, 195–205 (1992).

    Article  PubMed  CAS  Google Scholar 

  199. Andreasen, N. C. et al. Progressive brain change in schizophrenia: a prospective longitudinal study of first-episode schizophrenia. Biol. Psychiatry 70, 672–679 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Glantz, L. A. & Lewis, D. A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57, 65–73 (2000).

    Article  PubMed  CAS  Google Scholar 

  201. Kolluri, N., Sun, Z., Sampson, A. R. & Lewis, D. A. Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am. J. Psychiatry 162, 1200–1202 (2005).

    Article  PubMed  Google Scholar 

  202. Glantz, L. A. & Lewis, D. A. Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity. Arch. Gen. Psychiatry 54, 943–952 (1997).

    Article  PubMed  CAS  Google Scholar 

  203. Davidsson, P. et al. The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in thalamus and related cortical brain regions in schizophrenic brains. Schizophr. Res. 40, 23–29 (1999).

    Article  PubMed  CAS  Google Scholar 

  204. Bitanihirwe, B. K., Lim, M. P., Kelley, J. F., Kaneko, T. & Woo, T. U. Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry 9, 71 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Onwordi, E. C. et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat. Commun. 11, 246 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179–184 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  208. Mukai, J. et al. Recapitulation and reversal of schizophrenia-related phenotypes in setd1a-deficient mice. Neuron 104, 471–487 e412 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Nagahama, K. et al. Setd1a insufficiency in mice attenuates excitatory synaptic function and recapitulates schizophrenia-related behavioral abnormalities. Cell Rep. 32, 108126 (2020).

    Article  PubMed  CAS  Google Scholar 

  210. Jones, C. A., Watson, D. J. & Fone, K. C. Animal models of schizophrenia. Br. J. Pharmacol. 164, 1162–1194 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature 460, 744–747 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Mokhtari, R. & Lachman, H. M. The major histocompatibility complex (MHC) in schizophrenia: a review. J. Clin. Cell Immunol. https://doi.org/10.4172/2155-9899.1000479 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature https://doi.org/10.1038/nature16549 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Comer, A. L. et al. Increased expression of schizophrenia-associated gene C4 leads to hypoconnectivity of prefrontal cortex and reduced social interaction. PLoS Biol. 18, e3000604 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Yilmaz, M. et al. Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. Nature Neurosci. https://doi.org/10.1038/s41593-020-00763-8 (2020).

    Article  PubMed  Google Scholar 

  216. Sellgren, C. M. et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat. Neurosci. 22, 374–385 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Kim, M. et al. Brain gene co-expression networks link complement signaling with convergent synaptic pathology in schizophrenia. Nature Neurosci. https://doi.org/10.1038/s41593-021-00847-z (2021).

    Article  PubMed  Google Scholar 

  218. Al-Haddad, B. J. S. et al. The fetal origins of mental illness. Am. J. Obstet. Gynecol. 221, 549–562 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Bayer, T. A., Falkai, P. & Maier, W. Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis”. J. Psychiatr. Res. 33, 543–548 (1999).

    Article  PubMed  CAS  Google Scholar 

  220. Bolte, S., Girdler, S. & Marschik, P. B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol. Life Sci. 76, 1275–1297 (2019).

    Article  PubMed  CAS  Google Scholar 

  221. Brown, A. S. The environment and susceptibility to schizophrenia. Prog. Neurobiol. 93, 23–58 (2011).

    Article  PubMed  CAS  Google Scholar 

  222. van Os, J., Kenis, G. & Rutten, B. P. The environment and schizophrenia. Nature 468, 203–212 (2010).

    Article  PubMed  CAS  Google Scholar 

  223. Patterson, P. H. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav. Brain Res. 204, 313–321 (2009).

    Article  PubMed  CAS  Google Scholar 

  224. Fernandez de Cossio, L., Guzman, A., van der Veldt, S. & Luheshi, G. N. Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring. Brain Behav. Immun. 63, 88–98 (2017).

    Article  PubMed  Google Scholar 

  225. Andoh, M. et al. Exercise reverses behavioral and synaptic abnormalities after maternal inflammation. Cell Rep. 27, 2817–2825 e2815 (2019).

    Article  PubMed  CAS  Google Scholar 

  226. Ikezu, S. et al. Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities. Mol. Psychiatry https://doi.org/10.1038/s41380-020-0671-2 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Cao, P. et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron 109, 2573–2589.e9 (2021).

    Article  PubMed  CAS  Google Scholar 

  228. Pekala, M., Doliwa, M. & Kalita, K. Impact of maternal immune activation on dendritic spine development. Dev. Neurobiol. (2020).

  229. McNamara, R. K., Vannest, J. J. & Valentine, C. J. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology. World J. Psychiatry 5, 15–34 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Madore, C. et al. Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the mouse developing brain. Nat. Commun. 11, 6133 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Lammert, C. R. et al. Cutting edge: critical roles for microbiota-mediated regulation of the immune system in a prenatal immune activation model of autism. J. Immunol. 201, 845–850 (2018).

    Article  PubMed  CAS  Google Scholar 

  234. Logan, M. A. & Freeman, M. R. The scoop on the fly brain: glial engulfment functions in Drosophila. Neuron Glia Biol. 3, 63–74 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Awasaki, T. et al. Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50, 855–867 (2006).

    Article  PubMed  CAS  Google Scholar 

  236. Fuentes-Medel, Y. et al. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS Biol. 7, e1000184 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Hakim, Y., Yaniv, S. P. & Schuldiner, O. Astrocytes play a key role in Drosophila mushroom body axon pruning. PLoS ONE 9, e86178 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Cherra, S. J. III & Jin, Y. A two-immunoglobulin-domain transmembrane protein mediates an epidermal-neuronal interaction to maintain synapse density. Neuron 89, 325–336 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Boulanger, A. et al. Axonal chemokine-like Orion induces astrocyte infiltration and engulfment during mushroom body neuronal remodeling. Nat. Commun. 12, 1849 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Yu, X. M. et al. Plum, an immunoglobulin superfamily protein, regulates axon pruning by facilitating TGF-beta signaling. Neuron 78, 456–468 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

    Article  PubMed  CAS  Google Scholar 

  242. Nakajima, Y. I. & Kuranaga, E. Caspase-dependent non-apoptotic processes in development. Cell Death Differ. 24, 1422–1430 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Meng, L. et al. The cell death pathway regulates synapse elimination through cleavage of gelsolin in caenorhabditis elegans neurons. Cell Rep. 11, 1737–1748 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Miller-Fleming, T. W. et al. The DEG/ENaC cation channel protein UNC-8 drives activity-dependent synapse removal in remodeling GABAergic neurons. eLife https://doi.org/10.7554/eLife.14599 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Raiders, S. et al. Glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior. eLife https://doi.org/10.7554/eLife.63532 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. Feinberg for his careful review of the manuscript. This work was supported by grant numbers NIMH-R01MH113743 and NINDS-R01NS117533 (D.P.S.) and NINDS-F31NS117053 (G.G.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Dorothy P. Schafer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks M. Freeman, M. Kano, M. Matteoli and A. Schaeffer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Synaptic pruning

Developmental elimination of elements that comprise a bona fide structural synapse (presynaptic terminal and postsynaptic membranes), which might also include some pruning of small branches of axonal arbors and dendrites, while remaining synapses are maintained and strengthened.

Spontaneous neural activity

Neuronal activity that is not driven by an external stimulus.

Experience-driven neural activity

Neuronal activity driven by external changes affecting sensory experience.

Eye-specific segregation

A process involving synaptic pruning by which spontaneous retinal activity drives presynaptic inputs from retinal ganglion cells to segregate and synapse in discrete, non-overlapping territories within the lateral geniculate nucleus during postnatal development.

Monocular deprivation

The loss of sensory input to one eye, typically performed by suturing one eye closed for a defined period.

Ocular dominance plasticity

A process by which monocular deprivation results in strengthening of synaptic inputs from the open eye and weakening and elimination of synapses corresponding to the sutured, deprived eye.

Long-term depression

(LTD). A process by which changes in neuronal activity, such as sustained low-frequency stimulation, induce a reduction in synaptic strength.

Engulfment

The internalization or phagocytosis of material by a cell for degradation.

Trogocytosis

Partial phagocytosis of membrane material (trogo means ‘nibble’) while leaving the remaining membrane intact.

Apoptosis

A canonical highly regulated process of programmed cell death that occurs in multiple contexts, including during development, and involves membrane blebbing, cell shrinkage and DNA fragmentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faust, T.E., Gunner, G. & Schafer, D.P. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci 22, 657–673 (2021). https://doi.org/10.1038/s41583-021-00507-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00507-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing