Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neural tuning and representational geometry

Abstract

A central goal of neuroscience is to understand the representations formed by brain activity patterns and their connection to behaviour. The classic approach is to investigate how individual neurons encode stimuli and how their tuning determines the fidelity of the neural representation. Tuning analyses often use the Fisher information to characterize the sensitivity of neural responses to small changes of the stimulus. In recent decades, measurements of large populations of neurons have motivated a complementary approach, which focuses on the information available to linear decoders. The decodable information is captured by the geometry of the representational patterns in the multivariate response space. Here we review neural tuning and representational geometry with the goal of clarifying the relationship between them. The tuning induces the geometry, but different sets of tuned neurons can induce the same geometry. The geometry determines the Fisher information, the mutual information and the behavioural performance of an ideal observer in a range of psychophysical tasks. We argue that future studies can benefit from considering both tuning and geometry to understand neural codes and reveal the connections between stimuli, brain activity and behaviour.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Neuronal tuning determines representational geometry.
Fig. 2: Relationship between manifold geometry, Fisher information and mutual information.
Fig. 3: Relationships among tuning, geometry, Fisher information, mutual information, fine discrimination and general discrimination.
Fig. 4: Tuning and geometry for notable neural codes.

References

  1. DeCharms, C. R. & Zador, A. Neural representation and the cortical code. Annu. Rev. Neurosci. 23, 613–647 (2000).

    PubMed  Article  CAS  Google Scholar 

  2. Kriegeskorte, N. & Douglas, P. K. Interpreting encoding and decoding models. Curr. Opin. Neurobiol. 55, 167–179 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. Barlow, H. B., Blakemore, C. & Pettigrew, J. D. The neural mechanism of binocular depth discrimination. J. Physiol. 193, 327–342 (1967).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. Campbell, F. W., Cleland, B. G., Cooper, G. F. & Enroth-Cugell, C. The angular selectivity of visual cortical cells to moving gratings. J. Physiol. 198, 237–250 (1968).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. Blakemore, C., Fiorentini, A. & Maffei, L. A second neural mechanism of binocular depth discrimination. J. Physiol. 226, 725–749 (1972).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Geoffrey, H., Henry, B., Dreher & Bishop, P. O. Orientation specificity of cells in cat striate cortex. J. Neurophysiol. 37, 1394–1409 (1974).

    Article  Google Scholar 

  7. Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. Rose, D. & Blakemore, C. An analysis of orientation selectivity in the cat’s visual cortex. Exp. Brain Res. 20, 1–17 (1974).

    PubMed  Article  CAS  Google Scholar 

  11. Swindale, N. V. Orientation tuning curves: empirical description and estimation of parameters. Biol. Cybern. 78, 45–56 (1998).

    PubMed  Article  CAS  Google Scholar 

  12. Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).

    PubMed  Article  CAS  Google Scholar 

  13. Rani Ben-Yishai, R., Bar-Or, L. & Sompolinsky, H. Theory of orientation tuning in visual cortex. Proc. Natl Acad. Sci. USA 92, 3844–3848 (1995).

    Article  Google Scholar 

  14. Anderson, J. S., Lampl, I., Gillespie, D. C. & Ferster, D. The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968–1972 (2000).

    PubMed  Article  CAS  Google Scholar 

  15. Seriès, P., Latham, P. E. & Pouget, A. Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations. Nat. Neurosci. 7, 1129–1135 (2004).

    PubMed  Article  CAS  Google Scholar 

  16. Butts, D. A. & Goldman, M. S. Tuning curves, neuronal variability, and sensory coding. PLoS Biol. 4, e92 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Campbell, F. W., Cooper, G. F. & Enroth-Cugell, C. The spatial selectivity of the visual cells of the cat. J. Physiol. 203, 223–235 (1969).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Goldberg, J. M. & Brown, P. B. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32, 613–636 (1969).

    PubMed  Article  CAS  Google Scholar 

  19. Suga, N. Amplitude spectrum representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science 196, 64–67 (1977).

    PubMed  Article  CAS  Google Scholar 

  20. O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Clarendon, 1978).

  21. Knudsen, E. I. Auditory and visual maps of space in the optic tectum of the owl. J. Neurosci. 2, 1177–1194 (1982).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Maunsell, J. H. & Van Essen, D. C. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol. 49, 1127–1147 (1983).

    PubMed  Article  CAS  Google Scholar 

  23. Taube, J. S., Muller, R. U. & Ranck, J. B. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420–435 (1990).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. DeAngelis, G. C., Ohzawa, I. & Freeman, R. D. Depth is encoded in the visual cortex by a specialized receptive field structure. Nature 352, 156–159 (1991).

    PubMed  Article  CAS  Google Scholar 

  25. Johnson, K. O. & Hsiao, S. S. Neural mechanisms of tactual form and texture perception. Annu. Rev. Neurosci. 15, 227–250 (1992).

    PubMed  Article  CAS  Google Scholar 

  26. Gallant, J. L. et al. Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. J. Neurophysiol. 76, 2718–2739 (1996).

    PubMed  Article  CAS  Google Scholar 

  27. Pasupathy, A. & Connor, C. E. Population coding of shape in area V4. Nat. Neurosci. 5, 1332–1338 (2002).

    PubMed  Article  CAS  Google Scholar 

  28. Nieder, A., Freedman, D. J. & Miller, E. K. Representation of the quantity of visual items in the primate prefrontal cortex. Science 297, 1708–1711 (2002).

    PubMed  Article  CAS  Google Scholar 

  29. Fyhn, M., Molden, S., Witter, M. P., Moser, E. I. & Moser, M.-B. Spatial representation in the entorhinal cortex. Science 305, 1258–1264 (2004).

    PubMed  Article  CAS  Google Scholar 

  30. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    PubMed  Article  CAS  Google Scholar 

  31. Young, M. P. & Yamane, S. Sparse population coding of faces in the inferotemporal cortex. Science 256, 1327–1331 (1992).

    PubMed  Article  CAS  Google Scholar 

  32. Tsao, D. Y., Freiwald, W. A., Tootell, R. B. H. & Livingstone, M. S. A cortical region consisting entirely of face-selective cells. Science 311, 670–674 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Chang, L. & Tsao, D. Y. The code for facial identity in the primate brain. Cell 169, 1013–1028 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Maffei, L. & Fiorentini, A. The unresponsive regions of visual cortical receptive fields. Vis. Res. 16, 1131–1139 (1976).

    PubMed  Article  CAS  Google Scholar 

  36. Gilbert, C. D. & Wiesel, T. N. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vis. Res. 30, 1689–1701 (1990).

    PubMed  Article  CAS  Google Scholar 

  37. Knierim, J. J. & Van Essen, D. C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67, 961–980 (1992).

    PubMed  Article  CAS  Google Scholar 

  38. Maffei, L., Fiorentini, A. & Bisti, S. Neural correlate of perceptual adaptation to gratings. Science 182, 1036–1038 (1973).

    PubMed  Article  CAS  Google Scholar 

  39. Movshon, J. A. & Lennie, P. Pattern-selective adaptation in visual cortical neurones. Nature 278, 850–852 (1979).

    PubMed  Article  CAS  Google Scholar 

  40. Dragoi, V., Sharma, J. & Sur, M. Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28, 287–298 (2000).

    PubMed  Article  CAS  Google Scholar 

  41. Benucci, A., Saleem, A. B. & Carandini, M. Adaptation maintains population homeostasis in primary visual cortex. Nat. Neurosci. 16, 724–729 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. Dean, I., Harper, N. S. & McAlpine, D. Neural population coding of sound level adapts to stimulus statistics. Nat. Neurosci. 8, 1684–1689 (2005).

    PubMed  Article  CAS  Google Scholar 

  43. Ulanovsky, N., Las, L., Farkas, D. & Nelken, I. Multiple time scales of adaptation in auditory cortex neurons. J. Neurosci. 24, 10440–10453 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. Grill-Spector, K., Henson, R. & Martin, A. Repetition and the brain: neural models of stimulus-specific effects. Trends Cognit. Sci. 10, 14–23 (2006).

    Article  Google Scholar 

  45. Solomon, S. G. & Kohn, A. Moving sensory adaptation beyond suppressive effects in single neurons. Curr. Biol. 24, R1012–R1022 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. Alink, A., Abdulrahman, H. & Henson, R. N. Forward models demonstrate that repetition suppression is best modelled by local neural scaling. Nat. Commun. 9, 1–10 (2018).

    Article  CAS  Google Scholar 

  47. Treue, S. & Martinez Trujillo, J. C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

    PubMed  Article  CAS  Google Scholar 

  48. McAdams, C. J. & Maunsell, J. H. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Reynolds, J. H., Pasternak, T. & Desimone, R. Attention increases sensitivity of V4 neurons. Neuron 26, 703–714 (2000).

    PubMed  Article  CAS  Google Scholar 

  50. Schoups, A., Vogels, R., Qian, N. & Orban, G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    PubMed  Article  CAS  Google Scholar 

  51. Ghose, G. M., Yang, T. & Maunsell, J. H. Physiological correlates of perceptual learning in monkey V1 and V2. J. Neurophysiol. 87, 1867–1888 (2002).

    PubMed  Article  Google Scholar 

  52. Crist, R. E., Li, W. & Gilbert, C. D. Learning to see: experience and attention in primary visual cortex. Nat. Neurosci. 4, 519–525 (2001).

    PubMed  Article  CAS  Google Scholar 

  53. Churchland, M. M. et al. Neural population dynamics during reaching. Nature, 487, 51–56 (2012).

    Article  CAS  Google Scholar 

  54. Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    PubMed  Article  CAS  Google Scholar 

  55. Churchland, A. K. et al. Variance as a signature of neural computations during decision making. Neuron 69, 818–831 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004).

    PubMed  Article  CAS  Google Scholar 

  57. Stevenson, I. H. & Kording, K. P. How advances in neural recording affect data analysis. Nat. Neurosci. 14, 139–142 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature, 551, 232–236 (2017).

    Article  CAS  Google Scholar 

  59. Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    PubMed  Article  CAS  Google Scholar 

  60. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

    PubMed  Article  CAS  Google Scholar 

  61. Shepard, R. N. & Chipman, S. Second-order isomorphism of internal representations: shapes of states. Cognit. Psychol. 1, 1–17 (1970).

    Article  Google Scholar 

  62. Edelman, S., Grill-Spector, K., Kushnir, T. & Malach, R. Toward direct visualization of the internal shape representation space by fMRI. Psychobiology 26, 309–321 (1998).

    Google Scholar 

  63. Edelman, S. Representation is representation of similarities. Behav. Brain Sci. 21, 449–467 (1998).

    PubMed  Article  CAS  Google Scholar 

  64. Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cognit. Sci. 10, 424–430 (2006).

    Article  Google Scholar 

  65. Diedrichsen, J. & Kriegeskorte, N. Representational models: a common framework for understanding encoding, pattern-component, and representational-similarity analysis. PLoS Comput. Biol. 13, e1005508 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis — connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  67. Kriegeskorte, N. et al. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 1126–1141 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. Connolly, A. C. et al. The representation of biological classes in the human brain. J. Neurosci. 32, 2608–2618 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. Xue, G. et al. Greater neural pattern similarity across repetitions is associated with better memory. Science 330, 97–101 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. Khaligh-Razavi, S.-M. & Kriegeskorte, N. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput. Biol. 10, e1003915 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. Cichy, R. M., Pantazis, D. & Oliva, A. Resolving human object recognition in space and time. Nat. Neurosci. 17, 455–462 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. Freeman, J. B., Stolier, R. M., Brooks, J. A. & Stillerman, B. S. The neural representational geometry of social perception. Curr. Opin. Psychol. 24, 83–91 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  74. Kietzmann, T. C., Spoerer, C. J., Sörensen, L. K. A., Cichy, R. M., Hauk, O. & Kriegeskorte, N. Recurrence is required to capture the representational dynamics of the human visual system. Proc. Natl Acad. Sci. USA 116, 21854–21863 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. Kriegeskorte, N. & Diedrichsen, J. Peeling the onion of brain representations. Annu. Rev. Neurosci. 42, 407–432 (2019).

    PubMed  Article  CAS  Google Scholar 

  76. Nili, H. et al. A toolbox for representational similarity analysis. PLoS Comput. Biol. 10, e1003553 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. Kriegeskorte, N. & Diedrichsen, J. Inferring brain-computational mechanisms with models of activity measurements. Philos. Trans. R. Soc. B Biol. Sci. 371, 20160278 (2016).

    Article  Google Scholar 

  78. Kriegeskorte, N. & Kievit, R. A. Representational geometry: integrating cognition, computation, and the brain. Trends Cognit. Sci. 17, 401–412 (2013).

    Article  Google Scholar 

  79. Dumoulin, S. O. & Wandell, B. A. Population receptive field estimates in human visual cortex. Neuroimage 39, 647–660 (2008).

    PubMed  Article  Google Scholar 

  80. Kay, K. N., Naselaris, T., Prenger, R. J. & Gallant, J. L. Identifying natural images from human brain activity. Nature, 452, 352–355 (2008).

    Article  CAS  Google Scholar 

  81. Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M. & Gallant, J. L. Bayesian reconstruction of natural images from human brain activity. Neuron 63, 902–915 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. Tsao, W. A. & Tsao, D. Y. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330, 845–851 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. Ringach, D. L. The geometry of masking in neural populations. Nat. Commun. 10, 1–11 (2019).

    Article  CAS  Google Scholar 

  84. Fisher, R. A. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A 222, 309–368 (1922).

    Article  Google Scholar 

  85. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  Google Scholar 

  86. de Ruyter van Steveninck, R. R., Lewen, G. D., Strong, S. P., Koberle, R. & Bialek., W. Reproducibility and variability in neural spike trains. Science 275, 1805–1808 (1997).

    PubMed  Article  Google Scholar 

  87. Rieke, F. et al. Spikes: Exploring the Neural Code (MIT Press, 1999).

  88. Thorst, A. & Theunissen, F. E. Information theory and neural coding. Nat. Neurosci. 2, 947–957 (1999).

    Article  Google Scholar 

  89. Fairhall, A. L., Lewen, G. D., Bialek, W. & de Ruyter van Steveninck, R. R. Efficiency and ambiguity in an adaptive neural code. Nature 412, 787–792 (2001).

    PubMed  Article  CAS  Google Scholar 

  90. Theunissen, F. E. & Miller, J. P. Representation of sensory information in the cricket cercal sensory system. II. Information theoretic calculation of system accuracy and optimal tuning-curve widths of four primary interneurons. J. Neurophysiol. 66, 1690–1703 (1991).

    PubMed  Article  CAS  Google Scholar 

  91. Roddey, J. C. & Jacobs, G. A. Information theoretic analysis of dynamical encoding by filiform mechanoreceptors in the cricket cercal system. J. Neurophysiol. 75, 1365–1376 (1996).

    PubMed  Article  CAS  Google Scholar 

  92. Theunissen, F. E., Cooper Roddey, J., Stufflebeam, S., Clague, H. & Miller, J. P. Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system. J. Neurophysiol. 75, 1345–1364 (1996).

    PubMed  Article  CAS  Google Scholar 

  93. Brenner, N., Bialek, W. & de Ruyter Van Steveninck, R. Adaptive rescaling maximizes information transmission. Neuron 26, 695–702 (2000).

    PubMed  Article  CAS  Google Scholar 

  94. Ganguli, D. & Simoncelli, E. P. Efficient sensory encoding and Bayesian inference with heterogeneous neural populations. Neural Comput. 26, 2103–2134 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  95. Wei, X.-X. & Stocker, A. A. A Bayesian observer model constrained by efficient coding can explain ‘anti-Bayesian’ percepts. Nat. Neurosci. 18, 1509–1517 (2015).

    PubMed  Article  CAS  Google Scholar 

  96. Wei, X.-X. & Stocker, A. A. Efficient coding provides a direct link between prior and likelihood in perceptual Bayesian inference. Adv. Neural Inf. Process. Syst. 25, 1304–1312 (2012).

    Google Scholar 

  97. McDonnell, M. D. & Stocks, N. G. Maximally informative stimuli and tuning curves for sigmoidal rate-coding neurons and populations. Phys. Rev. Lett. 101, 058103 (2008).

    PubMed  Article  CAS  Google Scholar 

  98. Barlow, H. B. et al. Possible principles underlying the transformation of sensory messages. Sens. Commun. 1, 217–234 (1961).

    Google Scholar 

  99. Linsker, R. Self-organization in a perceptual network. Computer 21, 105–117 (1988).

    Article  Google Scholar 

  100. Laughlin, S. A simple coding procedure enhances a neuron’s information capacity. Z. für Naturforschung C. 36, 910–912 (1981).

    Article  CAS  Google Scholar 

  101. van Hateren, J. H. A theory of maximizing sensory information. Biol. Cybern. 68, 23–29 (1992).

    PubMed  Article  Google Scholar 

  102. Atick, J. J. Could information theory provide an ecological theory of sensory processing? Network 3, 213–251 (1992).

    Article  Google Scholar 

  103. Dong, D. W. & Atick, J. J. Statistics of natural time-varying images. Network 6, 345–358 (1995).

    Article  Google Scholar 

  104. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    PubMed  Article  CAS  Google Scholar 

  105. Bell, A. J. & Sejnowski, T. J. The “independent components” of natural scenes are edge filters. Vis. Res. 37, 3327–3338 (1997).

    PubMed  Article  CAS  Google Scholar 

  106. Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).

    PubMed  Article  CAS  Google Scholar 

  107. Ganguli, D. & Simoncelli, E. P. Implicit encoding of prior probabilities in optimal neural populations. Adv. Neural Inf. Process. Syst. 2010, 658–666 (2010).

    Google Scholar 

  108. Wei, X.-X. & Stocker, A. A. Mutual information, Fisher information, and efficient coding. Neural Comput. 28, 305–326 (2016).

    PubMed  Article  Google Scholar 

  109. Quiroga, R. Q. & Panzeri, S. Extracting information from neuronal populations: information theory and decoding approaches. Nat. Rev. Neurosci. 10, 173–185 (2009).

    Article  CAS  Google Scholar 

  110. DeWeese, M. R. & Meister, M. How to measure the information gained from one symbol. Network. 10, 325–340 (1999).

    PubMed  Article  CAS  Google Scholar 

  111. Butts, DanielA. How much information is associated with a particular stimulus? Network 14, 177–187 (2003).

    PubMed  Article  Google Scholar 

  112. Montgomery, N. & Wehr, M. Auditory cortical neurons convey maximal stimulus-specific information at their best frequency. J. Neurosci. 30, 13362–13366 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  113. Lehmann, E. L. and Casella, G. Theory of Point Estimation (Springer Science & Business Media, 2006).

  114. Harper, N. S. & McAlpine, D. Optimal neural population coding of an auditory spatial cue. Nature 430, 682–686 (2004).

    PubMed  Article  CAS  Google Scholar 

  115. Gutnisky, D. A. & Dragoi, V. Adaptive coding of visual information in neural populations. Nature 452, 220–224 (2008).

    PubMed  Article  CAS  Google Scholar 

  116. Brunel, N. & Nadal, J.-P. Mutual information, Fisher information, and population coding. Neural Comput. 10, 1731–1757 (1998).

    PubMed  Article  CAS  Google Scholar 

  117. Zhang, K. & Sejnowski, T. J. Neuronal tuning: to sharpen or broaden? Neural Comput. 11, 75–84 (1999).

    PubMed  Article  CAS  Google Scholar 

  118. Pouget, A., Deneve, S., Ducom, J.-C. & Latham, P. E. Narrow versus wide tuning curves: what’s best for a population code? Neural Comput. 11, 85–90 (1999).

    PubMed  Article  CAS  Google Scholar 

  119. Durant, S., Clifford, C. W. G., Crowder, N. A., Price, N. S. C. & Ibbotson, M. R. Characterizing contrast adaptation in a population of cat primary visual cortical neurons using Fisher information. JOSA A 24, 1529–1537 (2007).

    PubMed  Article  Google Scholar 

  120. Ecker, A. S., Berens, P., Tolias, A. S. & Bethge, M. The effect of noise correlations in populations of diversely tuned neurons. J. Neurosci. 31, 14272–14283 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. Yarrow, S., Challis, E. & Seriès, P. Fisher and Shannon information in finite neural populations. Neural Comput. 24, 1740–1780 (2012).

    PubMed  Article  Google Scholar 

  122. Lin, I.-C., Okun, M., Carandini, M. & Harris, K. D. The nature of shared cortical variability. Neuron 87, 644–656 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. Arandia-Romero, I., Tanabe, S., Drugowitsch, J., Kohn, A. & Moreno-Bote, R. Multiplicative and additive modulation of neuronal tuning with population activity affects encoded information. Neuron 89, 1305–1316 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).

    PubMed  Article  CAS  Google Scholar 

  125. Shadlen, M. N., Britten, K. H., Newsome, W. T. & Movshon, J. A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  126. Bair, W., Zohary, E. & Newsome, W. T. Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21, 1676–1697 (2014).

    Article  Google Scholar 

  127. Kohn, A. & Smith, M. A. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J. Neurosci. 25, 3661–3673 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  128. Cohen, M. R. & Maumsell, J. H. R. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. Cohen, M. R. & Kohn, A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–819 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  130. Abbott, L. F. & Dayan, Peter The effect of correlated variability on the accuracy of a population code. Neural Comput. 11, 91–101 (1999).

    PubMed  Article  CAS  Google Scholar 

  131. Yoon, H. & Sompolinsky, H. The effect of correlations on the Fisher information of population codes. Adv. Neural Inf. Process. Syst. 11, 167–173 (1999).

    Google Scholar 

  132. Nirenberg, S. & Latham, P. E. Decoding neuronal spike trains: how important are correlations? Proc. Natl Acad. Sci. USA 100, 7348–7353 (2003).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  133. Latham, P. E. & Nirenberg, S. Synergy, redundancy, and independence in population codes, revisited. J. Neurosci. 25, 5195–5206 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  134. Pola, G., Thiele, A., Hoffmann, K. P. & Panzeri, S. An exact method to quantify the information transmitted by different mechanisms of correlational coding. Network 14, 35–60 (2003).

    PubMed  Article  CAS  Google Scholar 

  135. Moreno-Bote, R. et al. Information-limiting correlations. Nat. Neurosci. 17, 1410–1417 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  136. Kafashan, M. M. et al. Scaling of sensory information in large neural populations shows signatures of information-limiting correlations. Nat. Commun. 12, 1–16 (2021).

    Article  CAS  Google Scholar 

  137. Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

    PubMed  Article  CAS  Google Scholar 

  138. Kohn, A., Coen-Cagli, R., Kanitscheider, I. & Pouget, A. Correlations and neuronal population information. Annu. Rev. Neurosci. 39, 237–256 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  139. Seung, H. S. & Lee, D. D. The manifold ways of perception. Science 290, 2268–2269 (2000).

    PubMed  Article  CAS  Google Scholar 

  140. DiCarlo, J. J. & Cox, D. D. Untangling invariant object recognition. Trends Cognit. Sci. 11, 333–341 (2007).

    Article  Google Scholar 

  141. Bartlett, M. S. The use of transformations. Biometrics 3, 39–52 (1947).

    PubMed  Article  CAS  Google Scholar 

  142. Green, D. M. et al. Signal Detection Theory and Psychophysics Vol. 1 (Wiley, 1966).

  143. Knill, D. C. & Richards, W. Perception as Bayesian Inference (Cambridge Univ. Press, 1996).

  144. Geisler, W. S. Contributions of ideal observer theory to vision research. Vis. Res. 51, 771–781 (2011).

    PubMed  Article  Google Scholar 

  145. Tomassini, A., Morgan, M. J. & Solomon, J. A. Orientation uncertainty reduces perceived obliquity. Vis. Res. 50, 541–547 (2010).

    PubMed  Article  Google Scholar 

  146. Girshick, A. R., Landy, Ml. S. & Simoncelli, E. P. Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nat. Neurosci. 14, 926–932 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  147. Van Bergen, R. S., Ma, W. J., Pratte, M. S. & Jehee, J. F. M. Sensory uncertainty decoded from visual cortex predicts behavior. Nat. Neurosci. 18, 1728–1730 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  148. Sanger, T. D. Probability density estimation for the interpretation of neural population codes. J. Neurophysiol. 76, 2790–2793 (1996).

    PubMed  Article  CAS  Google Scholar 

  149. Zhang, K., Ginzburg, I., McNaughton, B. L. & Sejnowski, T. J. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol. 79, 1017–1044 (1998).

    PubMed  Article  CAS  Google Scholar 

  150. Oram, M. W., Földiák, P., Perrett, D. I. & Sengpiel, F. The ‘Ideal Homunculus’: decoding neural population signals. Trends Neurosci. 21, 259–265 (1998).

    PubMed  Article  CAS  Google Scholar 

  151. Seriès, P., Stocker, A. A. & Simoncelli, E. P. Is the homunculus “aware” of sensory adaptation? Neural Comput. 21, 3271–3304 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  152. Gu, Y., Fetsch, C. R., Adeyemo, B., DeAngelis, G. C. & Angelaki, D. E. Decoding of MSTd population activity accounts for variations in the precision of heading perception. Neuron 66, 596–609 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  153. Graf, A. B. A., Kohn, A., Jazayeri, M. & Movshon, J. A. Decoding the activity of neuronal populations in macaque primary visual cortex. Nat. Neurosci. 14, 239–245 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  154. Bays, P. M. Noise in neural populations accounts for errors in working memory. J. Neurosci. 34, 3632–3645 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  155. Zhang, W. & Luck, S. J. Discrete fixed-resolution representations in visual working memory. Nature 453, 233–235 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  156. Ma, W. J., Husain, M. & Bays, P. M. Changing concepts of working memory. Nat. Neurosci. 17, 347–356 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  157. Levy, W. B. & Baxter, R. A. Energy efficient neural codes. Neural Comput. 8, 531–543 (1996).

    PubMed  Article  CAS  Google Scholar 

  158. Laughlin, S. B. Energy as a constraint on the coding and processing of sensory information. Curr. Opin. Neurobiol. 11, 475–480 (2001).

    PubMed  Article  CAS  Google Scholar 

  159. Balasubramanian, V. & Berry, M. J. A test of metabolically efficient coding in the retina. Network 13, 531–552 (2002).

    PubMed  Article  Google Scholar 

  160. Ringach, D. L. Population coding under normalization. Vis. Res. 50, 2223–2232 (2010).

    PubMed  Article  Google Scholar 

  161. Seung, S. H. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl Acad. Sci. USA 90, 10749–10753 (1993).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  162. Wei, X.-X. & Stocker, A. A. Lawful relation between perceptual bias and discriminability. Proc. Natl Acad. Sci. USA 114, 10244–10249 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  163. Clarke, B. S. & Barron, A. R. Jeffreys’ prior is asymptotically least favorable under entropy risk. J. Stat. Plan. Inference 41, 37–60 (1994).

    Article  Google Scholar 

  164. Appelle, S. Perception and discrimination as a function of stimulus orientation: the “oblique effect” in man and animals. Psychol. Bull. 78, 266–278 (1972).

    PubMed  Article  CAS  Google Scholar 

  165. Attneave, F. Some informational aspects of visual perception. Psychol. Rev. 61, 183–193 (1954).

    PubMed  Article  CAS  Google Scholar 

  166. Van Hateren, J. H. & van der Schaaf, A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 359–366 (1998).

    Article  Google Scholar 

  167. Schwartz, O. & Simoncelli, E. P. Natural signal statistics and sensory gain control. Nat. Neurosci. 4, 819–825 (2001).

    PubMed  Article  CAS  Google Scholar 

  168. Lewicki, M. S. Efficient coding of natural sounds. Nat. Neurosci. 5, 356–363 (2002).

    PubMed  Article  CAS  Google Scholar 

  169. Wei, X.-X., Prentice, J. & Balasubramanian, V. A principle of economy predicts the functional architecture of grid cells. eLife 4, e08362 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  170. Mosheiff, N., Agmon, H., Moriel, A. & Burak, Y. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules. PLoS Comput. Biol. 13, e1005597 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  171. Li, V., Michael, E., Balaguer, J., Castañón, S. H. & Summerfield, C. Proc. Natl Acad. Sci. USA 115, E8825–E8834 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  172. Polania, R., Woodford, M. & Ruff, C. C. Efficient coding of subjective value. Nat. Neurosci. 22, 134–142 (2019).

    PubMed  Article  CAS  Google Scholar 

  173. De Valois, R. L., Yund, E. W. & Hepler, N. The orientation and direction selectivity of cells in macaque visual cortex. Vis. Res. 22, 531–544 (1982).

    PubMed  Article  Google Scholar 

  174. Nover, H., Anderson, C. H. & DeAngelis, G. C. A logarithmic, scale-invariant representation of speed in macaque middle temporal area accounts for speed discrimination performance. J. Neurosci. 25, 10049–10060 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  175. Stocker, A. A. & Simoncelli, E. P. Visual motion aftereffects arise from a cascade of two isomorphic adaptation mechanisms. J. Vis. 9, 1–14 (2009).

    PubMed  Article  Google Scholar 

  176. Harvey, C. D., Coen, P. & Tank, D. W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  177. Lebedev, M. A. et al. Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics. Sci. Rep. 9, 1–14 (2019).

    Article  CAS  Google Scholar 

  178. Michaels, J. A., Dann, B. & Scherberger, H. Neural population dynamics during reaching are better explained by a dynamical system than representational tuning. PLoS Comput. Biol. 12, e1005175 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  179. DeValois, R. L. & DeValois, K. K. Spatial Vision Vol. 14 (Oxford Univ. Press, 1990).

  180. Nauhaus, I., Nielsen, K. J., Disney, A. A. & Callahan, E. M. Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex. Nat. Neurosci. 15, 1683–1690 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  181. Sclar, G. & Freedman, R. D. Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast. Exp. Brain Res. 46, 457–461 (1982).

    PubMed  Article  CAS  Google Scholar 

  182. Morrone, M. C., Burr, D. C. & Maffei, L. Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proc. R. Soc. London. Ser. B. Biol. Sci. 216, 335–354 (1982).

    CAS  Google Scholar 

  183. Albrecht, D. G. & Geisler, W. S. Motion selectivity and the contrast-response function of simple cells in the visual cortex. Vis. Neurosci. 7, 531–546 (1991).

    PubMed  Article  CAS  Google Scholar 

  184. Heeger, D. J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    PubMed  Article  CAS  Google Scholar 

  185. DeAngelis, G. C., Robson, J. G., Ohzawa, I. & Freedman, R. D. Organization of suppression in receptive fields of neurons in cat visual cortex. J. Neurophysiol. 68, 144–163 (1992).

    PubMed  Article  CAS  Google Scholar 

  186. Sillito, A. M. & Jones, H. E. Context-dependent interactions and visual processing in V1. J. Physiol. 90, 205–209 (1996).

    CAS  Google Scholar 

  187. Carandini, M., Movshon, J. A. & Ferster, D. Pattern adaptation and cross-orientation interactions in the primary visual cortex. Neuropharmacology 37, 501–511 (1998).

    PubMed  Article  CAS  Google Scholar 

  188. Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012).

    Article  CAS  Google Scholar 

  189. Tring, E. & Ringach, D. L. On the subspace invariance of population responses. Neurons Behav. Data Analysis Theory https://doi.org/10.1101/361568 (2018).

    Article  Google Scholar 

  190. Averbeck, B. B. & Lee, D. Effects of noise correlations on information encoding and decoding. J. Neurophysiol. 95, 3633–3644 (2006).

    PubMed  Article  Google Scholar 

  191. Nogueira, R. et al. The effects of population tuning and trial-by-trial variability on information encoding and behavior. J. Neurosci. 40, 1066–1083 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  192. Hyvärinen, A., Hurri, J. & Hoyer, P. O. Natural Image Statistics: A Probabilistic Approach to Early Computational Vision Vol. 39 (Springer Science & Business Media, 2009).

  193. Rumyantsev, O. I. et al. Fundamental bounds on the fidelity of sensory cortical coding. Nature 580, 100–105 (2020).

    PubMed  Article  CAS  Google Scholar 

  194. Wimmer, K., Nykamp, D. Q., Constantinidis, C. & Compte, A. Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat. Neurosci. 17, 431–439 (2014).

    PubMed  Article  CAS  Google Scholar 

  195. Bartolo, R., Saunders, R. C., Mitz, A. R. & Averbeck, B. B. Information-limiting correlations in large neural populations. J. Neurosci. 40, 1668–1678 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  196. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D. High-dimensional geometry of population responses in visual cortex. Nature 571, 361–365 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  197. Laughlin, S. B., de Ruyter van Steveninck, R. R. & Anderson, J. C. The metabolic cost of neural information. Nat. Neurosci. 1, 36–41 (1998).

    PubMed  Article  CAS  Google Scholar 

  198. Cueva, C. J., Wang, P. Y., Chin, M. & Wei, X.-X. Emergence of Functional and Structural Properties of the Head Direction System by Optimization of Recurrent Neural Networks (ICLR, 2020).

  199. Amari, S.-i Information geometry. Jpn. J. Math. 16, 1–48 (2001).

    Article  Google Scholar 

  200. Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109 (1943).

    Google Scholar 

  201. Johnson, D. & Sinanovic, S. Symmetrizing the Kullback–Leibler Distance (IEEE Transactions on Information Theory, 2001).

  202. Tenenbaum, J. B., De Silva, V. & Langford, J. C. A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000).

    Article  CAS  PubMed  Google Scholar 

  203. Roweis, S. T. & Saul, L. K. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000).

    PubMed  Article  CAS  Google Scholar 

  204. Chapin, J. K. & Nicolelis, M. A. L. Principal component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations. J. Neurosci. Methods 94, 121–140 (1999).

    PubMed  Article  CAS  Google Scholar 

  205. Briggman, K. L., Abarbanel, H. D. I. & Kristan, W. B. Optical imaging of neuronal populations during decision-making. Science 307, 896–901 (2005).

    PubMed  Article  CAS  Google Scholar 

  206. Macke, J. H. et al. Empirical models of spiking in neural populations. Adv. Neural Inf. Process. Syst. 11, 1350–1358 (2011).

    Google Scholar 

  207. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  208. Sadtler, P. T. et al. Neural constraints on learning. Nature 512, 423–426 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  209. Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15, 805–815 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  210. Bernardi, S. et al. The geometry of abstraction in the hippocampus and prefrontal cortex. Cell 183, 954–967 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  211. Singh, G. et al. Topological analysis of population activity in visual cortex. J. Vis. 8 11.1–18 (2008).

    Article  Google Scholar 

  212. Giusti, C., Pastalkova, E., Curto, C. & Itskov, V. Clique topology reveals intrinsic geometric structure in neural correlations. Proc. Natl Acad. Sci. USA 112, 13455–13460 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  213. Chaudhuri, R., Gercek, B., Pandey, B., Peyrache, A. & Fiete, I. The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nat. Neurosci. 22, 1512–1520 (2019).

    PubMed  Article  CAS  Google Scholar 

  214. Low, R. J., Lewallen, S., Aronov, D., Nevers, R. & Tank, D. W. Probing variability in a cognitive map using manifold inference from neural dynamics. bioRxiv https://doi.org/10.1101/418939 (2018).

    Article  Google Scholar 

  215. Zhou, D. & Wei, X.-X. Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE. Adv. Neural Inf. Process. Syst. 33, 7234–7247 (2020).

    Google Scholar 

  216. Langer, M. S. & Bülthoff, H. H. A prior for global convexity in local shape-from-shading. Perception 30, 403–410 (2001).

    PubMed  Article  CAS  Google Scholar 

  217. Weiss, Y., Simoncelli, E. P. & Adelson, E. H. Motion illusions as optimal percepts. Nat. Neurosci. 5, 598–604 (2002).

    PubMed  Article  CAS  Google Scholar 

  218. Adams, W. J., Graf, E. W. & Ernst, M. O. Experience can change the ‘light-from-above’ prior. Nat. Neurosci. 7, 1057–1058 (2004).

    PubMed  Article  CAS  Google Scholar 

  219. Griffiths, T. L. & Tenenbaum, J. B. Optimal predictions in everyday cognition. Psychol. Sci. 17, 767–773 (2006).

    PubMed  Article  Google Scholar 

  220. Stocker, A. A. & Simoncelli, E. P. Noise characteristics and prior expectations in human visual speed perception. Nat. Neurosci. 9, 578–585 (2006).

    PubMed  Article  CAS  Google Scholar 

  221. Körding, K. P. & Wolpert, D. M. Bayesian decision theory in sensorimotor control. Trends Cognit. Sci. 10, 319–326 (2006).

    Article  Google Scholar 

  222. Gibson, J. J. The ecological approach to visual perception (Psychology Press, 1979).

  223. Shepard, R. N. Ecological constraints on internal representation: resonant kinematics of perceiving, imagining, thinking, and dreaming. Psychol. Rev. 91, 417–447 (1984).

    PubMed  Article  CAS  Google Scholar 

  224. Shepard, R. N. Perceptual-cognitive universals as reflections of the world. Behav. Brain Sci. 24, 581–601 (2001).

    PubMed  Article  CAS  Google Scholar 

  225. Wiskott, L. & Sejnowski, T. J. Slow feature analysis: unsupervised learning of invariances. Neural Comput. 14, 715–770 (2002).

    PubMed  Article  Google Scholar 

  226. Berkes, P. & Wiskott, L. Slow feature analysis yields a rich repertoire of complex cell properties. J. Vis. 5, 579–602 (2005).

    PubMed  Article  Google Scholar 

  227. Gärdenfors, P. Conceptual Spaces: The Geometry of Thought (MIT Press, 2004).

  228. Fechner, G. T. Elemente der Psychophysik Vol. 2 (Breitkopf u. Härtel, 1860).

  229. Thurstone, L. L. A law of comparative judgment. Psychol. Rev. 34, 273–286 (1927).

    Article  Google Scholar 

  230. Attneave, F. Dimensions of similarity. Am. J. Psychol. 63, 516–556 (1950).

    PubMed  Article  CAS  Google Scholar 

  231. Ekman, G. Dimensions of color vision. J. Psychol. 38, 467–474 (1954).

    Article  Google Scholar 

  232. Beals, R., Krantz, D. H. & Tversky, A. Foundations of multidimensional scaling. Psychol. Rev. 75, 127–142 (1968).

    PubMed  Article  CAS  Google Scholar 

  233. Shepard, R. N. Attention and the metric structure of the stimulus space. J. Math. Psychol. 1, 54–87 (1964).

    Article  Google Scholar 

  234. Krantz, D. H. & Tversky, A. Similarity of rectangles: an analysis of subjective dimensions. J. Math. Psychol. 12, 4–34 (1975).

    Article  Google Scholar 

  235. Shepard, R. N. Toward a universal law of generalization for psychological science. Science 237, 1317–1323 (1987).

    PubMed  Article  CAS  Google Scholar 

  236. Nosofsky, R. M. Attention, similarity, and the identification–categorization relationship. J. Exp. Psychol. Gen. 115, 39–61 (1986).

    PubMed  Article  CAS  Google Scholar 

  237. Shepard, R. N. The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27, 125–140 (1962).

    Article  Google Scholar 

  238. Torgerson, W. S. Multidimensional scaling of similarity. Psychometrika 30, 379–393 (1965).

    PubMed  Article  CAS  Google Scholar 

  239. Tversky, A. Features of similarity. Psychol. Rev. 84, 327–352 (1977).

    Article  Google Scholar 

  240. Shepard, R. N. Multidimensional scaling, tree-fitting, and clustering. Science 210, 390–398 (1980).

    PubMed  Article  CAS  Google Scholar 

  241. Tversky, A. & Gati, I. Similarity, separability, and the triangle inequality. Psychol. Rev. 89, 123–154 (1982).

    PubMed  Article  CAS  Google Scholar 

  242. Ashby, F. G. & Perrin, N. A. Toward a unified theory of similarity and recognition. Psychol. Rev. 95, 124–150 (1988).

    Article  Google Scholar 

  243. Kriegeskorte, N. & Mur, M. Inverse MDS: inferring dissimilarity structure from multiple item arrangements. Front. Psychol. 3, 245 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  244. Hebart, M., Zheng, C. Y., Pereira, F. & Baker, C. Revealing the multidimensional mental representations of natural objects underlying human similarity judgments. Nat. Hum. Behav. 4, 1173–1185 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  245. Mur, M. et al. Human object-similarity judgments reflect and transcend the primate-IT object representation. Front. Psychol. 4, 128 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  246. Cichy, R. M., Kriegeskorte, N., Jozwik, K. M., van den Bosch, J. J. F. & Charest, I. The spatiotemporal neural dynamics underlying perceived similarity for real-world objects. Neuroimage 194, 12–24 (2019).

    PubMed  Article  Google Scholar 

  247. Golden, J. R., Vilankar, K. P., Wu, M. C. K. & Field, D. J. Conjectures regarding the nonlinear geometry of visual neurons. Vis. Res. 120, 74–92 (2016).

    PubMed  Article  Google Scholar 

  248. Jazayeri, M. & Afraz, A. Navigating the neural space in search of the neural code. Neuron 93, 1003–1014 (2017).

    PubMed  Article  CAS  Google Scholar 

  249. Zhou, Y., Smith, B. H. & Sharpee, T. O. Hyperbolic geometry of the olfactory space. Sci. Adv. 4, eaaq1458 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  250. Chung, S. Y., Lee, D. D. & Sompolinsky, H. Classification and geometry of general perceptual manifolds. Phys. Rev. X 8, 031003 (2018).

    CAS  Google Scholar 

  251. Sohn, H., Narain, D., Meirhaeghe, N. & Jazayeri, M. Bayesian computation through cortical latent dynamics. Neuron 103, 934–947 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  252. Hénaff, O. J., Goris, R. L. T. & Simoncelli, E. P. Perceptual straightening of natural videos. Nat. Neurosci. 22, 984–991 (2019).

    PubMed  Article  CAS  Google Scholar 

  253. Okazawa, G., Hatch, C. E., Mancoo, A., Machens, C. K. & Kiani, R. Representational geometry of perceptual decisions in the monkey parietal cortex. Cell 184, 3748–3761 (2021).

    PubMed  Article  CAS  Google Scholar 

  254. Bartlett, M. S. The square root transformation in analysis of variance. Suppl. J. R. Stat. Soc. 3, 68–78 (1936).

    Article  Google Scholar 

  255. Anscombe, F. J. The transformation of Poisson, binomial and negative-binomial data. Biometrika 35, 246–254 (1948).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this work.

Corresponding authors

Correspondence to Nikolaus Kriegeskorte or Xue-Xin Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks T. Engel, who co-reviewed with C. Langdon, R. Moreno-Bote and D. Ringach for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kriegeskorte, N., Wei, XX. Neural tuning and representational geometry. Nat Rev Neurosci 22, 703–718 (2021). https://doi.org/10.1038/s41583-021-00502-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00502-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing