Abstract
The susceptibility of the brain to ischaemic injury dramatically limits its viability following interruptions in blood flow. However, data from studies of dissociated cells, tissue specimens, isolated organs and whole bodies have brought into question the temporal limits within which the brain is capable of tolerating prolonged circulatory arrest. This Review assesses cell type-specific mechanisms of global cerebral ischaemia, and examines the circumstances in which the brain exhibits heightened resilience to injury. We suggest strategies for expanding such discoveries to fuel translational research into novel cytoprotective therapies, and describe emerging technologies and experimental concepts. By doing so, we propose a new multimodal framework to investigate brain resuscitation following extended periods of circulatory arrest.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Lowry, O. H., Passonneau, J. V., Hasselberger, F. X. & Schulz, D. W. Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem. 239, 18–30 (1964). This is one of the first seminal articles describing the effects of global ischaemia on metabolic compounds in the brain using the decapitation model.
Virani, S. S. et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation 141, e139–e596 (2020).
Weisfeldt, M. L. & Becker, L. B. Resuscitation after cardiac arrest: a 3-phase time-sensitive model. JAMA 288, 3035–3038 (2002).
Moulaert, V. R., Verbunt, J. A., van Heugten, C. M. & Wade, D. T. Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. Resuscitation 80, 297–305 (2009).
Wagner, S. R. T. & Lanier, W. L. Metabolism of glucose, glycogen, and high-energy phosphates during complete cerebral ischemia. A comparison of normoglycemic, chronically hyperglycemic diabetic, and acutely hyperglycemic nondiabetic rats. Anesthesiology 81, 1516–1526 (1994).
Hossmann, K. A. & Kleihues, P. Reversibility of ischemic brain damage. Arch. Neurol. 29, 375–384 (1973).
Kirino, T. & Sano, K. Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol. 62, 201–208 (1984). This article describes the selective vulnerability of the hippocampus to brief periods of forebrain ischaemia and details the time course of delayed neuronal death in the CA1 region.
Jennings, R. B., Murry, C. E., Steenbergen, C. Jr. & Reimer, K. A. Development of cell injury in sustained acute ischemia. Circulation 82, II2–12 (1990).
Parekh, D. J. et al. Tolerance of the human kidney to isolated controlled ischemia. J. Am. Soc. Nephrol. 24, 506–517 (2013).
Lassen, N. A. Normal average value of cerebral blood flow in younger adults is 50 ml/100 g/min. J. Cereb. Blood Flow. Metab. 5, 347–349 (1985).
Vavilala, M. S., Lee, L. A. & Lam, A. M. Cerebral blood flow and vascular physiology. Anesthesiol. Clin. North. Am. 20, 247–264 (2002).
Dienel, G. A. Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99, 949–1045 (2019).
Zhu, X. H. et al. Quantitative imaging of energy expenditure in human brain. Neuroimage 60, 2107–2117 (2012).
Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow. Metab. 21, 1133–1145 (2001).
Harris, J. J. & Attwell, D. The energetics of CNS white matter. J. Neurosci. 32, 356–371 (2012).
Sundt, T. M. Jr., Sharbrough, F. W., Anderson, R. E. & Michenfelder, J. D. Cerebral blood flow measurements and electroencephalograms during carotid endarterectomy. J. Neurosurg. 41, 310–320 (1974).
Branston, N. M., Symon, L., Crockard, H. A. & Pasztor, E. Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp. Neurol. 45, 195–208 (1974).
Astrup, J., Symon, L., Branston, N. M. & Lassen, N. A. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8, 51–57 (1977).
Choi, J. et al. Tissue-specific metabolic profiles after prolonged cardiac arrest reveal brain metabolome dysfunction predominantly after resuscitation. J. Am. Heart Assoc. 8, e012809 (2019).
Ljunggren, B., Norberg, K. & Siesjo, B. K. Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res. 77, 173–186 (1974).
Kleihues, P., Kobayashi, K. & Hossmann, K. A. Purine nucleotide metabolism in the cat brain after one hour of complete ischemia. J. Neurochem. 23, 417–425 (1974).
Hansen, A. J. Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65, 101–148 (1985).
Ames, A. III, Wright, R. L., Kowada, M., Thurston, J. M. & Majno, G. Cerebral ischemia. II. The no-reflow phenomenon. Am. J. Pathol. 52, 437–453 (1968). This article details the foundational experiments describing the no-reflow phenomenon and its relationship with increasing periods of global ischaemia.
Fischer, M. & Hossmann, K. A. No-reflow after cardiac arrest. Intensive Care Med. 21, 132–141 (1995).
Ginsberg, M. D. & Myers, R. E. The topography of impaired microvascular perfusion in the primate brain following total circulatory arrest. Neurology 22, 998–1011 (1972).
Kagstrom, E., Smith, M. L. & Siesjo, B. K. Local cerebral blood flow in the recovery period following complete cerebral ischemia in the rat. J. Cereb. Blood Flow. Metab. 3, 170–182 (1983).
Harrison, M. J., Sedal, L., Arnold, J. & Russell, R. W. No-reflow phenomenon in the cerebral circulation of the gerbil. J. Neurol. Neurosurg. Psychiatry 38, 1190–1193 (1975).
Fischer, E. G. & Ames III, A. Studies on mechanisms of impairment of cerebral circulation following ischemia: effect of hemodilution and perfusion pressure. Stroke 3, 538–542 (1972).
Olsson, Y. & Hossmann, K. A. The effect of intravascular saline perfusion on the sequelae of transient cerebral ischemia. Light and electron microscopial observations. Acta Neuropathol. 17, 68–79 (1971).
Hossmann, K. A. & Sato, K. Recovery of neuronal function after prolonged cerebral ischemia. Science 168, 375–376 (1970).
Krep, H., Brinker, G., Schwindt, W. & Hossmann, K. A. Endothelin type A-antagonist improves long-term neurological recovery after cardiac arrest in rats. Crit. Care Med. 28, 2873–2880 (2000).
Li, L. et al. Cerebral microcirculatory alterations and the no-reflow phenomenon in vivo after experimental pediatric cardiac arrest. J. Cereb. Blood Flow. Metab. 39, 913–925 (2019).
Takagi, S., Cocito, L. & Hossmann, K. A. Blood recirculation and pharmacological responsiveness of the cerebral vasculature following prolonged ischemia of cat brain. Stroke 8, 707–712 (1977). This study examines post-ischaemic hyperaemia and hypoperfusion by correlating post-ischaemic blood flow with intravital microscopy measurements of pial vessel diameter.
Shaik, J. S. et al. 20-Hydroxyeicosatetraenoic acid inhibition by HET0016 offers neuroprotection, decreases edema, and increases cortical cerebral blood flow in a pediatric asphyxial cardiac arrest model in rats. J. Cereb. Blood Flow. Metab. 35, 1757–1763 (2015).
Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).
Hill, R. A. et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95–110 (2015).
Little, J. R., Kerr, F. W. L. & Sundt, T. M. Microcirculatory obstruction in focal cerebral ischemia: an electron microscopic investigation in monkeys. Stroke 7, 25–30 (1976).
del Zoppo, G. J. & Mabuchi, T. Cerebral microvessel responses to focal ischemia. J. Cereb. Blood Flow. Metab. 23, 879–894 (2003).
Fischer, E. G., Ames III, A., Hedley-Whyte, E. T. & O’Gorman, S. Reassessment of cerebral capillary changes in acute global ischemia and their relationship to the “no-reflow phenomenon”. Stroke 8, 36–39 (1977).
Del Zoppo, G. J. et al. Experimental acute thrombotic stroke in baboons. Stroke 17, 1254–1265 (1986).
del Zoppo, G. J., Schmid-Schonbein, G. W., Mori, E., Copeland, B. R. & Chang, C. M. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 22, 1276–1283 (1991).
Mori, E., del Zoppo, G. J., Chambers, J. D., Copeland, B. R. & Arfors, K. E. Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 23, 712–718 (1992).
Okada, Y. et al. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 25, 202–211 (1994).
Grogaard, B., Schurer, L., Gerdin, B. & Arfors, K. E. Delayed hypoperfusion after incomplete forebrain ischemia in the rat. The role of polymorphonuclear leukocytes. J. Cereb. Blood Flow. Metab. 9, 500–505 (1989).
Uhl, E., Beck, J., Stummer, W., Lehmberg, J. & Baethmann, A. Leukocyte-endothelium interactions in pial venules during the early and late reperfusion period after global cerebral ischemia in gerbils. J. Cereb. Blood Flow. Metab. 20, 979–987 (2000).
Krupickova, P. et al. Microcirculatory blood flow during cardiac arrest and cardiopulmonary resuscitation does not correlate with global hemodynamics: an experimental study. J. Transl. Med. 14, 163 (2016).
Ristagno, G., Tang, W., Sun, S. & Weil, M. H. Cerebral cortical microvascular flow during and following cardiopulmonary resuscitation after short duration of cardiac arrest. Resuscitation 77, 229–234 (2008).
Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).
Harukuni, I. & Bhardwaj, A. Mechanisms of brain injury after global cerebral ischemia. Neurol. Clin. 24, 1–21 (2006).
Sekhon, M. S., Ainslie, P. N. & Griesdale, D. E. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit. Care 21, 90 (2017).
Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R. & Begley, D. J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 37, 13–25 (2010).
Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017). This is an important review examining the neurovascular unit and its relation to health and disease.
Butt, A. M., Jones, H. C. & Abbott, N. J. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J. Physiol. 429, 47–62 (1990).
Ogawa, S. et al. Hypoxia-induced increased permeability of endothelial monolayers occurs through lowering of cellular cAMP levels. Am. J. Physiol. 262, C546–554 (1992).
Sharma, H. S., Miclescu, A. & Wiklund, L. Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain. J. Neural Transm. 118, 87–114 (2011).
Rehm, M. et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116, 1896–1906 (2007).
Baldea, I. et al. Effects of different hypoxia degrees on endothelial cell cultures — time course study. Mech. Ageing Dev. 172, 45–50 (2018).
Shreeniwas, R. et al. Hypoxia-mediated induction of endothelial cell interleukin-1 alpha. An autocrine mechanism promoting expression of leukocyte adhesion molecules on the vessel surface. J. Clin. Invest. 90, 2333–2339 (1992).
Karakurum, M. et al. Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J. Clin. Invest. 93, 1564–1570 (1994).
Geng, J. G. et al. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343, 757–760 (1990).
Pinsky, D. J. et al. Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. J. Clin. Invest. 97, 493–500 (1996).
Patel, K. D., Zimmerman, G. A., Prescott, S. M., McEver, R. P. & McIntyre, T. M. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J. Cell Biol. 112, 749–759 (1991).
Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).
Deng, G., Carter, J., Traystman, R. J., Wagner, D. H. & Herson, P. S. Pro-inflammatory T-lymphocytes rapidly infiltrate into the brain and contribute to neuronal injury following cardiac arrest and cardiopulmonary resuscitation. J. Neuroimmunol. 274, 132–140 (2014).
Zhang, C. et al. Invasion of peripheral immune cells into brain parenchyma after cardiac arrest and resuscitation. Aging Dis. 9, 412–425 (2018).
Caceres, M. J., Schleien, C. L., Kuluz, J. W., Gelman, B. & Dietrich, W. D. Early endothelial damage and leukocyte accumulation in piglet brains following cardiac arrest. Acta Neuropathol. 90, 582–591 (1995).
Anderson, M. L. et al. Experimental brain ischaemia: assessment of injury by magnetic resonance spectroscopy and histology. Neurol. Res. 12, 195–204 (1990).
Forstermann, U. & Sessa, W. C. Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837, 837a-837d (2012).
Gautier, C., van Faassen, E., Mikula, I., Martasek, P. & Slama-Schwok, A. Endothelial nitric oxide synthase reduces nitrite anions to NO under anoxia. Biochem. Biophys. Res. Commun. 341, 816–821 (2006).
Kubes, P., Suzuki, M. & Granger, D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl Acad. Sci. USA 88, 4651–4655 (1991).
Hudetz, A. G., Wood, J. D. & Kampine, J. P. Nitric oxide synthase inhibitor augments post-ischemic leukocyte adhesion in the cerebral microcirculation in vivo. Neurol. Res. 21, 378–384 (1999).
Astrup, J., Sorensen, P. M. & Sorensen, H. R. Oxygen and glucose consumption related to Na+-K+ transport in canine brain. Stroke 12, 726–730 (1981).
Jiang, C., Agulian, S. & Haddad, G. G. Cl- and Na+ homeostasis during anoxia in rat hypoglossal neurons: intracellular and extracellular in vitro studies. J. Physiol. 448, 697–708 (1992).
Szatkowski, M. & Attwell, D. Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci. 17, 359–365 (1994).
Xie, Y., Dengler, K., Zacharias, E., Wilffert, B. & Tegtmeier, F. Effects of the sodium channel blocker tetrodotoxin (TTX) on cellular ion homeostasis in rat brain subjected to complete ischemia. Brain Res. 652, 216–224 (1994).
Blaustein, M. P. & Lederer, W. J. Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999).
Choi, D. W. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11, 465–469 (1988).
Kawano, T. et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat. Med. 12, 225–229 (2006).
Aarts, M. et al. A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877 (2003).
Gao, J. et al. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48, 635–646 (2005).
Benveniste, H., Drejer, J., Schousboe, A. & Diemer, N. H. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43, 1369–1374 (1984).
Rothman, S. M. & Olney, J. W. Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann. Neurol. 19, 105–111 (1986). This review is an excellent summary of the evidence demonstrating the neurotoxic effects of glutamate.
Olney, J. W., Sharpe, L. G. & Feigin, R. D. Glutamate-induced brain damage in infant primates. J. Neuropathol. Exp. Neurol. 31, 464–488 (1972).
Swan, J. H. & Meldrum, B. S. Protection by NMDA antagonists against selective cell loss following transient ischaemia. J. Cereb. Blood Flow. Metab. 10, 343–351 (1990).
Zipfel, G. J., Lee, J. M. & Choi, D. W. Reducing calcium overload in the ischemic brain. N. Engl. J. Med. 341, 1543–1544 (1999).
Pellegrini-Giampietro, D. E., Gorter, J. A., Bennett, M. V. & Zukin, R. S. The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci. 20, 464–470 (1997).
Petralia, R. S. et al. Organization of NMDA receptors at extrasynaptic locations. Neuroscience 167, 68–87 (2010).
Zhang, S. J. et al. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 53, 549–562 (2007).
Hardingham, G. E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002).
Sattler, R. et al. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284, 1845–1848 (1999).
Cook, D. J., Teves, L. & Tymianski, M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 483, 213–217 (2012).
Hill, M. D. et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 11, 942–950 (2012).
Hill, M. D. et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet 395, 878–887 (2020).
Choi, D. W. Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7, 369–379 (1987). This is the first study to demonstrate that cell death following glutamate neurotoxicity is calcium dependent.
Taunyane, I. C. et al. Preserved brain morphology after controlled automated reperfusion of the whole body following normothermic circulatory arrest time of up to 20 minutes. Eur. J. Cardiothorac. Surg. 50, 1025–1034 (2016). This article demonstrates 7-day 90% survival with intact neurological function in pigs after 20min of normothermic CA using controlled reperfusion.
Kristian, T. & Siesjo, B. K. Calcium in ischemic cell death. Stroke 29, 705–718 (1998).
Orrenius, S., Zhivotovsky, B. & Nicotera, P. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552–565 (2003).
Xiong, Z. G. et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687–698 (2004).
Dewar, D., Underhill, S. M. & Goldberg, M. P. Oligodendrocytes and ischemic brain injury. J. Cereb. Blood Flow. Metab. 23, 263–274 (2003).
Garcia, J. H., Kalimo, H., Kamijyo, Y. & Trump, B. F. Cellular events during partial cerebral ischemia. I. Electron microscopy of feline cerebral cortex after middle-cerebral-artery occlusion. Virchows Arch. B Cell Pathol. 25, 191–206 (1977).
Stokum, J. A., Gerzanich, V. & Simard, J. M. Molecular pathophysiology of cerebral edema. J. Cereb. Blood Flow. Metab. 36, 513–538 (2016).
Goldberg, M. P. & Choi, D. W. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J. Neurosci. 13, 3510–3524 (1993).
Marrif, H. & Juurlink, B. H. Astrocytes respond to hypoxia by increasing glycolytic capacity. J. Neurosci. Res. 57, 255–260 (1999).
Callahan, D. J., Engle, M. J. & Volpe, J. J. Hypoxic injury to developing glial cells: protective effect of high glucose. Pediatr. Res. 27, 186–190 (1990).
Giffard, R. G., Monyer, H. & Choi, D. W. Selective vulnerability of cultured cortical glia to injury by extracellular acidosis. Brain Res. 530, 138–141 (1990).
Plum, F. What causes infarction in ischemic brain?: the Robert Wartenberg Lecture. Neurology 33, 222–233 (1983).
Lascola, C. & Kraig, R. P. Astroglial acid-base dynamics in hyperglycemic and normoglycemic global ischemia. Neurosci. Biobehav. Rev. 21, 143–150 (1997).
Garcia, J. H. et al. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am. J. Pathol. 142, 623–635 (1993).
Magistretti, P. J. & Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901 (2015).
Lin, C. H. et al. Protection of ischemic brain cells is dependent on astrocyte-derived growth factors and their receptors. Exp. Neurol. 201, 225–233 (2006).
Witcher, M. R. et al. Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses. Glia 58, 572–587 (2010).
Eulenburg, V. & Gomeza, J. Neurotransmitter transporters expressed in glial cells as regulators of synapse function. Brain Res. Rev. 63, 103–112 (2010).
Ouyang, Y. B., Voloboueva, L. A., Xu, L. J. & Giffard, R. G. Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J. Neurosci. 27, 4253–4260 (2007).
Swanson, R. A., Ying, W. & Kauppinen, T. M. Astrocyte influences on ischemic neuronal death. Curr. Mol. Med. 4, 193–205 (2004).
Seki, Y., Feustel, P. J., Keller, R. W. Jr., Tranmer, B. I. & Kimelberg, H. K. Inhibition of ischemia-induced glutamate release in rat striatum by dihydrokinate and an anion channel blocker. Stroke 30, 433–440 (1999).
Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).
Masuda, T., Croom, D., Hida, H. & Kirov, S. A. Capillary blood flow around microglial somata determines dynamics of microglial processes in ischemic conditions. Glia 59, 1744–1753 (2011).
Zanier, E. R., Fumagalli, S., Perego, C., Pischiutta, F. & De Simoni, M. G. Shape descriptors of the “never resting” microglia in three different acute brain injury models in mice. Intensive Care Med. Exp. 3, 39 (2015).
Vrselja, Z. et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature 568, 336–343 (2019). This study shows that circulation and cellular functions can be restored in the post-mortem large mammalian brain up to 4h after death using appropriate multimodal interventions.
Eyo, U. & Dailey, M. E. Effects of oxygen-glucose deprivation on microglial mobility and viability in developing mouse hippocampal tissues. Glia 60, 1747–1760 (2012).
Hearse, D. J., Humphrey, S. M. & Chain, E. B. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: a study of myocardial enzyme release. J. Mol. Cell Cardiol. 5, 395–407 (1973).
Hayman, E. G., Patel, A. P., Kimberly, W. T., Sheth, K. N. & Simard, J. M. Cerebral edema after cardiopulmonary resuscitation: a therapeutic target following cardiac arrest? Neurocrit Care 28, 276–287 (2018).
Hoek, R. M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290, 1768–1771 (2000).
Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).
Melani, A. et al. ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem. Int. 47, 442–448 (2005).
Hide, I. et al. Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J. Neurochem. 75, 965–972 (2000).
Amadio, S. et al. P2 receptor modulation and cytotoxic function in cultured CNS neurons. Neuropharmacology 42, 489–501 (2002).
Park, J. S. et al. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem. 279, 7370–7377 (2004).
Hua, F. et al. Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J. Neuroimmunol. 190, 101–111 (2007).
Moro, M. A., Cardenas, A., Hurtado, O., Leza, J. C. & Lizasoain, I. Role of nitric oxide after brain ischaemia. Cell Calcium 36, 265–275 (2004).
Qiu, J. et al. High-mobility group box 1 promotes metalloproteinase-9 upregulation through Toll-like receptor 4 after cerebral ischemia. Stroke 41, 2077–2082 (2010).
Lee, S. R., Tsuji, K., Lee, S. R. & Lo, E. H. Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. J. Neurosci. 24, 671–678 (2004).
Lee, J. Y. et al. Fluoxetine inhibits transient global ischemia-induced hippocampal neuronal death and memory impairment by preventing blood-brain barrier disruption. Neuropharmacology 79, 161–171 (2014).
Park, H. S. et al. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J. Immunol. 173, 3589–3593 (2004).
Suzuki, Y. et al. Pharmacological inhibition of TLR4-NOX4 signal protects against neuronal death in transient focal ischemia. Sci. Rep. 2, 896 (2012).
Kunz, A. et al. Nuclear factor-kappaB activation and postischemic inflammation are suppressed in CD36-null mice after middle cerebral artery occlusion. J. Neurosci. 28, 1649–1658 (2008).
Iadecola, C., Zhang, F., Casey, R., Clark, H. B. & Ross, M. E. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 27, 1373–1380 (1996).
Forster, C., Clark, H. B., Ross, M. E. & Iadecola, C. Inducible nitric oxide synthase expression in human cerebral infarcts. Acta Neuropathol. 97, 215–220 (1999).
Yrjanheikki, J., Keinanen, R., Pellikka, M., Hokfelt, T. & Koistinaho, J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc. Natl Acad. Sci. USA 95, 15769–15774 (1998).
Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. & Lipton, S. A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl Acad. Sci. USA 92, 7162–7166 (1995).
Iadecola, C., Zhang, F. & Xu, X. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am. J. Physiol. 268, R286–292 (1995).
Iadecola, C., Zhang, F., Casey, R., Nagayama, M. & Ross, M. E. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 17, 9157–9164 (1997).
Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700–714 (2010).
Sairanen, T. R., Lindsberg, P. J., Brenner, M. & Siren, A. L. Global forebrain ischemia results in differential cellular expression of interleukin-1beta (IL-1beta) and its receptor at mRNA and protein level. J. Cereb. Blood Flow. Metab. 17, 1107–1120 (1997).
Barone, F. C. et al. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke 28, 1233–1244 (1997).
Emsley, H. C. et al. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatry 76, 1366–1372 (2005).
Rosenberg, G. A. et al. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res. 893, 104–112 (2001).
Rosenberg, G. A., Estrada, E. Y. & Dencoff, J. E. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29, 2189–2195 (1998).
Rosenberg, G. A. & Navratil, M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology 48, 921–926 (1997).
Garcia-Bonilla, L., Racchumi, G., Murphy, M., Anrather, J. & Iadecola, C. Endothelial CD36 contributes to postischemic brain injury by promoting neutrophil activation via CSF3. J. Neurosci. 35, 14783–14793 (2015).
Iadecola, C., Zhang, F., Xu, S., Casey, R. & Ross, M. E. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J. Cereb. Blood Flow. Metab. 15, 378–384 (1995).
Garcia-Bonilla, L. et al. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J. Immunol. 193, 2531–2537 (2014).
Neumann, J. et al. Microglia provide neuroprotection after ischemia. FASEB J. 20, 714–716 (2006).
Imai, F. et al. Neuroprotective effect of exogenous microglia in global brain ischemia. J. Cereb. Blood Flow. Metab. 27, 488–500 (2007).
Montero, M., Gonzalez, B. & Zimmer, J. Immunotoxic depletion of microglia in mouse hippocampal slice cultures enhances ischemia-like neurodegeneration. Brain Res. 1291, 140–152 (2009).
Lalancette-Hebert, M., Gowing, G., Simard, A., Weng, Y. C. & Kriz, J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 27, 2596–2605 (2007).
Cherry, J. D., Olschowka, J. A. & O’Banion, M. K. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11, 98 (2014).
Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).
Voll, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).
Batchelor, P. E. et al. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J. Neurosci. 19, 1708–1716 (1999).
Thannickal, V. J. & Fanburg, B. L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol 279, L1005–1028 (2000).
Chan, P. H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow. Metab. 21, 2–14 (2001).
Abramov, A. Y., Scorziello, A. & Duchen, M. R. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J. Neurosci. 27, 1129–1138 (2007).
Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).
Turrens, J. F. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17, 3–8 (1997).
Sugawara, T. & Chan, P. H. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid. Redox Signal. 5, 597–607 (2003).
Namba, K., Takeda, Y., Sunami, K. & Hirakawa, M. Temporal profiles of the levels of endogenous antioxidants after four-vessel occlusion in rats. J. Neurosurg. Anesthesiol. 13, 131–137 (2001).
Pryor, W. A. & Squadrito, G. L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268, L699–L722 (1995).
Kawase, M. et al. Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke 30, 1962–1968 (1999).
Chan, P. H. et al. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J. Neurosci. 18, 8292–8299 (1998). This important article demonstrates the protective effects of endogenous antioxidant overexpression following global ischaemia, supporting the importance of oxidative stress in ischaemic injury.
Kurinami, H. et al. Prohibitin viral gene transfer protects hippocampal CA1 neurons from ischemia and ameliorates postischemic hippocampal dysfunction. Stroke 45, 1131–1138 (2014).
Chouchani, E. T. et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab. 23, 254–263 (2016).
Stepanova, A. et al. Reverse electron transfer results in a loss of flavin from mitochondrial complex I: Potential mechanism for brain ischemia reperfusion injury. J. Cereb. Blood Flow. Metab. 37, 3649–3658 (2017).
Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).
Kahl, A. et al. Critical role of flavin and glutathione in complex I-mediated bioenergetic failure in brain ischemia/reperfusion injury. Stroke 49, 1223–1231 (2018).
Galkin, A. Brain ischemia/reperfusion injury and mitochondrial complex I damage. Biochemistry 84, 1411–1423 (2019). This is an excellent review of oxidative stress, mitochondrial dysfunction and reverse electron transfer following IRI.
Tam, J. et al. The role of decreased cardiolipin and impaired electron transport chain in brain damage due to cardiac arrest. Neurochem. Int. 120, 200–205 (2018).
Chan, P. H. Role of oxidants in ischemic brain damage. Stroke 27, 1124–1129 (1996).
Chan, P. H. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem. Res. 29, 1943–1949 (2004).
Brustovetsky, N., Brustovetsky, T., Jemmerson, R. & Dubinsky, J. M. Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J. Neurochem. 80, 207–218 (2002).
Starkov, A. A., Chinopoulos, C. & Fiskum, G. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36, 257–264 (2004).
Bernardi, P. et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273, 2077–2099 (2006).
Schinzel, A. C. et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl Acad. Sci. USA 102, 12005–12010 (2005).
Sugawara, T., Fujimura, M., Morita-Fujimura, Y., Kawase, M. & Chan, P. H. Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J. Neurosci. 19, RC39 (1999).
Vaseva, A. V. et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536–1548 (2012).
Kirsch, J. R., Helfaer, M. A., Haun, S. E., Koehler, R. C. & Traystman, R. J. Polyethylene glycol-conjugated superoxide dismutase improves recovery of postischemic hypercapnic cerebral blood flow in piglets. Pediatr. Res. 34, 530–537 (1993).
Stanimirovic, D. B., Markovic, M., Micic, D. V., Spatz, M. & Mrsulja, B. B. Liposome-entrapped superoxide dismutase reduces ischemia/reperfusion ‘oxidative stress’ in gerbil brain. Neurochem. Res. 19, 1473–1478 (1994).
Cuzzocrea, S. et al. Effects of tempol, a membrane-permeable radical scavenger, in a gerbil model of brain injury. Brain Res. 875, 96–106 (2000).
Hall, E. D., Pazara, K. E. & Braughler, J. M. 21-Aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils. Stroke 19, 997–1002 (1988).
Hall, E. D. & Yonkers, P. A. Attenuation of postischemic cerebral hypoperfusion by the 21-aminosteroid U74006F. Stroke 19, 340–344 (1988).
Cerchiari, E. L., Hoel, T. M., Safar, P. & Sclabassi, R. J. Protective effects of combined superoxide dismutase and deferoxamine on recovery of cerebral blood flow and function after cardiac arrest in dogs. Stroke 18, 869–878 (1987).
Uchino, H. et al. Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol. Dis. 10, 219–233 (2002).
Uchino, H. et al. Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Res. 812, 216–226 (1998).
Knapp, J., Roewer, J., Bruckner, T., Bottiger, B. W. & Popp, E. Evaluation of cyclosporine a as a cardio- and neuroprotective agent after cardiopulmonary resuscitation in a rat model. Shock 43, 576–581 (2015).
Cour, M. et al. Ubiquitous protective effects of cyclosporine A in preventing cardiac arrest-induced multiple organ failure. J. Appl. Physiol. 117, 930–936 (2014).
Argaud, L. et al. Effect of cyclosporine in nonshockable out-of-hospital cardiac arrest: the CYRUS randomized clinical trial. JAMA Cardiol. 1, 557–565 (2016).
Nighoghossian, N. et al. Cyclosporine in acute ischemic stroke. Neurology 84, 2216–2223 (2015).
Iqbal, K. & Tellez-Nagel, I. Isolation of neurons and glial cells from normal and pathological human brains. Brain Res. 45, 296–301 (1972).
Gilden, D. H. et al. Human brain in tissue culture. I. Acquisition, initial processing, and establishment of brain cell cultures. J. Comp. Neurol. 161, 295–306 (1975).
Konishi, Y., Lindholm, K., Yang, L. B., Li, R. & Shen, Y. Isolation of living neurons from human elderly brains using the immunomagnetic sorting DNA-linker system. Am. J. Pathol. 161, 1567–1576 (2002).
Charpak, S. & Audinat, E. Cardiac arrest in rodents: maximal duration compatible with a recovery of neuronal activity. Proc. Natl Acad. Sci. USA 95, 4748–4753 (1998). This is an important study investigating the maximum amount of ischaemic time compatible with electrophysiological function of neurons in acute brain slice cultures.
Barksdale, K. A. et al. Mitochondrial viability in mouse and human postmortem brain. FASEB J. 24, 3590–3599 (2010).
Verwer, R. W. et al. Cells in human postmortem brain tissue slices remain alive for several weeks in culture. FASEB J. 16, 54–60 (2002). This article demonstrates that organotypic slice cultures can be harvested up to 8h after death in the post-mortem human brain and can be maintained for prolonged periods.
Onorati, M. et al. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep. 16, 2576–2592 (2016).
Sousa, A. M. M. et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science 358, 1027–1032 (2017).
Brockman, S. K. & Jude, J. R. The tolerance of the dog brain to total arrest of circulation. Bull. Johns. Hopkins Hosp. 106, 74–80 (1960).
Neely, W. A. & Youmans, J. R. Anoxia of canine brain without damage. JAMA 183, 1085–1087 (1963).
Kleihues, P., Hossmann, K. A., Pegg, A. E., Kobayashi, K. & Zimmermann, V. Resuscitation of the monkey brain after one hour complete ischemia. III. Indications of metabolic recovery. Brain Res. 95, 61–73 (1975).
Hossmann, K. A., Schmidt-Kastner, R. & Grosse Ophoff, B. Recovery of integrative central nervous function after one hour global cerebro-circulatory arrest in normothermic cat. J. Neurol. Sci. 77, 305–320 (1987). This article describes the almost full neurological recovery following 1h of global cerebral ischaemia in the normothermic cat.
Trummer, G. et al. Superior neurologic recovery after 15 minutes of normothermic cardiac arrest using an extracorporeal life support system for optimized blood pressure and flow. Perfusion 29, 130–138 (2014).
Fischer, E. G., Ames, A. III & Lorenzo, A. V. Cerebral blood flow immediately following brief circulatory stasis. Stroke 10, 423–427 (1979).
Kreibich, M. et al. Improved outcome in an animal model of prolonged cardiac arrest through pulsatile high pressure controlled automated reperfusion of the whole body. Artif. Organs 42, 992–1000 (2018).
Anstadt, M. P. et al. Pulsatile versus nonpulsatile reperfusion improves cerebral blood flow after cardiac arrest. Ann. Thorac. Surg. 56, 453–461 (1993).
Bowen, D. M., Smith, C. B., White, P. & Davison, A. N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99, 459–496 (1976).
Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature 417, 645–649 (2002).
Laub, G. W., Banaszak, D., Kupferschmid, J., Magovern, G. J. & Young, J. C. Percutaneous cardiopulmonary bypass for the treatment of hypothermic circulatory collapse. Ann. Thorac. Surg. 47, 608–611 (1989).
Letsou, G. V. et al. Is cardiopulmonary bypass effective for treatment of hypothermic arrest due to drowning or exposure? Arch. Surg. 127, 525–528 (1992).
Hughes, A., Riou, P. & Day, C. Full neurological recovery from profound (18.0 degrees C) acute accidental hypothermia: successful resuscitation using active invasive rewarming techniques. Emerg. Med. J. 24, 511–512 (2007).
Walpoth, B. H. et al. Outcome of survivors of accidental deep hypothermia and circulatory arrest treated with extracorporeal blood warming. N. Engl. J. Med. 337, 1500–1505 (1997). This is an important clinical study demonstrating positive outcomes for individuals who experienced accidental deep hypothermia and CA and were treated with extracorporeal warming.
Allen, B. S., Veluz, J. S., Buckberg, G. D., Aeberhard, E. & Ignarro, L. J. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate - a new concept. J. Thorac. Cardiovasc. Surg. 125, 625–32 (2003).
Griepp, R. B. & Di Luozzo, G. Hypothermia for aortic surgery. J. Thorac. Cardiovasc. Surg. 145, S56–58 (2013).
Benson, D. W., Williams, G. R. Jr., Spencer, F. C. & Yates, A. J. The use of hypothermia after cardiac arrest. Anesth. Analg. 38, 423–428 (1959).
Williams, G. R. Jr. & Spencer, F. C. The clinical use of hypothermia following cardiac arrest. Ann. Surg. 148, 462–468 (1958).
Bernard, S. A. et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 346, 557–563 (2002).
Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346, 549–556 (2002).
Donnino, M. W. et al. Temperature management after cardiac arrest: an advisory statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical care, Perioperative and Resuscitation. Circulation 132, 2448–2456 (2015).
Bougouin, W. et al. Extracorporeal cardiopulmonary resuscitation in out-of-hospital cardiac arrest: a registry study. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehz753 (2019).
Holmberg, M. J. et al. Extracorporeal cardiopulmonary resuscitation for cardiac arrest: A systematic review. Resuscitation 131, 91–100 (2018).
Stub, D. et al. Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation 86, 88–94 (2015).
Bartos, J. A. et al. Improved survival with extracorporeal cardiopulmonary resuscitation despite progressive metabolic derangement associated with prolonged resuscitation. Circulation 141, 877–886 (2020).
Lascarrou, J. B. et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N. Engl. J. Med. 381, 2327–2337 (2019).
Berg, K. M. et al. Adult advanced life support: 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 142, S92–S139 (2020).
Nolan, J. P. et al. European resuscitation council and european society of intensive care medicine 2015 guidelines for post-resuscitation care. Intensive Care Med. 41, 2039–2056 (2015).
Hifumi, T. et al. Association between rewarming duration and neurological outcome in out-of-hospital cardiac arrest patients receiving therapeutic hypothermia. Resuscitation 146, 170–177 (2020).
Safar, P. et al. Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion. Stroke 27, 105–113 (1996).
Tisherman, S. A. et al. Therapeutic deep hypothermic circulatory arrest in dogs: a resuscitation modality for hemorrhagic shock with ‘irreparable’ injury. J. Trauma. 30, 836–847 (1990). This is a seminal study showing the protective effects of deep hypothermic circulatory arrest for haemorrhagic shock.
Tisherman, S. A. et al. Profound hypothermia (less than 10 degrees C) compared with deep hypothermia (15 degrees C) improves neurologic outcome in dogs after two hours’ circulatory arrest induced to enable resuscitative surgery. J. Trauma. 31, 1051–1061 (1991).
Alam, H. B. et al. The rate of induction of hypothermic arrest determines the outcome in a Swine model of lethal hemorrhage. J. Trauma. 57, 961–969 (2004).
Alam, H. B. et al. Does the rate of rewarming from profound hypothermic arrest influence the outcome in a swine model of lethal hemorrhage? J. Trauma. 60, 134–146 (2006).
Yenari, M., Kitagawa, K., Lyden, P. & Perez-Pinzon, M. Metabolic downregulation: a key to successful neuroprotection? Stroke 39, 2910–2917 (2008).
Erecinska, M., Thoresen, M. & Silver, I. A. Effects of hypothermia on energy metabolism in Mammalian central nervous system. J. Cereb. Blood Flow. Metab. 23, 513–530 (2003).
Hagerdal, M., Harp, J. & Siesjo, B. K. Effect of hypothermia upon organic phosphates, glycolytic metabolites, citric acid cycle intermediates and associated amino acids in rat cerebral cortex. J. Neurochem. 24, 743–748 (1975).
Colbourne, F., Grooms, S. Y., Zukin, R. S., Buchan, A. M. & Bennett, M. V. Hypothermia rescues hippocampal CA1 neurons and attenuates down-regulation of the AMPA receptor GluR2 subunit after forebrain ischemia. Proc. Natl Acad. Sci. USA 100, 2906–2910 (2003).
Xu, L., Yenari, M. A., Steinberg, G. K. & Giffard, R. G. Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade. J. Cereb. Blood Flow. Metab. 22, 21–28 (2002).
Perrone, S. et al. Whole body hypothermia and oxidative stress in babies with hypoxic-ischemic brain injury. Pediatr. Neurol. 43, 236–240 (2010).
D’Cruz, B. J. et al. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. J. Cereb. Blood Flow. Metab. 22, 843–851 (2002).
Schmidt, K. M., Repine, M. J., Hicks, S. D., DeFranco, D. B. & Callaway, C. W. Regional changes in glial cell line-derived neurotrophic factor after cardiac arrest and hypothermia in rats. Neurosci. Lett. 368, 135–139 (2004).
Zhao, H. et al. Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. J. Neurosci. 25, 9794–9806 (2005).
Spahn, D. R. Blood substitutes. Artificial oxygen carriers: perfluorocarbon emulsions. Crit. Care 3, R93–97 (1999).
Winslow, R. M., Vandegriff, K. D. & Intaglietta, M. Blood Substitutes: New Challenges (Birkhäuser, 1996).
Manning, J. E. et al. Selective aortic arch perfusion with hemoglobin-based oxygen carrier-201 for resuscitation from exsanguinating cardiac arrest in swine. Crit. Care Med. 29, 2067–2074 (2001).
Paradis, N. A. Dose-response relationship between aortic infusions of polymerized bovine hemoglobin and return of circulation in a canine model of ventricular fibrillation and advanced cardiac life support. Crit. Care Med. 25, 476–483 (1997).
Del Zoppo, G. J. Why do all drugs work in animals but none in stroke patients? 1. Drugs promoting cerebral blood flow. J. Intern. Med. 237, 79–88 (1995).
Gladstone, D. J., Black, S. E. & Hakim, A. M. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33, 2123–2136 (2002).
Richard Green, A., Odergren, T. & Ashwood, T. Animal models of stroke: do they have value for discovering neuroprotective agents? Trends Pharmacol. Sci. 24, 402–408 (2003).
Suzuki, J., Fujimoto, S., Mizoi, K. & Oba, M. The protective effect of combined administration of anti-oxidants and perfluorochemicals on cerebral ischemia. Stroke 15, 672–679 (1984).
Schabitz, W. R. et al. Synergistic effects of a combination of low-dose basic fibroblast growth factor and citicoline after temporary experimental focal ischemia. Stroke 30, 427–431 (1999).
Gwag, B. J., Lobner, D., Koh, J. Y., Wie, M. B. & Choi, D. W. Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro. Neuroscience 68, 615–619 (1995).
Du, C. et al. Additive neuroprotective effects of dextrorphan and cycloheximide in rats subjected to transient focal cerebral ischemia. Brain Res. 718, 233–236 (1996).
Schulz, J. B. et al. Extended therapeutic window for caspase inhibition and synergy with MK-801 in the treatment of cerebral histotoxic hypoxia. Cell Death Differ. 5, 847–857 (1998).
Spinelli, E. et al. Thrombolytic-enhanced extracorporeal cardiopulmonary resuscitation after prolonged cardiac arrest. Crit. Care Med. 44, e58–e69 (2016).
Xanthos, T. et al. Combination pharmacotherapy in the treatment of experimental cardiac arrest. Am. J. Emerg. Med. 27, 651–659 (2009).
Safar, P., Stezoski, W. & Nemoto, E. M. Amelioration of brain damage after 12 minutes’ cardiac arrest in dogs. Arch. Neurol. 33, 91–95 (1976).
Banks, P., Franks, N. P. & Dickinson, R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology 112, 614–622 (2010).
Fries, M. et al. Combining xenon and mild therapeutic hypothermia preserves neurological function after prolonged cardiac arrest in pigs. Crit. Care Med. 40, 1297–1303 (2012).
Fries, M. et al. Early administration of xenon or isoflurane may not improve functional outcome and cerebral alterations in a porcine model of cardiac arrest. Resuscitation 80, 584–590 (2009).
Laitio, R. et al. Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest: a randomized clinical trial. JAMA 315, 1120–1128 (2016).
Abe, K. et al. α-Tocopherol and ubiquinones in rat brain subjected to decapitation ischemia. Brain Res. 273, 166–169 (1983).
Ikeda, M., Yoshida, S., Busto, R., Santiso, M. & Ginsberg, M. D. Polyphosphoinositides as a probable source of brain free fatty acids accumulated at the onset of ischemia. J. Neurochem. 47, 123–132 (1986).
Kabat, H., Dennis, C. & Baker, A. B. Recovery of function following arrest of the brain circulation. Am. J. Physiol. 132, 0737–0747 (1941).
Rossen, R., Kabat, H. & Anderson, J. P. Acute arrest of cerebral circulation in man. Arch. Neurol. Pyschiatry 50, 510–528 (1943).
Nemoto, E. M. et al. Global brain ischemia: a reproducible monkey model. Stroke 8, 558–564 (1977).
Safar, P. et al. Emergency cardiopulmonary bypass for resuscitation from prolonged cardiac arrest. Am. J. Emerg. Med. 8, 55–67 (1990). This is an important investigation demonstrating the efficacy of cardiopulmonary bypass in treating postresuscitation syndrome.
Schleien, C. L. et al. Effect of epinephrine on cerebral and myocardial perfusion in an infant animal preparation of cardiopulmonary resuscitation. Circulation 73, 809–817 (1986).
Foerster, K. et al. Twenty minutes of normothermic cardiac arrest in a pig model: the role of short-term hypothermia for neurological outcome. Perfusion 33, 270–277 (2018).
Foerster, K. et al. Prolonged cardiac arrest and resuscitation by extracorporeal life support: favourable outcome without preceding anticoagulation in an experimental setting. Perfusion 28, 520–528 (2013).
Niemann, J. T., Rosborough, J. P., Youngquist, S., Thomas, J. & Lewis, R. J. Is all ventricular fibrillation the same? A comparison of ischemically induced with electrically induced ventricular fibrillation in a porcine cardiac arrest and resuscitation model. Crit. Care Med. 35, 1356–1361 (2007).
Bergey, J. L., Nocella, K. & McCallum, J. D. Acute coronary artery occlusion-reperfusion-induced arrhythmias in rats, dogs and pigs: antiarrhythmic evaluation of quinidine, procainamide and lidocaine. Eur. J. Pharmacol. 81, 205–216 (1982).
Gildea, E. F. C. S. The effects of anemia on the cerebral cortex of the cat. Arch. Neurol. Psychiatry 23, 876–903 (1930).
Blomqvist, P., Mabe, H., Ingvar, M. & Siesjo, B. K. Models for studying long-term recovery following forebrain ischemia in the rat. 1. Circulatory and functional effects of 4-vessel occlusion. Acta Neurol. Scand. 69, 376–384 (1984).
Pulsinelli, W. A. & Brierley, J. B. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10, 267–272 (1979).
Pulsinelli, W. A., Levy, D. E. & Duffy, T. E. Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann. Neurol. 11, 499–502 (1982).
Hossmann, K. A. Experimental models for the investigation of brain ischemia. Cardiovasc. Res. 39, 106–120 (1998).
Han, F. et al. A rodent model of emergency cardiopulmonary bypass resuscitation with different temperatures after asphyxial cardiac arrest. Resuscitation 81, 93–99 (2010).
Fink, E. L. et al. Experimental model of pediatric asphyxial cardiopulmonary arrest in rats. Pediatr. Crit. Care Med. 5, 139–144 (2004).
Martin, L. J. et al. Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Ann. Neurol. 42, 335–348 (1997).
Zhang, K. & Sejnowski, T. J. A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl Acad. Sci. USA 97, 5621–5626 (2000).
Koehler, R. C., Yang, Z. J., Lee, J. K. & Martin, L. J. Perinatal hypoxic-ischemic brain injury in large animal models: Relevance to human neonatal encephalopathy. J. Cereb. Blood Flow. Metab. 38, 2092–2111 (2018).
Diedler, J. et al. Quantitative EEG correlates of low cerebral perfusion in severe stroke. Neurocrit Care 11, 210–216 (2009).
Nagata, K., Tagawa, K., Hiroi, S., Shishido, F. & Uemura, K. Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction. Electroencephalogr. Clin. Neurophysiol. 72, 16–30 (1989).
Author information
Authors and Affiliations
Contributions
S.G.D., G.T., K.A.H., Z.V., K.T.G., F.B. and N.S. researched data for the article. S.G.D., G.T., K.A.H., F.B. and N.S. wrote the article. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
S.G.D., Z.V. and N.S. are listed with J. Silbereis as inventors on a patent held by Yale University entitled “Methods, systems and compositions for normothermic ex vivo restoration and preservation of intact organs” (WO2019157277A1). F.B., C.B., and G.T. are shareholders in Resuscitec GmbH, a company originating from the University of Freiburg. K.A.H., K.T.G., D.A., D. Damjanovic, J-S.P. and D. Dellal declare no competing interests.
Additional information
Peer review information
Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Delayed neuronal death
-
Morphological and histological features associated with neuronal cell damage and death that become apparent multiple days following an injury or insult.
- Rational polytherapy
-
Combination therapy that is rationally designed to target multiple deleterious mechanisms simultaneously or in a deliberate sequence.
- Extracorporeal perfusion
-
The use of a mechanical pump device with auxiliary components that circulates either a patient’s blood or a specialized solution to provide circulatory support.
- Electroencephalogram flattening
-
The absence of synchronous electrical activity in the brain, also known as a flat line or isoelectric reading.
- Acidosis
-
The condition in which cellular or tissue pH decreases below the normal homeostatic range owing to the accumulation of protons.
- Anoxic depolarization
-
An acute neuronal event involving the loss of cell membrane potentials caused by energy failure secondary to oxygen deprivation.
- ‘No-reflow’ phenomenon
-
The persistence of microvascular perfusion deficits despite the successful re-establishment of global circulation following ischaemia.
- Haemodilution
-
The act of reducing the concentration of cells and components in the blood through the introduction of a fluid.
- Erythrocyte
-
A red blood cell.
- Haemoconcentration
-
The process of concentrating cells and components in the blood through the removal of fluid.
- Neurovascular unit
-
A specialized functional and structural unit in the brain composed of endothelial, glial and neuronal cells that facilitate coupling between neuronal activity and blood flow.
- Blood–brain barrier
-
(BBB). A specialized barrier within the vasculature of the brain that limits the non-selective movement of peripheral blood components into the brain.
- Glycocalyx
-
A network of biomolecules that line the luminal surface of the cerebrovascular endothelium.
- Weibel–Palade bodies
-
Storage granules in endothelial cells that contain multiple biomolecules, such as P-selectin.
- Excitotoxicity
-
A pathological process by which neurons are damaged and killed through the overactivation of cellular receptors by the excitatory neurotransmitter glutamate.
- Simulated in vitro ischaemia
-
An experimental method through which cultured cells and tissues are subjected to conditions similar to in vivo ischaemia by the combination of hypoxia and hypoglycaemia.
- Necrosis
-
A form of cell death that results from unregulated digestion or autolysis of the cell.
- Reverse electron transfer
-
The process by which electrons are transferred in the reverse order in the electron transport chain, leading to the reduction of NAD+.
- Non-shockable
-
Describing cardiac rhythms that are incompatible with electrical defibrillation, such as pulseless electrical activity and asystole.
- Proximal occlusions
-
Clots or blockages in the proximal parts of large vessels (for example, of the neck or base of the brain).
- Perfluorocarbon
-
A class of organic molecules that form the basis of solvents with high oxygen-carrying capacities.
- Histotoxic hypoxia
-
A chemically induced form of hypoxia in which cells are unable to utilize oxygen despite adequate delivery or concentration of oxygen.
- Ventricular fibrillation
-
An abnormal cardiac rhythm in which the ventricles display erratic and uncoordinated contractions (fibrillation) owing to aberrant electrical conduction.
Rights and permissions
About this article
Cite this article
Daniele, S.G., Trummer, G., Hossmann, K.A. et al. Brain vulnerability and viability after ischaemia. Nat Rev Neurosci 22, 553–572 (2021). https://doi.org/10.1038/s41583-021-00488-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41583-021-00488-y
This article is cited by
-
Extracorporeal cardiopulmonary resuscitation for refractory cardiac arrest: an overview of current practice and evidence
Netherlands Heart Journal (2024)
-
LINC00894 Regulates Cerebral Ischemia/Reperfusion Injury by Stabilizing EIF5 and Facilitating ATF4-Mediated Induction of FGF21 and ACOD1 Expression
Neurochemical Research (2024)
-
Single-nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke in male rodents
Nature Communications (2024)
-
Divergent landscapes of A-to-I editing in postmortem and living human brain
Nature Communications (2024)
-
Clinical targeting of the cerebral oxygen cascade to improve brain oxygenation in patients with hypoxic–ischaemic brain injury after cardiac arrest
Intensive Care Medicine (2023)