Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The default mode network in cognition: a topographical perspective

Abstract

The default mode network (DMN) is a set of widely distributed brain regions in the parietal, temporal and frontal cortex. These regions often show reductions in activity during attention-demanding tasks but increase their activity across multiple forms of complex cognition, many of which are linked to memory or abstract thought. Within the cortex, the DMN has been shown to be located in regions furthest away from those contributing to sensory and motor systems. Here, we consider how our knowledge of the topographic characteristics of the DMN can be leveraged to better understand how this network contributes to cognition and behaviour.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mapping the DMN.
Fig. 2: DMN activity is sensitive to the temporal structure of cognition during a task.
Fig. 3: Topographic properties of the DMN.

Data availability

The spatial map data that support the findings of Fig. 1b are available in The Open Science Framework (https://osf.io/nz8gf/). The brain masks used to obtain the data used in Supplementary Fig. 1 are available in Neurovault (https://identifiers.org/neurovault.collection:8569). The source data for Supplementary Fig. 1 are included in Supplementary Data.

References

  1. 1.

    Davis, M. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353–375 (1992).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Milner, B., Corkin, S. & Teuber, H.-L. Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of HM. Neuropsychologia 6, 215–234 (1968).

    Article  Google Scholar 

  3. 3.

    Silbersweig, D. A. et al. Detection of thirty-second cognitive activations in single subjects with positron emission tomography: a new low-dose H215O regional cerebral blood flow three-dimensional imaging technique. J. Cereb. Blood Flow. Metab. 13, 617–629 (1993).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Gazzaniga, M. S. The New Cognitive Neurosciences (MIT Press, 2000).

  6. 6.

    Grill-Spector, K. & Malach, R. The human visual cortex. Annu. Rev. Neurosci. 27, 649–677 (2004).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Jack, C. R. Jr et al. Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190, 85–92 (1994).

    PubMed  Article  Google Scholar 

  8. 8.

    Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Shulman, G. L. et al. Searching for activations that generalize over tasks. Hum. Brain Mapp. 5, 317–322 (1997).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Duncan, J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cognit. Sci. 14, 172–179 (2010).

    Article  Google Scholar 

  11. 11.

    Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 16, 1348–1355 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Buckner, R. L. & Wheeler, M. E. The cognitive neuroscience of remembering. Nat. Rev. Neurosci. 2, 624–634 (2001).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Andreasen, N. C. et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. Am. J. Psychiatry 152, 1576–1585 (1995).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Binder, J. R. et al. Conceptual processing during the conscious resting state: a functional MRI study. J. Cognit. Neurosci. 11, 80–93 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    Kelley, W. M. et al. Finding the self? An event-related fMRI study. J. Cognit. Neurosci. 14, 785–794 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Hill, J. et al. Similar patterns of cortical expansion during human development and evolution. Proc. Natl Acad. Sci. USA 107, 13135–13140 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in the human brain. Trends Cognit. Sci. 17, 648–665 (2013).

    Article  Google Scholar 

  19. 19.

    Mesulam, M.-M. From sensation to cognition. Brain 121, 1013–1052 (1998).

    PubMed  Article  Google Scholar 

  20. 20.

    Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Friston, K., Frith, C., Liddle, P. & Frackowiak, R. Functional connectivity: the principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow. Metab. 13, 5–14 (1993).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    PubMed  Article  Google Scholar 

  25. 25.

    Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    DiNicola, L. M., Braga, R. M. & Buckner, R. L. Parallel distributed networks dissociate episodic and social functions within the individual. J. Neurophysiol. 123, 1144–1179 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Butters, N., Pandya, D., Stein, D. & Rosen, J. A search for the spatial engram within the frontal lobes of monkeys. Acta Neurobiol. Exp. 32, 305–329 (1972).

    CAS  Google Scholar 

  30. 30.

    Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Leech, R., Braga, R. & Sharp, D. J. Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 32, 215–222 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Braga, R. M. & Leech, R. Echoes of the brain: local-scale representation of whole-brain functional networks within transmodal cortex. Neuroscientist 21, 540–551 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Braga, R. M., Sharp, D. J., Leeson, C., Wise, R. J. & Leech, R. Echoes of the brain within default mode, association, and heteromodal cortices. J. Neurosci. 33, 14031–14039 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Bzdok, D. & Yeo, B. T. Inference in the age of big data: future perspectives on neuroscience. Neuroimage 155, 549–564 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    de Wael, R. V. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol. 3, 1–10 (2020).

    Article  Google Scholar 

  36. 36.

    Rausch, A. et al. Connectivity-based parcellation of the amygdala predicts social skills in adolescents with autism spectrum disorder. J. Autism Dev. Disord. 48, 572–582 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Frith, C. D. & Frith, U. Interacting minds — a biological basis. Science 286, 1692–1695 (1999).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Addis, D. R., Wong, A. T. & Schacter, D. L. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45, 1363–1377 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Tulving, E. in Principles of Frontal Lobe Function (eds Stuss, D. T. & Knight, R. T.) Ch. 20 (Oxford Univ. Press, 2002).

  40. 40.

    Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cognit. Sci. 11, 299–306 (2007).

    Article  Google Scholar 

  41. 41.

    Ho, N. S. P. et al. Facing up to why the wandering mind: patterns of off-task laboratory thought are associated with stronger neural recruitment of right fusiform cortex while processing facial stimuli. NeuroImage 214, 116765 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Smallwood, J. et al. The neural correlates of ongoing conscious thought. iScience 24, 102132 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Smallwood, J., Nind, L. & O’Connor, R. C. When is your head at? An exploration of the factors associated with the temporal focus of the wandering mind. Conscious. Cogn. 18, 118–125 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Konu, D. et al. A role for ventromedial prefrontal cortex in self-generated episodic social cognition. NeuroImage 218, 116977 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Spreng, R. N., Mar, R. A. & Kim, A. S. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Spreng, R. N. & Grady, C. L. Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network. J. Cogn. Neurosci. 22, 1112–1123 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Laird, A. R. et al. Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J. Neurosci. 29, 14496–14505 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Chiong, W. et al. The salience network causally influences default mode network activity during moral reasoning. Brain 136, 1929–1941 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Reniers, R. L. et al. Moral decision-making, ToM, empathy and the default mode network. Biol. Psychol. 90, 202–210 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Bzdok, D. et al. Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Struct. Funct. 217, 783–796 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Göttlich, M., Ye, Z., Rodriguez-Fornells, A., Münte, T. F. & Krämer, U. M. Viewing socio-affective stimuli increases connectivity within an extended default mode network. NeuroImage 148, 8–19 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Vessel, E. A., Starr, G. G. & Rubin, N. Art reaches within: aesthetic experience, the self and the default mode network. Front. Neurosci. 7, 258 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Simony, E. et al. Dynamic reconfiguration of the default mode network during narrative comprehension. Nat. Commun. 7, 12141 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Smallwood, R. F. et al. Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray matter volume. J. Pain 14, 663–675 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Zhang, M., Savill, N., Margulies, D. S., Smallwood, J. & Jefferies, E. Distinct individual differences in default mode network connectivity relate to off-task thought and text memory during reading. Sci. Rep. 9, 16220 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56.

    Epstein, R. A. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn. Sci. 12, 388–396 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Rogers, R. D. et al. Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol. Psychiatry 55, 594–602 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Ritchey, M. & Cooper, R. A. Deconstructing the posterior medial episodic network. Trends Cogn. Sci. 24, 451–465 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Ralph, M. A. L., Jefferies, E., Patterson, K. & Rogers, T. T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42 (2017).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Schilbach, L., Eickhoff, S. B., Rotarska-Jagiela, A., Fink, G. R. & Vogeley, K. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious. Cogn. 17, 457–467 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7, 268–277 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Satpute, A. B. & Lindquist, K. A. The default mode network’s role in discrete emotion. Trends Cognit. Sci. 23, 851–864 (2019).

    Article  Google Scholar 

  63. 63.

    Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Bzdok, D. et al. Subspecialization in the human posterior medial cortex. Neuroimage 106, 55–71 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Eickhoff, S. B., Laird, A. R., Fox, P. T., Bzdok, D. & Hensel, L. Functional segregation of the human dorsomedial prefrontal cortex. Cereb. Cortex 26, 304–321 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Murphy, C. et al. Distant from input: evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition. NeuroImage 171, 393–401 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Murphy, C. et al. Modes of operation: a topographic neural gradient supporting stimulus dependent and independent cognition. NeuroImage 186, 487–496 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Konishi, M., McLaren, D. G., Engen, H. & Smallwood, J. Shaped by the past: the default mode network supports cognition that is independent of immediate perceptual input. PLoS ONE 10, e0132209 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Smallwood, J. et al. Escaping the here and now: evidence for a role of the default mode network in perceptually decoupled thought. Neuroimage 69, 120–125 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Turnbull, A. et al. Left dorsolateral prefrontal cortex supports context-dependent prioritisation of off-task thought. Nat. Commun. 10, 3816 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Sormaz, M. et al. Default mode network can support the level of detail in experience during active task states. Proc. Natl Acad. Sci. USA 115, 9318–9323 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Lanzoni, L. et al. The role of default mode network in semantic cue integration. Neuroimage 219, 117019 (2020).

    PubMed  Article  Google Scholar 

  73. 73.

    Vatansever, D., Menon, D. K. & Stamatakis, E. A. Default mode contributions to automated information processing. Proc. Natl Acad. Sci. USA 114, 12821–12826 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Van Den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Park, B.-y. et al. Signal diffusion along connectome gradients and inter-hub routing differentially contribute to dynamic human brain function. NeuroImage 224, 117429 (2021).

    PubMed  Article  Google Scholar 

  77. 77.

    Jones, E. & Powell, T. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93, 793–820 (1970).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Fellman, D. & Van Essen, D. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  Google Scholar 

  79. 79.

    Xu, T. et al. Cross-species functional alignment reveals evolutionary hierarchy within the connectome. NeuroImage 223, 117346 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Alcalá-López, D. et al. Computing the social brain connectome across systems and states. Cereb. Cortex 28, 2207–2232 (2018).

    PubMed  Article  Google Scholar 

  82. 82.

    Gendron, M. & Barrett, L. F. Emotion perception as conceptual synchrony. Emot. Rev. 10, 101–110 (2018).

    Article  Google Scholar 

  83. 83.

    Kernbach, J. M. et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc. Natl Acad. Sci. USA 115, 12295–12300 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Dohmatob, E., Dumas, G. & Bzdok, D. Dark control: the default mode network as a reinforcement learning agent. Hum. Brain Mapp. 41, 3318–3341 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  87. 87.

    Fox, K. C. et al. Intrinsic network architecture predicts the effects elicited by intracranial electrical stimulation of the human brain. Nat. Hum. Behav. 4, 1039–1052 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Gonzalez-Garcia, C., Flounders, M. W., Chang, R., Baria, A. T. & He, B. J. Content-specific activity in frontoparietal and default-mode networks during prior-guided visual perception. eLife 7, 36068 (2018).

    Article  Google Scholar 

  89. 89.

    Murphy, C. et al. Hello, is that me you are looking for? A re-examination of the role of the DMN in off-task thought. PLoS ONE 14, e0216182 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Gorgolewski, K. J. et al. A correspondence between individual differences in the brain’s intrinsic functional architecture and the content and form of self-generated thoughts. PLoS ONE 9, e97176 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91.

    Davey, J. et al. Automatic and controlled semantic retrieval: TMS reveals distinct contributions of posterior middle temporal gyrus and angular gyrus. J. Neurosci. 35, 15230–15239 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    van der Linden, M., Berkers, R., Morris, R. G. M. & Fernandez, G. Angular gyrus involvement at encoding and retrieval is associated with durable but less specific memories. J. Neurosci. 37, 9474–9485 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Bonnici, H. M., Richter, F. R., Yazar, Y. & Simons, J. S. Multimodal feature integration in the angular gyrus during episodic and semantic retrieval. J. Neurosci. 36, 5462–5471 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Wen, T., Duncan, J. & Mitchell, D. J. Hierarchical representation of multi-step tasks in multiple-demand and default mode networks. J. Neurosci. 40, 7724–7738 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Wang, X., Gao, Z., Smallwood, J. & Jefferies, E. Both default and multiple-demand regions represent semantic goal information. J. Neurosci. 41, 3679–3691 (2021).

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Smallwood, J. Distinguishing how from why the mind wanders: a process–occurrence framework for self-generated mental activity. Psychol. Bull. 139, 519 (2013).

    PubMed  Article  Google Scholar 

  97. 97.

    Smallwood, J. & Schooler, J. W. The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518 (2015).

    PubMed  Article  Google Scholar 

  98. 98.

    Li, Q. et al. Atypical neural topographies underpin dysfunctional pattern separation in temporal lobe epilepsy. Brain https://doi.org/10.1093/brain/awab121 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Hilgetag, C. C. & Goulas, A. ‘Hierarchy’ in the organization of brain networks. Philos. Trans. R. Soc. B 375, 20190319 (2020).

    Article  Google Scholar 

  100. 100.

    Moser, E. I., Kropff, E. & Moser, M.-B. Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008).

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Boccara, C. N. et al. Grid cells in pre-and parasubiculum. Nat. Neurosci. 13, 987–994 (2010).

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Fyhn, M., Hafting, T., Treves, A., Moser, M. B. & Moser, E. I. Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446, 190–194 (2007).

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Behrens, T. E. J. et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Welch, G. & Bishop, G. An Introduction to the Kalman Filter (Univ. of North Carolina, 1995).

  106. 106.

    Horner, A. J., Bisby, J. A., Bush, D., Lin, W.-J. & Burgess, N. Evidence for holistic episodic recollection via hippocampal pattern completion. Nat. Commun. 6, 1–11 (2015).

    Article  Google Scholar 

  107. 107.

    Huang, Y. & Rao, R. P. Predictive coding. Wiley Interdiscip. Rev. Cognit. Sci. 2, 580–593 (2011).

    Article  Google Scholar 

  108. 108.

    Friston, K. & Kiebel, S. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. B: Biol. Sci. 364, 1211–1221 (2009).

    Article  Google Scholar 

  109. 109.

    Allen, M. & Friston, K. J. From cognitivism to autopoiesis: towards a computational framework for the embodied mind. Synthese 195, 2459–2482 (2018).

    PubMed  Article  Google Scholar 

  110. 110.

    Chanes, L. & Barrett, L. F. Redefining the role of limbic areas in cortical processing. Trends Cognit. Sci. 20, 96–106 (2016).

    Article  Google Scholar 

  111. 111.

    Benner, M. J. & Tushman, M. L. Exploitation, exploration, and process management: the productivity dilemma revisited. Acad. Manag. Rev. 28, 238–256 (2003).

    Article  Google Scholar 

  112. 112.

    Pearson, J. M., Hayden, B. Y., Raghavachari, S. & Platt, M. L. Neurons in posterior cingulate cortex signal exploratory decisions in a dynamic multioption choice task. Curr. Biol. 19, 1532–1537 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Bayer, H. M. & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129–141 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Rudebeck, P. H. & Murray, E. A. Dissociable effects of subtotal lesions within the macaque orbital prefrontal cortex on reward-guided behavior. J. Neurosci. 31, 10569–10578 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Seghier, M. L. The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19, 43–61 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Braga, R. M., DiNicola, L. M., Becker, H. C. & Buckner, R. L. Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks. J. Neurophysiol. 124, 1415–1448 (2020).

    PubMed  Article  Google Scholar 

  117. 117.

    Alderson-Day, B. & Fernyhough, C. Inner speech: development, cognitive functions, phenomenology, and neurobiology. Psychol. Bull. 141, 931 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    PubMed  Article  Google Scholar 

  119. 119.

    Botvinick, M. M. Hierarchical models of behavior and prefrontal function. Trends Cognit. Sci. 12, 201–208 (2008).

    Article  Google Scholar 

  120. 120.

    Smith, V., Mitchell, D. J. & Duncan, J. Role of the default mode network in cognitive transitions. Cereb. Cortex 28, 3685–3696 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Crittenden, B. M., Mitchell, D. J. & Duncan, J. Recruitment of the default mode network during a demanding act of executive control. eLife 4, e06481 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Krieger-Redwood, K. et al. Down but not out in posterior cingulate cortex: deactivation yet functional coupling with prefrontal cortex during demanding semantic cognition. Neuroimage 141, 366–377 (2016).

    PubMed  Article  Google Scholar 

  123. 123.

    Vatansever, D., Menon, D. K., Manktelow, A. E., Sahakian, B. J. & Stamatakis, E. A. Default mode network connectivity during task execution. Neuroimage 122, 96–104 (2015).

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Gerlach, K. D., Spreng, R. N., Gilmore, A. W. & Schacter, D. L. Solving future problems: default network and executive activity associated with goal-directed mental simulations. Neuroimage 55, 1816–1824 (2011).

    PubMed  Article  Google Scholar 

  125. 125.

    Wang, X., Margulies, D. S., Smallwood, J. & Jefferies, E. A gradient from long-term memory to novel cognition: transitions through default mode and executive cortex. Neuroimage 220, 117074 (2020).

    PubMed  Article  Google Scholar 

  126. 126.

    Dixon, M. L. et al. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc. Natl Acad. Sci. USA 115, E1598–E1607 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Davey, J. et al. Exploring the role of the posterior middle temporal gyrus in semantic cognition: integration of anterior temporal lobe with executive processes. Neuroimage 137, 165–177 (2016).

    PubMed  Article  Google Scholar 

  128. 128.

    Hazy, T. E., Frank, M. J. & O’Reilly, R. C. Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos. Trans. R. Soc. B Biol. Sci. 362, 1601–1613 (2007).

    Article  Google Scholar 

  129. 129.

    Olton, D. S., Becker, J. T. & Handelmann, G. E. Hippocampus, space, and memory. Behav. Brain Sci. 2, 313–322 (1979).

    Article  Google Scholar 

  130. 130.

    Huijbers, W., Pennartz, C. M., Cabeza, R. & Daselaar, S. M. The hippocampus is coupled with the default network during memory retrieval but not during memory encoding. PLoS ONE 6, e17463 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Moser, E. I. et al. Grid cells and cortical representation. Nat. Rev. Neurosci. 15, 466–481 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Paquola, C. et al. Convergence of cortical types and functional motifs in the human mesiotemporal lobe. eLife 9, e60673 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors thank N. Ho for help in the preparation of Supplementary Fig. 1 and R. Braga, L. Lanzoni and D. Vatansever for providing data for use in preparing the figures. The work in this Perspective was supported by consolidator grants from the European Research Council (ERC) (Award 646-927 WANDERINGMINDS to J.S., Award 866533-CORTIGRAD to D.S.M. and Award 771863-FLEXSEM to E.J.). D.B. was supported by the Canada Institute for Advanced Research (CIFAR) Artificial Intelligence Chairs programme, Google and National Institutes of Health (NIH) grant R01AG068563A. R.L. was supported by Wellcome/Engineering and Physical Sciences Research Council (EPSRC) Centre for Medical Engineering (Ref: WT 203148/Z/16/). B.B. received support from the Natural Sciences and Engineering Research Council of Canada (NSERC) (Discovery-1304413), the Canadian Institutes of Health Research (CIHR FDN-154298, PJT-174995), SickKids Foundation (NI17-039), BrainCanada (Azrieli Future Leaders) and the Tier-2 Canada Research Chairs programme.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jonathan Smallwood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Human Connectome Project: http://www.humanconnectomeproject.org/

Neurosynth: https://neurosynth.org/

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smallwood, J., Bernhardt, B.C., Leech, R. et al. The default mode network in cognition: a topographical perspective. Nat Rev Neurosci 22, 503–513 (2021). https://doi.org/10.1038/s41583-021-00474-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing