Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biological constraints on neural network models of cognitive function

Abstract

Neural network models are potential tools for improving our understanding of complex brain functions. To address this goal, these models need to be neurobiologically realistic. However, although neural networks have advanced dramatically in recent years and even achieve human-like performance on complex perceptual and cognitive tasks, their similarity to aspects of brain anatomy and physiology is imperfect. Here, we discuss different types of neural models, including localist, auto-associative, hetero-associative, deep and whole-brain networks, and identify aspects under which their biological plausibility can be improved. These aspects range from the choice of model neurons and of mechanisms of synaptic plasticity and learning to implementation of inhibition and control, along with neuroanatomical properties including areal structure and local and long-range connectivity. We highlight recent advances in developing biologically grounded cognitive theories and in mechanistically explaining, on the basis of these brain-constrained neural models, hitherto unaddressed issues regarding the nature, localization and ontogenetic and phylogenetic development of higher brain functions. In closing, we point to possible future clinical applications of brain-constrained modelling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Seven constraints for making neural networks models more biologically plausible.
Fig. 2: Networks for modelling cognitive functions.
Fig. 3: Multilevel network for explaining neural dynamics based on neuroanatomical constraints.
Fig. 4: Model of evolutionary connectivity change in left frontotemporal cortex and its functional consequences.
Fig. 5: Brain-constrained model of semantic grounding.

References

  1. 1.

    Liberman, A. M., Cooper, F. S., Shankweiler, D. P. & Studdert-Kennedy, M. Perception of the speech code. Psychol. Rev. 74, 431–461 (1967).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Fodor, J. A. The Modularity of Mind (MIT Press, 1983).

  3. 3.

    Shallice, T. From Neuropsychology to Mental Structure (Cambridge Univ. Press, 1988).

  4. 4.

    Ellis, A. W. & Young, A. W. Human Cognitive Neuropsychology (Lawrence Erlbaum Associates, 1988).

  5. 5.

    Hebb, D. O. The Organization of Behavior. A Neuropsychological Theory (Wiley, 1949).

  6. 6.

    Braitenberg, V. in Theoretical Approaches to Complex Systems Vol. 21 (eds Heim, R. & Palm, G.) 171–188 (Springer, 1978).

  7. 7.

    O’Reilly, R. C. Six principles for biologically based computational models of cortical cognition. Trends Cogn. Sci. 2, 455–562 (1998).

    PubMed  Article  Google Scholar 

  8. 8.

    Dell, G. S. A spreading-activation theory of retrieval in sentence production. Psychol. Rev. 93, 283–321 (1986).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    MacKay, D. G. The Organization of Perception and Action. A Theory of Language and Other Cognitive Skills (Springer, 1987).

  10. 10.

    Grainger, J. & Jacobs, A. M. Orthographic processing in visual word recognition: a multiple read-out model. Psychol. Rev. 103, 518–565 (1996).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M. & Gagnon, D. A. Lexical access in aphasic and nonaphasic speakers. Psychol.Rev. 104, 801–838 (1997).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Dijkstra, T. et al. Multilink: a computational model for bilingual word recognition and word translation. Bilingualism Lang. Cognition 22, 657–679 (2019).

    Article  Google Scholar 

  13. 13.

    Barlow, H. Single units and cognition: a neurone doctrine for perceptual psychology. Perception 1, 371–394 (1972).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Abeles, M. Corticonics — Neural Circuits of the Cerebral Cortex (Cambridge Univ. Press, 1991).

  15. 15.

    Quiroga, R. Q., Kreiman, G., Koch, C. & Fried, I. Sparse but not ‘grandmother-cell’ coding in the medial temporal lobe. Trends Cognit. Sci. 12, 87–91 (2008).

    Article  Google Scholar 

  16. 16.

    Perrett, D. J., Mistlin, A. J. & Chitty, A. J. Visual neurons responsive to faces. Trends Neurosci. 10, 358–364 (1987).

    Article  Google Scholar 

  17. 17.

    Quiroga, R. Q. Concept cells: the building blocks of declarative memory functions. Nat. Rev. Neurosci. 13, 587–597 (2012).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Quiroga, R. Q. Plugging in to human memory: advantages, challenges, and insights from human single-neuron recordings. Cell 179, 1015–1032 (2019).

    Article  CAS  Google Scholar 

  19. 19.

    Braitenberg, V. in Architectonics of the Cerebral Cortex (eds Brazier, M. A. B. & Petsche, H.) 443–465 (Raven, 1978).

  20. 20.

    Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity 2nd edn (Springer, 1998).

  21. 21.

    Willshaw, D. J., Buneman, O. P. & Longuet-Higgins, H. C. Non-holographic associative memory. Nature 222, 960–962 (1969).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Palm, G. Neural Assemblies (Springer, 1982).

  23. 23.

    Palm, G. Cell assemblies as a guideline for brain research. Concepts Neurosci. 1, 133–147 (1990).

    Google Scholar 

  24. 24.

    Palm, G., Knoblauch, A., Hauser, F. & Schüz, A. Cell assemblies in the cerebral cortex. Biol. Cybern. 108, 559–572 (2014).

    PubMed  Article  Google Scholar 

  25. 25.

    Lundqvist, M., Rehn, M., Djurfeldt, M. & Lansner, A. Attractor dynamics in a modular network model of neocortex. Network 17, 253–276 (2006).

    PubMed  Article  Google Scholar 

  26. 26.

    Lansner, A. Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends Neurosci. 32, 178–186 (2009).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Hopfield, J. J. & Tank, D. W. Computing with neural circuits: a model. Science 233, 625–633 (1986).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Hinton, G. E. & Shallice, T. Lesioning an attractor network: investigation of acquired dyslexia. Psychol.Rev. 98, 74–95 (1991).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Sommer, F. T. & Wennekers, T. Models of distributed associative memory networks in the brain. Theory Biosci. 122, 55–69 (2003).

    Article  Google Scholar 

  30. 30.

    Rigotti, M., Ben Dayan Rubin, D., Wang, X. J. & Fusi, S. Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses. Front. Comput. Neurosci. 4, 24 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Huyck, C. R. & Passmore, P. J. A review of cell assemblies. Biol. Cybern. 107, 263–288 (2013).

    PubMed  Article  Google Scholar 

  32. 32.

    Lindsay, G. W., Rigotti, M., Warden, M. R., Miller, E. K. & Fusi, S. Hebbian learning in a random network captures selectivity properties of the prefrontal cortex. J. Neurosci. 37, 11021–11036 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Ballintyn, B., Shlaer, B. & Miller, P. Spatiotemporal discrimination in attractor networks with short-term synaptic plasticity. J. Comput.Neurosci. 46, 279–297 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Seeholzer, A., Deger, M. & Gerstner, W. Stability of working memory in continuous attractor networks under the control of short-term plasticity. PLoS Comput. Biol. 15, e1006928 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Papadimitriou, C. H., Vempala, S. S., Mitropolsky, D., Collins, M. & Maass, W. Brain computation by assemblies of neurons. Proc. Natl Acad. Sci. USA 117, 14464–14472 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Hubel, D. Eye, Brain, and Vision 2nd edn (Scientific American Library, 1995).

  38. 38.

    Wennekers, T., Garagnani, M. & Pulvermüller, F. Language models based on Hebbian cell assemblies. J. Physiol. Paris. 100, 16–30 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Zipser, D., Kehoe, B., Littlewort, G. & Fuster, J. M. A spiking network model of short-term active memory. J. Neurosci. 13, 3406–3420 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Pulvermüller, F., Garagnani, M. & Wennekers, T. Thinking in circuits: towards neurobiological explanation in cognitive neuroscience. Biol. Cybern. 108, 573–593 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Dominey, P. F. Complex sensory-motor sequence learning based on recurrent state representation and reinforcement learning. Biol. Cybern. 73, 265–274 (1995).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Bibbig, A., Wennekers, T. & Palm, G. A neural network model of the cortico-hippocampal interplay and the representation of contexts. Behav. Brain Res. 66, 169–175 (1995).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Knoblauch, A. & Palm, G. Scene segmentation by spike synchronization in reciprocally connected visual areas. I. Local effects of cortical feedback. Biol. Cybern. 87, 151–167 (2002).

    PubMed  Article  Google Scholar 

  44. 44.

    Knoblauch, A. & Palm, G. Scene segmentation by spike synchronization in reciprocally connected visual areas. II. Global assemblies and synchronization on larger space and time scales. Biol. Cybern. 87, 168–184 (2002).

    PubMed  Article  Google Scholar 

  45. 45.

    Dominey, P. F. & Inui, T. Cortico-striatal function in sentence comprehension: insights from neurophysiology and modeling. Cortex 45, 1012–1018 (2009).

    PubMed  Article  Google Scholar 

  46. 46.

    Verduzco-Flores, S., Bodner, M., Ermentrout, B., Fuster, J. M. & Zhou, Y. Working memory cells’ behavior may be explained by cross-regional networks with synaptic facilitation. PLoS ONE 4, e6399 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Eliasmith, C. et al. A large-scale model of the functioning brain. Science 338, 1202–1205 (2012).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Cazin, N. et al. Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation. PLoS Comput. Biol. 15, e1006624 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Drude, L., von Neumann, T. & Haeb-Umbach, R. in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 11–15 (IEEE, 2018).

  50. 50.

    Tomasello, R., Wennekers, T., Garagnani, M. & Pulvermüller, F. Visual cortex recruitment during language processing in blind individuals is explained by Hebbian learning. Sci. Rep. 9, 3579 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    Minsky, M. & Papert, S. Perceptrons (MIT Press, 1969).

  52. 52.

    McClelland, J. L. & Rumelhart, D. E. Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT Press, 1986).

  53. 53.

    Hubel, D. Eye, Brain, and Vision (Freeman, 1988).

  54. 54.

    McClelland, J. L. & Rumelhart, D. E. Distributed memory and the representation of general and specific information. J. Exp. Psychol. 114, 159–188 (1985).

    CAS  Article  Google Scholar 

  55. 55.

    Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Article  Google Scholar 

  56. 56.

    Richards, B. A. et al. A deep learning framework for neuroscience. Nat. Neurosci. 22, 1761–1770 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Elman, J. L. et al. Rethinking Innateness. A Connectionist Perspective on Development (MIT Press, 1996).

  58. 58.

    Rumelhart, D. E. & McClelland, J. L. Parallel Distributed Processing: Explorations in the Microstructure of Cognition (eds McClelland, J. L. & Rumelhart, D. E.) (MIT Press, 1986).

  59. 59.

    Elman, J. L. Finding structure in time. Cognit. Sci. 14, 179–211 (1990).

    Article  Google Scholar 

  60. 60.

    Rogers, T. T. & McClelland, J. L. Semantic Cognition: A Parallel Distributed Processing Approach (MIT Press, 2004).

  61. 61.

    Hinton, G. E. Learning multiple layers of representation. Trends Cogn. Sci. 11, 428–434 (2007).

    PubMed  Article  Google Scholar 

  62. 62.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Kriegeskorte, N. & Golan, T. Neural network models and deep learning. Curr. Biol. 29, R231–R236 (2019).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Yu, Y., Si, X., Hu, C. & Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31, 1235–1270 (2019).

    PubMed  Article  Google Scholar 

  65. 65.

    Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Krizhevsky, A., Sutskever, I. & Hinton, G. E. in Adv. Neural Inf. Process. Syst. (eds Bartlett, P. et al) 1106–1114 (2012).

  67. 67.

    Zhou, H.-Y., Liu, A.-A., Nie, W.-Z. & Nie, J. Multi-view saliency guided deep neural network for 3-D object retrieval and classification. IEEE Trans. Multimed. 22, 1496–1506 (2019).

    Article  Google Scholar 

  68. 68.

    Dahl, G. E., Yu, D., Deng, L. & Acero, A. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Language Process. 20, 30–42 (2012).

    Article  Google Scholar 

  69. 69.

    Graves, A., Mohamed, A.-R. & Hinton, G. in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 6645–6649 (IEEE, 2013).

  70. 70.

    Smit, P., Virpioja, S. & Kurimo, M. Advances in subword-based HMM-DNN speech recognition across languages. Computer Speech Lang. 66, 101–158 (2021).

    Article  Google Scholar 

  71. 71.

    Hasson, U., Nastase, S. A. & Goldstein, A. Direct fit to nature: an evolutionary perspective on biological and artificial neural networks. Neuron 105, 416–434 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Szegedy, C. et al. Intriguing properties of neural networks. Preprint at arXiv https://arxiv.org/abs/1312.6199 (2014).

  73. 73.

    Nguyen, A., Yosinski, J. & Clune, J. in Comput. Vis. Pattern Recognit. 427–436 (IEEE, 2015).

  74. 74.

    Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning requires re-thinking generalization. Commun. ACM 64, 107–115 (2021).

    Article  Google Scholar 

  75. 75.

    Alcorn, M. A. et al. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 4845–4854 (IEEE, 2019).

  76. 76.

    Carlini, N. & Wagner, D. Towards evaluating the robustness of neural networks. Preprint at arXiv https://arxiv.org/abs/1608.04644 (2017).

  77. 77.

    Dapello, J. et al. Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations. Preprint at bioRxiv https://doi.org/10.1101/2020.06.16.154542 (2020).

    Article  Google Scholar 

  78. 78.

    Devereux, B. J., Clarke, A. & Tyler, L. K. Integrated deep visual and semantic attractor neural networks predict fMRI pattern-information along the ventral object processing pathway. Sci. Rep. 8, 1–12 (2018).

    CAS  Article  Google Scholar 

  79. 79.

    Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019).

    PubMed  Article  Google Scholar 

  80. 80.

    Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde (Springer, 1909).

  81. 81.

    Fan, L. et al. The human Brainnetome Atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26, 3508–3526 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Pandya, D. N. & Yeterian, E. H. in Cerebral Cortex. Association and Auditory Cortices Vol. 4 (eds Peters, A. & Jones, E. G.) 3–61 (Plenum, 1985).

  84. 84.

    Yeterian, E. H., Pandya, D. N., Tomaiuolo, F. & Petrides, M. The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48, 58–81 (2012).

    PubMed  Article  Google Scholar 

  85. 85.

    Waugh, J. L. et al. A registration method for improving quantitative assessment in probabilistic diffusion tractography. Neuroimage 189, 288–306 (2019).

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Sarwar, T., Ramamohanarao, K. & Zalesky, A. Mapping connectomes with diffusion mri: deterministic or probabilistic tractography? Magnetic Reson. Med. 81, 1368–1384 (2019).

    Article  Google Scholar 

  87. 87.

    Descoteaux, M., Deriche, R., Knosche, T. R. & Anwander, A. Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imaging 28, 269–286 (2008).

    Article  Google Scholar 

  88. 88.

    Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S. & Woolrich, M. W. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34, 144–155 (2007).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Kötter, R. Neuroscience databases: tools for exploring brain structure-function relationships. Phil. Trans. R. Soc. Lond. B 356, 1111–1120 (2001).

    Article  Google Scholar 

  90. 90.

    Bressler, S. L. & Menon, V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290 (2010).

    PubMed  Article  Google Scholar 

  91. 91.

    Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Honey, C. J., Kotter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Deco, G. & Jirsa, V. K. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32, 3366–3375 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Deco, G., Jirsa, V. K. & McIntosh, A. R. Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci. 36, 268–274 (2013).

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Deco, G., Tononi, G., Boly, M. & Kringelbach, M. L. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16, 430–439 (2015).

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Petersen, S. E. & Sporns, O. Brain networks and cognitive architectures. Neuron 88, 207–219 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Nakagawa, T. T., Adhikari, M. H. & Deco, G. Large-scale computational models of ongoing brain activity. Comput. Models Brain Behav. https://doi.org/10.1002/9781119159193.ch31 (2017).

    Article  Google Scholar 

  99. 99.

    Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 19, 17–33 (2017).

    PubMed  Article  CAS  Google Scholar 

  100. 100.

    Palm, G. Neural information processing in cognition: we start to understand the orchestra, but where is the conductor? Front. Comput. Neurosci. 10, 3 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    van Albada, S. J. et al. Bringing anatomical information into neuronal network models. Preprint at arXiv https://arxiv.org/abs/2007.00031 (2020).

  102. 102.

    Arbib, M. A., Billard, A., Iacoboni, M. & Oztop, E. Synthetic brain imaging: grasping, mirror neurons and imitation. Neural Netw. 13, 975–997 (2000).

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Kell, A. J. & McDermott, J. H. Deep neural network models of sensory systems: windows onto the role of task constraints. Curr. Opin. Neurobiol. 55, 121–132 (2019).

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Gerstner, W. & Naud, R. How good are neuron models? Science 326, 379–380 (2009).

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Teeter, C. et al. Generalized leaky integrate-and-fire models classify multiple neuron types. Nat. Commun. 9, 1–15 (2018).

    CAS  Article  Google Scholar 

  106. 106.

    Schwalger, T., Deger, M. & Gerstner, W. Towards a theory of cortical columns: from spiking neurons to interacting neural populations of finite size. PLoS Comput. Biol. 13, e1005507 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    Malagarriga, D., Pons, A. J. & Villa, A. E. Complex temporal patterns processing by a neural mass model of a cortical column. Cognit. Neurodyn. 13, 379–392 (2019).

    Article  Google Scholar 

  108. 108.

    Jansen, B. H. & Rit, V. G. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73, 357–366 (1995).

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Potjans, T. C. & Diesmann, M. The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb. Cortex 24, 785–806 (2014).

    PubMed  Article  Google Scholar 

  110. 110.

    Einevoll, G. T. et al. The scientific case for brain simulations. Neuron 102, 735–744 (2019).

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    O’Connell, R. G., Shadlen, M. N., Wong-Lin, K. & Kelly, S. P. Bridging neural and computational viewpoints on perceptual decision-making. Trends Neurosci. 41, 838–852 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  112. 112.

    Hahn, G., Ponce-Alvarez, A., Deco, G., Aertsen, A. & Kumar, A. Portraits of communication in neuronal networks. Nat. Rev. Neurosci. 20, 117–127 (2019).

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis - connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Carota, F., Nili, H., Pulvermüller, F. & Kriegeskorte, N. Distinct fronto-temporal substrates of distributional and taxonomic similarity among words: evidence from RSA of BOLD signals. Neuroimage 224, 117408 (2021).

    PubMed  Article  Google Scholar 

  115. 115.

    Papadopoulou, M., Friston, K. & Marinazzo, D. Estimating directed connectivity from cortical recordings and reconstructed sources. Brain Topogr. 32, 741–752 (2019).

    PubMed  Article  Google Scholar 

  116. 116.

    Shen, K. et al. Exploring the limits of network topology estimation using diffusion-based tractography and tracer studies in the macaque cortex. Neuroimage 191, 81–92 (2019).

    PubMed  Article  Google Scholar 

  117. 117.

    Kandel, E. R., Schwartz, J. H. & Jessell, T. M. Principles of Neural Sciences 4th edn (McGraw-Hill, 2000).

  118. 118.

    Matthews, G. G. Cellular Physiology of Nerve and Muscle (Wiley, 2009).

  119. 119.

    O’Reilly, R. C. & Munakata, Y. Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain (MIT Press, 2000).

  120. 120.

    Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M. & Friston, K. The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Burkitt, A. N. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95, 1–19 (2006).

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Brette, R. et al. Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23, 349–398 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Gerstner, W. & Kistler, W. M. Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge Univ. Press, 2002).

  125. 125.

    Li, S. et al. Dendritic computations captured by an effective point neuron model. Proc. Natl Acad. Sci. USA 116, 15244–15252 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    London, M. & Häusser, M. Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005).

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Bono, J. & Clopath, C. Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nat. Commun. 8, 706 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  128. 128.

    Venkadesh, S., Komendantov, A. O., Wheeler, D. W., Hamilton, D. J. & Ascoli, G. A. Simple models of quantitative firing phenotypes in hippocampal neurons: comprehensive coverage of intrinsic diversity. PLoS Comput. Biol. 15, e1007462 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Gidon, A. et al. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 367, 83–87 (2020).

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Faisal, A. A., Selen, L. P. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Gerstner, W. & Kistler, W. M. Mathematical formulations of Hebbian learning. Biol. Cybern. 87, 404–415 (2002).

    PubMed  Article  Google Scholar 

  132. 132.

    Tsumoto, T. Long-term potentiation and long-term depression in the neocortex. Prog. Neurobiol. 39, 209–228 (1992).

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Artola, A. & Singer, W. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci. 16, 480–487 (1993).

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Gerstner, W., Kempter, R., van Hemmen, J. L. & Wagner, H. A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–81 (1996).

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Kempter, R., Gerstner, W. & Van Hemmen, J. L. Hebbian learning and spiking neurons. Phys. Rev. E 59, 4498 (1999).

    CAS  Article  Google Scholar 

  136. 136.

    Caporale, N. & Dan, Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008).

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Rumbell, T., Denham, S. L. & Wennekers, T. A spiking self-organizing map combining STDP, oscillations, and continuous learning. IEEE Trans. Neural Netw. Learn. Syst. 25, 894–907 (2014).

    PubMed  Article  Google Scholar 

  138. 138.

    Mollick, J. A. et al. A systems-neuroscience model of phasic dopamine. Psychol. Rev. 127, 972–1021 (2020).

    PubMed  Article  Google Scholar 

  139. 139.

    Thorpe, S. J. & Imbert, M. in Connectionism in Perspective (eds Pfeifer, R., Schreter, Z., Fogelman-Soulie, F. & Steels, L.) 63–92 (North Holland, 1989).

  140. 140.

    Marblestone, A. H., Wayne, G. & Kording, K. P. Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10, 94 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Pozzi, I., Bohté, S. & Roelfsema, P. A biologically plausible learning rule for deep learning in the brain. Preprint at arXiv https://arxiv.org/abs/1811.01768 (2018).

  142. 142.

    Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Marcus, G. F. Negative evidence in language acquisition. Cognition 46, 53–85 (1993).

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Goldberg, A. E. Constructions at Work: The Nature of Generalisation in Language (Oxford Univ. Press, 2006).

  145. 145.

    Goldberg, A. E. Explain Me This: Creativity, Competition and the Partial Productivity of Constructions (Princeton Univ. Press, 2019).

  146. 146.

    Pulvermüller, F. Neural reuse of action perception circuits for language, concepts and communication. Prog. Neurobiol. 160, 1–44 (2018).

    PubMed  Article  Google Scholar 

  147. 147.

    Yuille, A. L. & Geiger, D. in The Handbook of Brain Theory and Neural Networks (ed. Arbib, M. A.) 1228–1231 (MIT Press, 2003).

  148. 148.

    Gurney, K., Prescott, T. J., Wickens, J. R. & Redgrave, P. Computational models of the basal ganglia: from robots to membranes. Trends Neurosci. 27, 453–459 (2004).

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Knoblauch, A., Markert, H. & Palm, G. in Int. Work-Conf. Interplay Between Nat. Artif. Computat. Vol. 3562 (eds Mira, J. & Alvarez, J. R.) 405–414 (Springer, 2005).

  150. 150.

    Sommer, F. T. & Wennekers, T. Associative memory in networks of spiking neurons. Neural Netw. 14, 825–834 (2001).

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Garagnani, M., Wennekers, T. & Pulvermüller, F. A neuroanatomically-grounded Hebbian learning model of attention-language interactions in the human brain. Eur. J. Neurosci. 27, 492–513 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Binzegger, T., Douglas, R. J. & Martin, K. A. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Thomson, A. M. & Lamy, C. Functional maps of neocortical local circuitry. Front. Neurosci. 1, 19–42 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Schmidt, M. et al. A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas. PLoS Comput. Biol. 14, e1006359 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  155. 155.

    Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J. & Coalson, T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).

    PubMed  Article  Google Scholar 

  156. 156.

    Elston, G. N., Benavides-Piccione, R. & DeFelipe, J. The pyramidal cell in cognition: a comparative study in human and monkey. J. Neurosci. 21, RC163 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Haug, H. Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am. J. Anat. 180, 126–142 (1987).

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Hellwig, B. A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82, 111–121 (2000).

    CAS  PubMed  Article  Google Scholar 

  159. 159.

    Perin, R., Berger, T. K. & Markram, H. A synaptic organizing principle for cortical neuronal groups. Proc. Natl Acad. Sci.USA 108, 5419–5424 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. 160.

    Kaas, J. H. Topographic maps are fundamental to sensory processing. Brain Res. Bull. 44, 107–112 (1997).

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Hopfield, J. J. & Tank, D. W. “Neural” computation of decisions in optimization problems. Biol. Cybern. 52, 141–152 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Garagnani, M., Lucchese, G., Tomasello, R., Wennekers, T. & Pulvermüller, F. A spiking neurocomputational model of high-frequency oscillatory brain responses to words and pseudowords. Front. Comput. Neurosci. 10, 145 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  163. 163.

    Douglas, R. J., Martin, K. A. & Whitteridge, D. A canonical microcircuit for neocortex. Neural Comput. 1, 480–488 (1989).

    Article  Google Scholar 

  164. 164.

    Young, M. P., Scannell, J. W. & Burns, G. The Analysis of Cortical Connectivity (Springer, 1995).

  165. 165.

    Eichert, N. et al. What is special about the human arcuate fasciculus? Lateralization, projections, and expansion. Cortex 118, 107–115 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  166. 166.

    Rojkova, K. et al. Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study. Brain Struct. Funct. 221, 1751–1766 (2016).

    CAS  PubMed  Article  Google Scholar 

  167. 167.

    Fernandez-Miranda, J. C. et al. Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct. Funct. 220, 1665–1680 (2015).

    PubMed  Article  Google Scholar 

  168. 168.

    Rilling, J. K. Comparative primate neuroimaging: insights into human brain evolution. Trends Cognit. Sci. 18, 46–55 (2014).

    Article  Google Scholar 

  169. 169.

    Petrides, M., Tomaiuolo, F., Yeterian, E. H. & Pandya, D. N. The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48, 46–57 (2012).

    PubMed  Article  Google Scholar 

  170. 170.

    Thiebaut de Schotten, M., Dell’Acqua, F., Valabregue, R. & Catani, M. Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48, 82–96 (2012).

    PubMed  Article  Google Scholar 

  171. 171.

    Ardesch, D. J. et al. Evolutionary expansion of connectivity between multimodal association areas in the human brain compared with chimpanzees. Proc. Natl Acad. Sci. USA 116, 7101–7106 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. 172.

    Barbeau, E. B., Descoteaux, M. & Petrides, M. Dissociating the white matter tracts connecting the temporo-parietal cortical region with frontal cortex using diffusion tractography. Sci. Rep. 10, 8186 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. 173.

    Kietzmann, T., McClure, P. & Kriegeskorte, N. in Oxford Research Encyclopedia, Neuroscience (Oxford Univ. Press, 2019).

  174. 174.

    Schuecker, J., Schmidt, M., van Albada, S. J., Diesmann, M. & Helias, M. Fundamental activity constraints lead to specific interpretations of the connectome. PLoS Comput. Biol. 13, e1005179 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  175. 175.

    Friston, K. J. Functional and effective connectivity: a review. Brain Connect. 1, 13–36 (2011).

    PubMed  Article  Google Scholar 

  176. 176.

    Friston, K., Moran, R. & Seth, A. K. Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 23, 172–178 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  177. 177.

    Sokolov, A. A. et al. Asymmetric high-order anatomical brain connectivity sculpts effective connectivity. Netw. Neurosci. 4, 871–890 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  178. 178.

    Zarghami, T. S. & Friston, K. J. Dynamic effective connectivity. Neuroimage 207, 116453 (2020).

    PubMed  Article  Google Scholar 

  179. 179.

    Markov, N. T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014).

    CAS  PubMed  Article  Google Scholar 

  180. 180.

    Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M. & van Albada, S. J. Multi-scale account of the network structure of macaque visual cortex. Brain Struct. Funct. 223, 1409–1435 (2018).

    PubMed  Article  Google Scholar 

  181. 181.

    Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M. & van Albada, S. J. Correction to: Multi-scale account of the network structure of macaque visual cortex. Brain Struct. Funct. 225, 1159–1162 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  182. 182.

    Deco, G. & Rolls, E. T. Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons. J. Neurophysiol. 94, 295–313 (2005).

    CAS  PubMed  Article  Google Scholar 

  183. 183.

    Bojak, I., Oostendorp, T. F., Reid, A. T. & Kötter, R. Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes. Phil. Trans. R. Soc. A 369, 3785–3801 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  184. 184.

    Khaligh-Razavi, S. M. & Kriegeskorte, N. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput. Biol. 10, e1003915 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  185. 185.

    Tomasello, R., Garagnani, M., Wennekers, T. & Pulvermüller, F. A neurobiologically constrained cortex model of semantic grounding with spiking neurons and brain-like connectivity. Front. Comput. Neurosci. 12, 88 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  186. 186.

    Carlson, T. A., Simmons, R. A., Kriegeskorte, N. & Slevc, L. R. The emergence of semantic meaning in the ventral temporal pathway. J. Cogn. Neurosci. 26, 120–131 (2014).

    PubMed  Article  Google Scholar 

  187. 187.

    Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A. & Oliva, A. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Sci. Rep. 6, 27755 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  188. 188.

    Kietzmann, T. C. et al. Recurrence is required to capture the representational dynamics of the human visual system. Proc. Natl Acad. Sci. USA 116, 21854–21863 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  189. 189.

    Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    CAS  PubMed  Article  Google Scholar 

  190. 190.

    Buehlmann, A. & Deco, G. The neuronal basis of attention: rate versus synchronization modulation. J. Neurosci. 28, 7679–7686 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  191. 191.

    Lindsay, G. W. & Miller, K. D. How biological attention mechanisms improve task performance in a large-scale visual system model. eLife 7, e38105 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  192. 192.

    Lindsay, G. W. Attention in psychology, neuroscience, and machine learning. Front. Comput. Neurosci. 14, 29 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  193. 193.

    Duncan, J., Assem, M. & Shashidhara, S. Integrated intelligence from distributed brain activity. Trends Cogn. Sci. 24, 838–852 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  194. 194.

    Markert, H., Kaufmann, U., Kara Kayikci, Z. & Palm, G. Neural associative memories for the integration of language, vision and action in an autonomous agent. Neural Netw. 22, 134–143 (2009).

    CAS  PubMed  Article  Google Scholar 

  195. 195.

    Ueno, T., Saito, S., Rogers, T. T. & Lambon Ralph, M. A. Lichtheim 2: synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal-ventral language pathways. Neuron 72, 385–396 (2011).

    CAS  PubMed  Article  Google Scholar 

  196. 196.

    Zhong, J., Cangelosi, A. & Wermter, S. Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives. Front. Behav. Neurosci. 8, 22 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  197. 197.

    Cangelosi, A., Schlesinger, M. & Smith, L. B. Developmental Robotics: From Babies to Robots (MIT Press, 2015).

  198. 198.

    Heinrich, S. & Wermter, S. Interactive natural language acquisition in a multi-modal recurrent neural architecture. Connect. Sci. 30, 99–133 (2018).

    Article  Google Scholar 

  199. 199.

    Raven, J. & Court, J. Manual for Raven’s Progressive Matrices and Vocabulary Scales (Harcourt Assessment, 2004).

  200. 200.

    Rast, A. D. et al. Behavioral learning in a cognitive neuromorphic robot: an integrative approach. IEEE Trans. Neural Netw. Learn. Syst. 29, 6132–6144 (2018).

    PubMed  Article  Google Scholar 

  201. 201.

    Rolls, E. T. & Deco, G. Networks for memory, perception, and decision-making, and beyond to how the syntax for language might be implemented in the brain. Brain Res. 1621, 316–334 (2014).

    PubMed  Article  CAS  Google Scholar 

  202. 202.

    Fuster, J. M. & Bressler, S. L. Cognit activation: a mechanism enabling temporal integration in working memory. Trends Cogn. Sci. 16, 207–218 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  203. 203.

    Fiebig, F. & Lansner, A. A spiking working memory model based on Hebbian short-term potentiation. J. Neurosci. 37, 83–96 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  204. 204.

    Pulvermüller, F. & Garagnani, M. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment. Cortex 57, 1–21 (2014).

    PubMed  Article  Google Scholar 

  205. 205.

    Schomers, M. R., Garagnani, M. & Pulvermüller, F. Neurocomputational consequences of evolutionary connectivity changes in perisylvian language cortex. J. Neurosci. 37, 3045–3055 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  206. 206.

    Binder, J. R. & Desai, R. H. The neurobiology of semantic memory. Trends Cogn. Sci. 15, 527–536 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  207. 207.

    Kiefer, M. & Pulvermüller, F. Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex 48, 805–825 (2012).

    PubMed  Article  Google Scholar 

  208. 208.

    Ralph, M. A., Jefferies, E., Patterson, K. & Rogers, T. T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42–55 (2017).

    CAS  PubMed  Article  Google Scholar 

  209. 209.

    Harpaintner, M., Sim, E. J., Trumpp, N. M., Ulrich, M. & Kiefer, M. The grounding of abstract concepts in the motor and visual system: an fMRI study. Cortex 124, 1–22 (2020).

    PubMed  Article  Google Scholar 

  210. 210.

    Damasio, A. R. The brain binds entities and events by multiregional activation from convergence zones. Neural Comput. 1, 123–132 (1989).

    Article  Google Scholar 

  211. 211.

    Garagnani, M. & Pulvermüller, F. Conceptual grounding of language in action and perception: a neurocomputational model of the emergence of category specificity and semantic hubs. Eur. J. Neurosci. 43, 721–737 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  212. 212.

    Chen, L., Ralph, M. A. L. & Rogers, T. T. A unified model of human semantic knowledge and its disorders. Nat. Hum. Behav. 1, 0039 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  213. 213.

    Tomasello, R., Garagnani, M., Wennekers, T. & Pulvermüller, F. Brain connections of words, perceptions and actions: a neurobiological model of spatio-temporal semantic activation in the human cortex. Neuropsychologia 98, 111–129 (2017).

    PubMed  Article  Google Scholar 

  214. 214.

    Chang, Y.-N. & Lambon Ralph, M. A. A unified neurocomputational bilateral model of spoken language production in healthy participants and recovery in poststroke aphasia. Proc. Natl Acad. Sci. USA 117, 32779–32790 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  215. 215.

    Seghier, M. L. & Price, C. J. Interpreting and utilising intersubject variability in brain function. Trends Cognit. Sci. 22, 517–530 (2018).

    Article  Google Scholar 

  216. 216.

    Picht, T., Frey, D., Thieme, S., Kliesch, S. & Vajkoczy, P. Presurgical navigated TMS motor cortex mapping improves outcome in glioblastoma surgery: a controlled observational study. J. Neurooncol. 126, 535–543 (2016).

    PubMed  Article  Google Scholar 

  217. 217.

    Cha, Y. J. et al. Prediction of response to stereotactic radiosurgery for brain metastases using convolutional neural networks. Anticancer Res. 38, 5437–5445 (2018).

    PubMed  Article  Google Scholar 

  218. 218.

    Tuncer, M. S. et al. Towards a tractography-based risk stratification model for language area associated gliomas. Neuroimage Clin. 29, 102541 (2021).

    PubMed  Article  Google Scholar 

  219. 219.

    Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    PubMed  Article  Google Scholar 

  220. 220.

    Sotiropoulos, S. N. & Zalesky, A. Building connectomes using diffusion MRI: why, how and but. NMR Biomed. 32, e3752 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  221. 221.

    Rilling, J. K. et al. The evolution of the arcuate fasciculus revealed with comparative DTI. Nat. Neurosci. 11, 426–428 (2008).

    CAS  PubMed  Article  Google Scholar 

  222. 222.

    Rilling, J. K., Glasser, M. F., Jbabdi, S., Andersson, J. & Preuss, T. M. Continuity, divergence, and the evolution of brain language pathways. Front. Evol. Neurosci. 3, 11 (2011).

    PubMed  Google Scholar 

  223. 223.

    Martin, A. The representation of object concepts in the brain. Annu. Rev. Psychol. 58, 25–45 (2007).

    PubMed  Article  Google Scholar 

  224. 224.

    Barsalou, L. W. Grounded cognition. Annu. Rev. Psychol. 59, 617–645 (2008).

    PubMed  Article  Google Scholar 

  225. 225.

    Borghi, A. M. et al. Words as social tools: language, sociality and inner grounding in abstract concepts. Phys. Life Rev. 29, 120–153 (2019).

    PubMed  Article  Google Scholar 

  226. 226.

    Grisoni, L., Tomasello, R. & Pulvermüller, F. Correlated brain indexes of semantic prediction and prediction error: brain localization and category specificity. Cereb. Cortex 31, 1553–1568 (2021).

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Aertsen, A. Cangelosi, L. Fekonja, M. Garagnani, A. Glenberg, L. Grisoni, S. Harnad, A. Knoblauch, G. Palm, T. Picht, S. Rotter and W. Schäffner for comments and suggestions on earlier versions of the manuscript and related discussions. Research funding was provided by the European Research Council, Advanced Grant “Material Constraints Enabling Human Cognition” (ERC-2019-ADG 883811), and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Cluster of Excellence “Matters of Activity. Image Space Material” (DFG EXC 2025/1 – 390648296).

Author information

Affiliations

Authors

Contributions

All authors researched data for the article. F.P. and T.W. contributed substantially to discussion of the content. F.P. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Friedemann Pulvermüller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks G. Deco, G. Palm and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Brainnetome Atlas: http://atlas.brainnetome.org

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pulvermüller, F., Tomasello, R., Henningsen-Schomers, M.R. et al. Biological constraints on neural network models of cognitive function. Nat Rev Neurosci 22, 488–502 (2021). https://doi.org/10.1038/s41583-021-00473-5

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing