Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neocortical circuits in pain and pain relief

Abstract

The sensory, associative and limbic neocortical structures play a critical role in shaping incoming noxious inputs to generate variable pain perceptions. Technological advances in tracing circuitry and interrogation of pathways and complex behaviours are now yielding critical knowledge of neocortical circuits, cellular contributions and causal relationships between pain perception and its abnormalities in chronic pain. Emerging insights into neocortical pain processing suggest the existence of neocortical causality and specificity for pain at the level of subdomains, circuits and cellular entities and the activity patterns they encode. These mechanisms provide opportunities for therapeutic intervention for improved pain management.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The PL cortex.
Fig. 2: Overview of major neocortical circuits and their known efferent pathways that modulate nociception (in black) and negative affective states (in red) in acute and chronic pain.
Fig. 3: Overview of neocortical structures and their known efferent pathways that serve as targets of pharmacological analgesics as well as neurostimulation and neuromodulation/cognitive therapies in chronic pain.

References

  1. 1.

    Baliki, M. N. & Apkarian, A. V. Nociception, pain, negative moods, and behavior selection. Neuron 87, 474–491 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Bushnell, M. C., Ceko, M. & Low, L. A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14, 502–511 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Kuner, R. & Flor, H. Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 18, 20–30 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  5. 5.

    Kuner, R. & Kuner, T. Cellular circuits in the brain and their modulation in acute and chronic pain. Physiol. Rev. 101, 213–258 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Braz, J., Solorzano, C., Wang, X. & Basbaum, A. I. Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 82, 522–536 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Peirs, C. & Seal, R. P. Neural circuits for pain: recent advances and current views. Science 354, 578–584 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Finnerup, N. B., Kuner, R. & Jensen, T. S. Neuropathic pain: from mechanisms to treatment. Physiol. Rev. 101, 259–301 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Seminowicz, D. A. & Moayedi, M. The dorsolateral prefrontal cortex in acute and chronic pain. J. Pain 18, 1027–1035 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Woo, C. W. et al. Quantifying cerebral contributions to pain beyond nociception. Nat. Commun. 8, 14211 (2017). In this study, functional imaging, multivariate pattern analysis and machine learning approaches are used to identify the nature of cerebral regions that are activated in a stimulus intensity-independent manner to predict pain beyond nociceptive input and help explain how psychological manipulations and expectation modulate pain.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Da Silva, J. T. & Seminowicz, D. A. Neuroimaging of pain in animal models: a review of recent literature. Pain. Rep. 4, e732 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Carlen, M. What constitutes the prefrontal cortex? Science 358, 478–482 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Laubach, M., Amarante, L. M., Swanson, K. & White, S. R. What, if anything, is rodent prefrontal cortex? eNeuro 5, ENEURO.0315-18.2018 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Shiers, S. & Price, T. J. Molecular, circuit, and anatomical changes in the prefrontal cortex in chronic pain. Pain 161, 1726–1729 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Apkarian, A. V., Baliki, M. N. & Farmer, M. A. Predicting transition to chronic pain. Curr. Opin. Neurol. 26, 360–367 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Schulz, E. et al. Prefrontal gamma oscillations encode tonic pain in humans. Cereb. Cortex 25, 4407–4414 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Ploner, M., Sorg, C. & Gross, J. Brain rhythms of pain. Trends Cogn. Sci. 21, 100–110 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Kim, J. A. & Davis, K. D. Neural oscillations: understanding a neural code of pain. Neuroscientist https://doi.org/10.1177/1073858420958629 (2020).

  19. 19.

    Baliki, M. N. et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J. Neurosci. 26, 12165–12173 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Hashmi, J. A. et al. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 136, 2751–2768 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    May, E. S. et al. Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients. Hum. Brain Mapp. 40, 293–305 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Ta Dinh, S. et al. Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. Pain 160, 2751–2765 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Dale, J. et al. Scaling up cortical control inhibits pain. Cell Rep. 23, 1301–1313 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Thompson, J. M. & Neugebauer, V. Cortico-limbic pain mechanisms. Neurosci. Lett. 702, 15–23 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Wang, G. Q. et al. Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety. Nat. Commun. 6, 7660 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Jiang, Z. C. et al. Inactivation of the prelimbic rather than infralimbic cortex impairs acquisition and expression of formalin-induced conditioned place avoidance. Neurosci. Lett. 569, 89–93 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Cheriyan, J. & Sheets, P. L. Altered excitability and local connectivity of mPFC-PAG neurons in a mouse model of neuropathic pain. J. Neurosci. 38, 4829–4839 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Fan, X. C. et al. Hypersensitivity of prelimbic cortex neurons contributes to aggravated nociceptive responses in rats with experience of chronic inflammatory pain. Front. Mol. Neurosci. 11, 85 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Tan, L. L. et al. A pathway from midcingulate cortex to posterior insula gates nociceptive hypersensitivity. Nat. Neurosci. 20, 1591–1601 (2017). In this study, the authors reveal the importance of an excitatory pathway from the MCC to the PI and subsequently the raphe nucleus, which recruits descending serotonergic facilitatory projections to the spinal cord to influence peripheral nociceptive responses.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Mitric, M. et al. Layer- and subregion-specific electrophysiological and morphological changes of the medial prefrontal cortex in a mouse model of neuropathic pain. Sci. Rep. 9, 9479 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Zhang, Z. et al. Role of prelimbic GABAergic circuits in sensory and emotional aspects of neuropathic pain. Cell Rep. 12, 752–759 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Kelly, C. J., Huang, M., Meltzer, H. & Martina, M. Reduced glutamatergic currents and dendritic branching of layer 5 pyramidal cells contribute to medial prefrontal cortex deactivation in a rat model of neuropathic pain. Front. Cell Neurosci. 10, 133 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Huang, J. et al. A neuronal circuit for activating descending modulation of neuropathic pain. Nat. Neurosci. 22, 1659–1668 (2019). This study reports that the synaptic input from the BLA on to GABAergic interneurons in the PL cortex is enhanced upon nerve injury via reduced endocannabinoid signalling. This results in enhanced feedforward inhibition of prefrontal neurons that project to the ventrolateral PAG and thereby alters descending noradrenergic and serotonergic pathways.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Jones, A. F. & Sheets, P. L. Sex-specific disruption of distinct mPFC inhibitory neurons in spared-nerve injury model of neuropathic pain. Cell Rep. 31, 107729 (2020). This study is the first to demonstrate that chronic neuropathic pain is modulated in a sex-specific manner involving alterations of distinct subclasses of GABAergic neurons that differ between the male mouse PL cortex and the female mouse PL cortex.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Huang, S., Borgland, S. L. & Zamponi, G. W. Dopaminergic modulation of pain signals in the medial prefrontal cortex: challenges and perspectives. Neurosci. Lett. 702, 71–76 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Naser, P. V. & Kuner, R. Molecular, cellular and circuit basis of cholinergic modulation of pain. Neuroscience 387, 135–148 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Metz, A. E., Yau, H. J., Centeno, M. V., Apkarian, A. V. & Martina, M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc. Natl Acad. Sci. USA 106, 2423–2428 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Cordeiro Matos, S., Zamfir, M., Longo, G., Ribeiro-da-Silva, A. & Seguela, P. Noradrenergic fiber sprouting and altered transduction in neuropathic prefrontal cortex. Brain Struct. Funct. 223, 1149–1164 (2018).

    PubMed  Google Scholar 

  39. 39.

    Cordeiro Matos, S., Zhang, Z. & Seguela, P. Peripheral neuropathy induces HCN channel dysfunction in pyramidal neurons of the medial prefrontal cortex. J. Neurosci. 35, 13244–13256 (2015). This study reports that nerve injury leads to a dysfunction of HCN channels in the dendrites of layer 2/3 pyramidal neurons in the mPFC, resulting in enhanced excitability and neuronal firing. An altered cAMP–PKA axis was suggested to underlie alterations to HCN channel function.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Shiers, S. et al. Neuropathic pain creates an enduring prefrontal cortex dysfunction corrected by the type II diabetic drug metformin but not by gabapentin. J. Neurosci. 38, 7337–7350 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Baliki, M. N. et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 15, 1117–1119 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Lee, M. et al. Activation of corticostriatal circuitry relieves chronic neuropathic pain. J. Neurosci. 35, 5247–5259 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Martinez, E. et al. Corticostriatal regulation of acute pain. Front. Cell Neurosci. 11, 146 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Zhou, H. et al. Inhibition of the prefrontal projection to the nucleus accumbens enhances pain sensitivity and affect. Front. Cell Neurosci. 12, 240 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Coulombe, M. A., Erpelding, N., Kucyi, A. & Davis, K. D. Intrinsic functional connectivity of periaqueductal gray subregions in humans. Hum. Brain Mapp. 37, 1514–1530 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Ferreira, A. N., Yousuf, H., Dalton, S. & Sheets, P. L. Highly differentiated cellular and circuit properties of infralimbic pyramidal neurons projecting to the periaqueductal gray and amygdala. Front. Cell Neurosci. 9, 161 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Yin, J. B. et al. dmPFC-vlPAG projection neurons contribute to pain threshold maintenance and antianxiety behaviors. J. Clin. Invest. 130, 6555–6570 (2020). This study further highlights the importance of prefrontal cortical influences on descending pain modulatory systems in pain and their dysregulation in neuropathic pain, reporting an excitatory pathway from the dorsomedial PFC to the ventrolateral PAG, which, upon activation, reduces nociception as well as anxiety-related behaviours in neuropathic mice.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Vachon-Presseau, E. et al. Corticolimbic anatomical characteristics predetermine risk for chronic pain. Brain 139, 1958–1970 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Kiritoshi, T. & Neugebauer, V. Pathway-specific alterations of cortico-amygdala transmission in an arthritis pain model. ACS Chem. Neurosci. 9, 2252–2261 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Vogt, B. A. Submodalities of emotion in the context of cingulate subregions. Cortex 59, 197–202 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Vogt, B. A. Cingulate Neurobiology and Disease (Oxford Univ. Press, 2009).

  52. 52.

    Blom, S. M., Pfister, J. P., Santello, M., Senn, W. & Nevian, T. Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex. J. Neurosci. 34, 5754–5764 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Johansen, J. P. & Fields, H. L. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 7, 398–403 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Fuchs, P. N., Peng, Y. B., Boyette-Davis, J. A. & Uhelski, M. L. The anterior cingulate cortex and pain processing. Front. Integr. Neurosci. 8, 35 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Bliss, T. V., Collingridge, G. L., Kaang, B. K. & Zhuo, M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat. Rev. Neurosci. 17, 485–496 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Kragel, P. A. et al. Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nat. Neurosci. 21, 283–289 (2018). This study uses functional imaging and multivariate pattern analysis to determine that pain representations were localized to the anterior MCC, negative emotion representations were more common in the ventromedial PFC and cognitive control representations were localized to parts of the dorsal MCC, thus suggesting domain-specific representations for pain, negative emotion and cognitive control in the mPFC.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Shackman, A. J. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Strauss, I. et al. Double anterior stereotactic cingulotomy for intractable oncological pain. Stereotact. Funct. Neurosurg. 95, 400–408 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Fitzgerald, J. M. et al. DACC resting state functional connectivity as a predictor of pain symptoms following motor vehicle crash: a preliminary investigation. J. Pain 22, 171–179 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Edes, A. E. et al. Increased activation of the pregenual anterior cingulate cortex to citalopram challenge in migraine: an fMRI study. BMC Neurol. 19, 237 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61.

    Icenhour, A. et al. Brain functional connectivity is associated with visceral sensitivity in women with irritable bowel syndrome. Neuroimage Clin. 15, 449–457 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Wang, G., Erpelding, N. & Davis, K. D. Sex differences in connectivity of the subgenual anterior cingulate cortex. Pain 155, 755–763 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Osborne, N. R. et al. Abnormal subgenual anterior cingulate circuitry is unique to women but not men with chronic pain. Pain 162, 97–108 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Zhuo, M. Long-term potentiation in the anterior cingulate cortex and chronic pain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130146 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65.

    Koga, K. et al. In vivo whole-cell patch-clamp recording of sensory synaptic responses of cingulate pyramidal neurons to noxious mechanical stimuli in adult mice. Mol. Pain 6, 62 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Meda, K. S. et al. Microcircuit mechanisms through which mediodorsal thalamic input to anterior cingulate cortex exacerbates pain-related aversion. Neuron 102, 944–959.e3 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Ning, L., Ma, L. Q., Wang, Z. R. & Wang, Y. W. Chronic constriction injury induced long-term changes in spontaneous membrane-potential oscillations in anterior cingulate cortical neurons in vivo. Pain Physician 16, E577–E589 (2013).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Li, X. H., Chen, Q. Y. & Zhuo, M. Neuronal adenylyl cyclase targeting central plasticity for the treatment of chronic pain. Neurotherapeutics 17, 861–873 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Santello, M. & Nevian, T. Dysfunction of cortical dendritic integration in neuropathic pain reversed by serotoninergic neuromodulation. Neuron 86, 233–246 (2015). This study uses elegant electrophysiological techniques to demonstrate that HCN channel dysfunction in cortical output neurons in layer 5 of the PFC in neuropathic pain can be reversed by serotonergic modulation.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Kang, S. J. et al. Bidirectional modulation of hyperalgesia via the specific control of excitatory and inhibitory neuronal activity in the ACC. Mol. Brain 8, 81 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Barthas, F. et al. The anterior cingulate cortex is a critical hub for pain-induced depression. Biol. Psychiatry 77, 236–245 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Sellmeijer, J. et al. Hyperactivity of anterior cingulate cortex areas 24a/24b drives chronic pain-induced anxiodepressive-like consequences. J. Neurosci. 38, 3102–3115 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Zhou, H. et al. Ketamine reduces aversion in rodent pain models by suppressing hyperactivity of the anterior cingulate cortex. Nat. Commun. 9, 3751 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74.

    Yao, P. W. et al. Upregulation of tumor necrosis factor-alpha in the anterior cingulate cortex contributes to neuropathic pain and pain-associated aversion. Neurobiol. Dis. 130, 104456 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Zhang, Q. et al. Chronic pain induces generalized enhancement of aversion. eLife 6, e25302 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Gao, S. H. et al. The projections from the anterior cingulate cortex to the nucleus accumbens and ventral tegmental area contribute to neuropathic pain-evoked aversion in rats. Neurobiol. Dis. 140, 104862 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Chen, T. et al. Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex. Nat. Commun. 9, 1886 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Vogt, B. A. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 6, 533–544 (2005). This review provides an excellent overview of the importance of cingulate organization and the implications of specific cingulate subregions in the processing of emotion and nociceptive information.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Almarzouki, A. F., Brown, C. A., Brown, R. J., Leung, M. H. K. & Jones, A. K. P. Negative expectations interfere with the analgesic effect of safety cues on pain perception by priming the cortical representation of pain in the midcingulate cortex. PLoS ONE 12, e0180006 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80.

    Fillinger, C., Yalcin, I., Barrot, M. & Veinante, P. Afferents to anterior cingulate areas 24a and 24b and midcingulate areas 24a’ and 24b’ in the mouse. Brain Struct. Funct. 222, 1509–1532 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Hu, T. T. et al. Activation of the intrinsic pain inhibitory circuit from the midcingulate Cg2 to zona incerta alleviates neuropathic pain. J. Neurosci. 39, 9130–9144 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Kim, J. et al. Somatotopically specific primary somatosensory connectivity to salience and default mode networks encodes clinical pain. Pain 160, 1594–1605 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Tan, L. L. et al. Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nat. Commun. 10, 983 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. 84.

    Yang, P. F., Wu, R., Wu, T. L., Shi, Z. & Chen, L. M. Discrete modules and mesoscale functional circuits for thermal nociception within primate S1 cortex. J. Neurosci. 38, 1774–1787 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Zhang, Z. G., Hu, L., Hung, Y. S., Mouraux, A. & Iannetti, G. D. Gamma-band oscillations in the primary somatosensory cortex—a direct and obligatory correlate of subjective pain intensity. J. Neurosci. 32, 7429–7438 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Heid, C. et al. Early gamma-oscillations as correlate of localized nociceptive processing in primary sensorimotor cortex. J. Neurophysiol. 123, 1711–1726 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Gross, J., Schnitzler, A., Timmermann, L. & Ploner, M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol. 5, e133 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88.

    Misra, G., Ofori, E., Chung, J. W. & Coombes, S. A. Pain-related suppression of beta oscillations facilitates voluntary movement. Cereb. Cortex 27, 2592–2606 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Ploner, M., Gross, J., Timmermann, L., Pollok, B. & Schnitzler, A. Pain suppresses spontaneous brain rhythms. Cereb. Cortex 16, 537–540 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Hu, L. & Iannetti, G. D. Neural indicators of perceptual variability of pain across species. Proc. Natl Acad. Sci. USA 116, 1782–1791 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Yue, L. P., Iannetti, G. D. & Hu, L. The neural origin of nociceptive-induced gamma band oscillations. J. Neurosci. 40, 2478–3490 (2020).

    Article  Google Scholar 

  92. 92.

    Wang, J., Wang, J., Xing, G. G., Li, X. & Wan, Y. Enhanced gamma oscillatory activity in rats with chronic inflammatory pain. Front. Neurosci. 10, 489 (2016).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Uhelski, M. L., Davis, M. A. & Fuchs, P. N. Pain affect in the absence of pain sensation: evidence of asomaesthesia after somatosensory cortex lesions in the rat. Pain 153, 885–892 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Eto, K. et al. Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior. J. Neurosci. 31, 7631–7636 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Cichon, J., Blanck, T. J. J., Gan, W. B. & Yang, G. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain. Nat. Neurosci. 20, 1122–1132 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Andoh, J. et al. Neural correlates of evoked phantom limb sensations. Biol. Psychol. 126, 89–97 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Jin, Y. et al. A somatosensory cortex input to the caudal dorsolateral striatum controls comorbid anxiety in persistent pain. Pain 161, 416–428 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Singh, A. et al. Mapping cortical integration of sensory and affective pain pathways. Curr. Biol. 30, 1703–1715.e5 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Liu, Y. et al. Touch and tactile neuropathic pain sensitivity are set by corticospinal projections. Nature 561, 547–550 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Abraira, V. E. et al. The cellular and synaptic architecture of the mechanosensory dorsal horn. Cell 168, 295–310.e19 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Mazzola, L., Isnard, J. & Mauguière, F. Somatosensory and pain responses to stimulation of the second somatosensory area (SII) in humans. A comparison with SI and insular responses. Cereb. Cortex 16, 960–968 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Liang, M., Mouraux, A. & Iannetti, G. D. Parallel processing of nociceptive and non-nociceptive somatosensory information in the human primary and secondary somatosensory cortices: evidence from dynamic causal modeling of functional magnetic resonance imaging data. J. Neurosci. 31, 8976–8985 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Garcia-Larrea, L. & Peyron, R. Pain matrices and neuropathic pain matrices: a review. Pain 154, S29–S43 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Inami, C. et al. Visualization of brain activity in a neuropathic pain model using quantitative activity-dependent manganese magnetic resonance imaging. Front. Neural Circuits 13, 74 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Zhu, X. et al. A central amygdala input to the parafascicular nucleus controls comorbid pain in depression. Cell Rep. 29, 3847–3858.e5 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Gogolla, N. The insular cortex. Curr. Biol. 27, R580–R586 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Garcia-Larrea, L. The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol. Clin. 42, 299–313 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Gehrlach, D. A. et al. Aversive state processing in the posterior insular cortex. Nat. Neurosci. 22, 1424–1437 (2019). In this study, the authors provide comprehensive data to reveal the importance of the PI and its associated circuitries in the detection of aversive internal states and triggering of behavioural adaptations critical for survival in mice.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Mazzola, L., Mauguiere, F. & Isnard, J. Functional mapping of the human insula: data from electrical stimulations. Rev. Neurol. 175, 150–156 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Liberati, G. et al. Tonic thermonociceptive stimulation selectively modulates ongoing neural oscillations in the human posterior insula: evidence from intracerebral EEG. Neuroimage 188, 70–83 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Liberati, G. et al. Gamma-band oscillations preferential for nociception can be recorded in the human insula. Cereb. Cortex 28, 3650–3664 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Frot, M., Faillenot, I. & Mauguiere, F. Processing of nociceptive input from posterior to anterior insula in humans. Hum. Brain Mapp. 35, 5486–5499 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Bastuji, H., Frot, M., Perchet, C., Hagiwara, K. & Garcia-Larrea, L. Convergence of sensory and limbic noxious input into the anterior insula and the emergence of pain from nociception. Sci. Rep. 8, 13360 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  114. 114.

    Li, X. et al. The reorganization of insular subregions in individuals with below-level neuropathic pain following incomplete spinal cord injury. Neural Plast. 2020, 2796571 (2020).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Zhuo, M. Cortical LTP: a synaptic model for chronic pain. Adv. Exp. Med. Biol. 1099, 147–155 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Miao, H. H., Li, X. H., Chen, Q. Y. & Zhuo, M. Calcium-stimulated adenylyl cyclase subtype 1 is required for presynaptic long-term potentiation in the insular cortex of adult mice. Mol. Pain 15, 1744806919842961 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Corder, G. et al. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science 363, 276–281 (2019). This study uses time-lapse in vivo calcium imaging in freely behaving mice to identify a distinct neural ensemble in the BLA that encodes the negative affective valence of pain and drives behavioural avoidance responses to noxious stimuli.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Yalcin, I. & Barrot, M. The anxiodepressive comorbidity in chronic pain. Curr. Opin. Anaesthesiol. 27, 520–527 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    Lee, M. C., Wanigasekera, V. & Tracey, I. Imaging opioid analgesia in the human brain and its potential relevance for understanding opioid use in chronic pain. Neuropharmacology 84, 123–130 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Wang, D. et al. Functional divergence of delta and mu opioid receptor organization in CNS pain circuits. Neuron 98, 90–108.e5 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Birdsong, W. T. et al. Synapse-specific opioid modulation of thalamo-cortico-striatal circuits. eLife 8, e45146 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Wu, W. Y., Liu, C. Y., Tsai, M. L. & Yen, C. T. Nocifensive behavior-related laser heat-evoked component in the rostral agranular insular cortex revealed using morphine analgesia. Physiol. Behav. 154, 129–134 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Peng, K. et al. Morphine attenuates fNIRS signal associated with painful stimuli in the medial frontopolar cortex (medial BA 10). Front. Hum. Neurosci. 12, 394 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Oertel, B. G. et al. Differential opioid action on sensory and affective cerebral pain processing. Clin. Pharmacol. Ther. 83, 577–588 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Navratilova, E. et al. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J. Neurosci. 35, 7264–7271 (2015). This study reports that endogenous opioidergic signalling in the ACC is required to activate dopaminergic signalling in the NAc, which underlies reward associated with pain relief, and that non-opioidergic pain-relieving treatments also engage opioidergic circuits in the ACC to achieve reduction in pain affect.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Gomtsian, L. et al. Morphine effects within the rodent anterior cingulate cortex and rostral ventromedial medulla reveal separable modulation of affective and sensory qualities of acute or chronic pain. Pain 159, 2512–2521 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Navratilova, E. et al. Selective modulation of tonic aversive qualities of neuropathic pain by morphine in the central nucleus of the amygdala requires endogenous opioid signaling in the anterior cingulate cortex. Pain 161, 609–618 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Bannister, K. et al. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain. Pain 158, 2386–2395 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Zhao, M., Wang, J.-Y., Jia, H. & Tang, J.-S. µ- but not δ- and κ-opioid receptors in the ventrolateral orbital cortex mediate opioid-induced antiallodynia in a rat neuropathic pain model. Brain Res. 1076, 68–77 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Lee, M. C. et al. Amygdala activity contributes to the dissociative effect of cannabis on pain perception. Pain 154, 124–134 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Weizman, L. et al. Cannabis analgesia in chronic neuropathic pain is associated with altered brain connectivity. Neurology 91, e1285–e1294 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Kim, J., Farchione, T., Potter, A., Chen, Q. & Temple, R. Esketamine for treatment-resistant depression - first FDA-approved antidepressant in a new class. N. Engl. J. Med. 381, 1–4 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Pan, W. et al. Ketamine differentially restores diverse alterations of neuroligins in brain regions in a rat model of neuropathic pain-induced depression. Neuroreport 29, 863–869 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Tappe-Theodor, A. & Kuner, R. A common ground for pain and depression. Nat. Neurosci. 22, 1612–1614 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    Hirschberg, S., Li, Y., Randall, A., Kremer, E. J. & Pickering, A. E. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. eLife 6, e29808 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Lefaucheur, J. P. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018). Clin. Neurophysiol. 131, 474–528 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Lamusuo, S. et al. Neurotransmitters behind pain relief with transcranial magnetic stimulation — positron emission tomography evidence for release of endogenous opioids. Eur. J. Pain 21, 1505–1515 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Borckardt, J. J. et al. Prefrontal versus motor cortex transcranial direct current stimulation (tDCS) effects on post-surgical opioid use. Brain Stimul. 10, 1096–1101 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Taylor, J. J., Borckardt, J. J. & George, M. S. Endogenous opioids mediate left dorsolateral prefrontal cortex rTMS-induced analgesia. Pain 153, 1219–1225 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Arendsen, L. J., Hugh-Jones, S. & Lloyd, D. M. Transcranial alternating current stimulation at alpha frequency reduces pain when the intensity of pain is uncertain. J. Pain 19, 807–818 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Ahn, S., Prim, J. H., Alexander, M. L., McCulloch, K. L. & Fröhlich, F. Identifying and engaging neuronal oscillations by transcranial alternating current stimulation in patients with chronic low back pain: a randomized, crossover, double-blind, sham-controlled pilot study. J. Pain 20, 277.e1–277.e11 (2019).

    Article  Google Scholar 

  142. 142.

    Pagano, R. L. et al. Motor cortex stimulation inhibits thalamic sensory neurons and enhances activity of PAG neurons: possible pathways for antinociception. Pain 153, 2359–2369 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Youssef, A. M., Macefield, V. G. & Henderson, L. A. Pain inhibits pain; human brainstem mechanisms. Neuroimage 124, 54–62 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144.

    McPhee, M. E. & Graven-Nielsen, T. Recurrent low back pain patients demonstrate facilitated pronociceptive mechanisms when in pain, and impaired antinociceptive mechanisms with and without pain. Pain 160, 2866–2876 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  145. 145.

    Moont, R., Crispel, Y., Lev, R., Pud, D. & Yarnitsky, D. Temporal changes in cortical activation during conditioned pain modulation (CPM), a LORETA study. Pain 152, 1469–1477 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  146. 146.

    Youssef, A. M., Macefield, V. G. & Henderson, L. A. Cortical influences on brainstem circuitry responsible for conditioned pain modulation in humans. Hum. Brain Mapp. 37, 2630–2644 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Zeidan, F. & Vago, D. R. Mindfulness meditation-based pain relief: a mechanistic account. Ann. N. Y. Acad. Sci. 1373, 114–127 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Zeidan, F. et al. Mindfulness-meditation-based pain relief is not mediated by endogenous opioids. J. Neurosci. 36, 3391–3397 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Eippert, F. et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63, 533–543 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Zeidan, F. et al. Mindfulness meditation-based pain relief employs different neural mechanisms than placebo and sham mindfulness meditation-induced analgesia. J. Neurosci. 35, 15307–15325 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Lui, F. et al. Neural bases of conditioned placebo analgesia. Pain 151, 816–824 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  152. 152.

    Zunhammer, M., Bingel, U. & Wager, T. D. Placebo effects on the neurologic pain signature: a meta-analysis of individual participant functional magnetic resonance imaging data. JAMA Neurol. 75, 1321–1330 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Bingel, U., Lorenz, J., Schoell, E., Weiller, C. & Büchel, C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120, 8–15 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. 154.

    Petrovic, P. et al. A prefrontal non-opioid mechanism in placebo analgesia. Pain 150, 59–65 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  155. 155.

    Zeng, Y. et al. A voxel-based analysis of neurobiological mechanisms in placebo analgesia in rats. Neuroimage 178, 602–612 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  156. 156.

    Kong, J. et al. Functional connectivity of the frontoparietal network predicts cognitive modulation of pain. Pain 154, 459–467 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  157. 157.

    Woo, C. W., Roy, M., Buhle, J. T. & Wager, T. D. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain. PLoS Biol. 13, e1002036 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  158. 158.

    Segerdahl, A. R., Mezue, M., Okell, T. W., Farrar, J. T. & Tracey, I. The dorsal posterior insula subserves a fundamental role in human pain. Nat. Neurosci. 18, 499–500 (2015). This study uses an innovative approach to pinpoint the dorsal PI as being fundamental to nociception and pain.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Wiech, K., Jbabdi, S., Lin, C. S., Andersson, J. & Tracey, I. Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions. Pain 155, 2047–2055 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. 160.

    Lieberman, M. D. & Eisenberger, N. I. The dorsal anterior cingulate cortex is selective for pain: results from large-scale reverse inference. Proc. Natl Acad. Sci. USA 112, 15250–15255 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Davis, K. D., Bushnell, M. C., St Iannetti, G. D., Lawrence, K. & Coghill, R. Evidence against pain specificity in the dorsal posterior insula. F1000Res 4, 362 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  162. 162.

    Carrillo-Reid, L. & Yuste, R. Playing the piano with the cortex: role of neuronal ensembles and pattern completion in perception and behavior. Curr. Opin. Neurobiol. 64, 89–95 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. 163.

    Buzsaki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. 164.

    Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  165. 165.

    Doan, L., Manders, T. & Wang, J. Neuroplasticity underlying the comorbidity of pain and depression. Neural Plast. 2015, 504691 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  166. 166.

    Nees, F. & Becker, S. Psychological processes in chronic pain: influences of reward and fear learning as key mechanisms — behavioral evidence, neural circuits, and maladaptive changes. Neuroscience 387, 72–84 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  167. 167.

    Cai, Y. Q., Wang, W., Paulucci-Holthauzen, A. & Pan, Z. Z. Brain circuits mediating opposing effects on emotion and pain. J. Neurosci. 38, 6340–6349 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  168. 168.

    Zhou, W. et al. A neural circuit for comorbid depressive symptoms in chronic pain. Nat. Neurosci. 22, 1649–1658 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all members of their laboratory as well as scientists in the Heidelberg Pain Consortium (CRC1158 of the Deutsche Forschungsgemeinschaft) for thought-provoking discussions and expert viewpoints. The authors acknowledge funding to R.K. from the Deutsche Forschungsgemeinschaft in the form of grants for Collaborative Research Centre 1158 (projects B01 and B06) and from the Baden-Württemberg Foundation (Internationale Spitzenforschung; BWST-ISF2017-069). L.L.T. was partially supported by a postdoctoral fellowship from the European Molecular Biology Organization. R.K. is a member of the Molecular Medicine Partnership Unit in the Medical Faculty in Heidelberg and the European Molecular Biology Laboratory.

Reviewer information

Nature Reviews Neuroscience thanks Elizabeth May, who co-reviewed with Markus Ploner; Patrick Sheets; and Gregory Scherrer for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this work.

Corresponding authors

Correspondence to Linette Liqi Tan or Rohini Kuner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Multivariate pattern analysis

A set of tools that can analyse and identify neural responses in the brain as spatially distributed patterns of activity.

Machine learning

The use of computer algorithms to learn, analyse, identify and predict patterns from data sets with minimal human supervision.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, L.L., Kuner, R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci 22, 458–471 (2021). https://doi.org/10.1038/s41583-021-00468-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing