Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Untangling the cortico-thalamo-cortical loop: cellular pieces of a knotty circuit puzzle

Abstract

Functions of the neocortex depend on its bidirectional communication with the thalamus, via cortico-thalamo-cortical (CTC) loops. Recent work dissecting the synaptic connectivity in these loops is generating a clearer picture of their cellular organization. Here, we review findings across sensory, motor and cognitive areas, focusing on patterns of cell type-specific synaptic connections between the major types of cortical and thalamic neurons. We outline simple and complex CTC loops, and note features of these loops that appear to be general versus specialized. CTC loops are tightly interlinked with local cortical and corticocortical (CC) circuits, forming extended chains of loops that are probably critical for communication across hierarchically organized cerebral networks. Such CTC–CC loop chains appear to constitute a modular unit of organization, serving as scaffolding for area-specific structural and functional modifications. Inhibitory neurons and circuits are embedded throughout CTC loops, shaping the flow of excitation. We consider recent findings in the context of established CTC and CC circuit models, and highlight current efforts to pinpoint cell type-specific mechanisms in CTC loops involved in consciousness and perception. As pieces of the connectivity puzzle fall increasingly into place, this knowledge can guide further efforts to understand structure–function relationships in CTC loops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major classes of excitatory projection neurons in cortico-thalamo-cortical loops.
Fig. 2: Cell type-specific cortico-thalamo-cortical connectivity matrices across areas.
Fig. 3: Patterns and types of circuit connections in cortico-thalamo-cortical loops.
Fig. 4: Cortico-thalamo-cortical loops are interconnected with local cortical circuits and corticocortical circuits, via hub-like intratelencephalic neurons.
Fig. 5: Cortico-thalamo-cortical loops in the context of hierarchical models of cortical organization.
Fig. 6: Inhibition in cortico-thalamo-cortical loops.
Fig. 7: Cortico-thalamo-cortical loop connectivity with the diverse types of matrix axon arborizations.

Similar content being viewed by others

References

  1. Jones, E. G. The Thalamus 2nd edn (Cambridge Univ. Press, 2007).

  2. Llinás, R., Urbano, F. J., Leznik, E., Ramirez, R. R. & van Marle, H. J. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci. 28, 325–333 (2005).

    PubMed  Google Scholar 

  3. Halassa, M. M. & Sherman, S. M. Thalamocortical circuit motifs: a general framework. Neuron 103, 762–770 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fogerson, P. M. & Huguenard, J. R. Tapping the brakes: cellular and synaptic mechanisms that regulate thalamic oscillations. Neuron 92, 687–704 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Halassa, M. M. & Acsády, L. Thalamic inhibition: diverse sources, diverse scales. Trends Neurosci. 39, 680–693 (2016). This review highlights how thalamic function is influenced by inhibition from the TRN and extrathalamic sources such as the basal ganglia.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Halassa, M. M. & Kastner, S. Thalamic functions in distributed cognitive control. Nat. Neurosci. 20, 1669–1679 (2017).

    CAS  PubMed  Google Scholar 

  7. Huguenard, J. R. & McCormick, D. A. Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends Neurosci. 30, 350–356 (2007).

    CAS  PubMed  Google Scholar 

  8. Llinás, R. R. & Steriade, M. Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 95, 3297–3308 (2006).

    PubMed  Google Scholar 

  9. Sherman, S. M. & Guillery, R. W. Exploring the Thalamus 2nd edn (MIT, 2006).

  10. Sherman, S. M. Thalamus plays a central role in ongoing cortical functioning. Nat. Neurosci. 16, 533–541 (2016). This review considers TC and CC interactions from the perspective of the driver/modulator framework and transthalamic pathway organization.

    Google Scholar 

  11. Pergola, G. et al. The regulatory role of the human mediodorsal thalamus. Trends Cogn. Sci. 22, 1011–1025 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Wolff, M. & Vann, S. D. The cognitive thalamus as a gateway to mental representations. J. Neurosci. 39, 3–14 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shine, J. M. The thalamus integrates the macrosystems of the brain to facilitate complex, adaptive brain network dynamics. Prog. Neurobiol. 199, 101951 (2020).

    PubMed  Google Scholar 

  14. Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195–202 (2019). This study of cell type-specific projectomics identifies systematic relationships in CC, TC and CT pathways.

    CAS  PubMed  Google Scholar 

  15. Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoerder-Suabedissen, A. et al. Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cereb. Cortex 28, 1882–1897 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. Zolnik, T. A. et al. Layer 6b is driven by intracortical long-range projection neurons. Cell Rep. 30, 3492–3505 (2020).

    CAS  PubMed  Google Scholar 

  18. Wilson, C. J. The sensory striatum. Neuron 83, 999–1001 (2014).

    CAS  PubMed  Google Scholar 

  19. Brodal, A. Neurological Anatomy 3rd edn (Oxford Univ. Press, 1981).

  20. Stanfield, B. B., O’Leary, D. D. & Fricks, C. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature 298, 371–373 (1982).

    CAS  PubMed  Google Scholar 

  21. Greig, L. C., Woodworth, M. B., Galazo, M. J., Padmanabhan, H. & Macklis, J. D. Molecular logic of neocortical projection neuron specification, development and diversity. Nat. Rev. Neurosci. 14, 755–769 (2013).

    CAS  PubMed  Google Scholar 

  22. Saiki, A. et al. In vivo spiking dynamics of intra- and extratelencephalic projection neurons in rat motor cortex. Cereb. Cortex 28, 1024–1038 (2018).

    PubMed  Google Scholar 

  23. Jiang, S. et al. Anatomically revealed morphological patterns of pyramidal neurons in layer 5 of the motor cortex. Sci. Rep. 10, 7916 (2020).

    PubMed  PubMed Central  Google Scholar 

  24. Oswald, M. J., Tantirigama, M. L., Sonntag, I., Hughes, S. M. & Empson, R. M. Diversity of layer 5 projection neurons in the mouse motor cortex. Front. Cell Neurosci. 7, 174 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Ueta, Y., Otsuka, T., Morishima, M., Ushimaru, M. & Kawaguchi, Y. Multiple layer 5 pyramidal cell subtypes relay cortical feedback from secondary to primary motor areas in rats. Cereb. Cortex 24, 2362–2376 (2014).

    PubMed  Google Scholar 

  26. Rojas-Piloni, G. et al. Relationships between structure, in vivo function and long-range axonal target of cortical pyramidal tract neurons. Nat. Commun. 8, 870 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Economo, M. N. et al. Distinct descending motor cortex pathways and their roles in movement. Nature 563, 79–84 (2018).

    CAS  PubMed  Google Scholar 

  28. Zhang, Z. et al. Epigenomic diversity of cortical projection neurons in the mouse brain. bioRxiv https://doi.org/10.1101/2020.1104.1101.019612 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jeong, M. et al. Comparative three-dimensional connectome map of motor cortical projections in the mouse brain. Sci. Rep. 6, 20072 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bennett, C. et al. Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102, 477–492 (2019).

    CAS  PubMed  Google Scholar 

  31. Alloway, K. D., Olson, M. L. & Smith, J. B. Contralateral corticothalamic projections from MI whisker cortex: potential route for modulating hemispheric interactions. J. Comp. Neurol. 510, 100–116 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. Winnubst, J. et al. Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell 179, 268–281 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Phillips, J. W. et al. A repeated molecular architecture across thalamic pathways. Nat. Neurosci. 22, 1925–1935 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jones, E. G. Viewpoint: the core and matrix of thalamic organization. Neuroscience 85, 331–345 (1998).

    CAS  PubMed  Google Scholar 

  36. Herkenham, M. Laminar organization of thalamic projections to the rat neocortex. Science 207, 532–535 (1980).

    CAS  PubMed  Google Scholar 

  37. Clascá, F., Rubio-Garrido, P. & Jabaudon, D. Unveiling the diversity of thalamocortical neuron subtypes. Eur. J. Neurosci. 35, 1524–1532 (2012). This review develops a classification scheme for TC neurons in core and matrix nuclei based on axon morphology and other parameters.

    PubMed  Google Scholar 

  38. Jones, E. G. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 24, 595–601 (2001).

    CAS  PubMed  Google Scholar 

  39. Binzegger, T., Douglas, R. J. & Martin, K. A. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Weiler, N., Wood, L., Yu, J., Solla, S. A. & Shepherd, G. M. G. Top-down laminar organization of the excitatory network in motor cortex. Nat. Neurosci. 11, 360–366 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lefort, S., Tomm, C., Floyd Sarria, J. C. & Petersen, C. C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009).

    CAS  PubMed  Google Scholar 

  42. Hooks, B. M. et al. Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas. PLoS Biol. 9, e1000572 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Getting, P. A. Emerging principles governing the operation of neural networks. Annu. Rev. Neurosci. 12, 185–204 (1989).

    CAS  PubMed  Google Scholar 

  44. Landisman, C. E. & Connors, B. W. VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. Cereb. Cortex 17, 2853–2865 (2007).

    PubMed  Google Scholar 

  45. Cruikshank, S. J., Urabe, H., Nurmikko, A. V. & Connors, B. W. Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65, 230–245 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Crandall, S. R., Cruikshank, S. J. & Connors, B. W. A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron 86, 768–782 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Deschênes, M., Veinante, P. & Zhang, Z. W. The organization of corticothalamic projections: reciprocity versus parity. Brain Res. Brain Res Rev. 28, 286–308 (1998).

    PubMed  Google Scholar 

  48. Guo, K., Yamawaki, N., Barrett, J. M., Tapies, M. & Shepherd, G. M. G. Cortico-thalamo-cortical circuits of mouse forelimb S1 are organized primarily as recurrent loops. J. Neurosci. 40, 2849–2858 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bourassa, J., Pinault, D. & Deschênes, M. Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur. J. Neurosci. 7, 19–30 (1995).

    CAS  PubMed  Google Scholar 

  50. Frandolig, J. E. et al. The synaptic organization of layer 6 circuits reveals inhibition as a major output of a neocortical sublamina. Cell Rep. 28, 3131–3143 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Deschênes, M., Bourassa, J. & Pinault, D. Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res. 664, 215–219 (1994).

    PubMed  Google Scholar 

  52. Bourassa, J. & Deschênes, M. Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer. Neuroscience 66, 253–263 (1995).

    CAS  PubMed  Google Scholar 

  53. Wimmer, V. C., Bruno, R. M., de Kock, C. P., Kuner, T. & Sakmann, B. Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cereb. Cortex 20, 2265–2276 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Bruno, R. M. & Sakmann, B. Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312, 1622–1627 (2006).

    CAS  PubMed  Google Scholar 

  55. Petreanu, L., Mao, T., Sternson, S. M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009). This study describes optogenetic methods for mapping inputs at the dendritic level, and provides maps of excitatory input to cortical neurons from diverse thalamic and cortical sources.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Constantinople, C. M. & Bruno, R. M. Deep cortical layers are activated directly by thalamus. Science 340, 1591–1594 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sermet, B. S. et al. Pathway-, layer- and cell-type-specific thalamic input to mouse barrel cortex. eLife 8, e52665 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hu, H. & Agmon, A. Differential excitation of distally versus proximally targeting cortical interneurons by unitary thalamocortical bursts. J. Neurosci. 36, 6906–6916 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rah, J. C. et al. Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography. Front. Neural Circuits 7, 177 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. Crandall, S. R., Patrick, S. L., Cruikshank, S. J. & Connors, B. W. Infrabarrels are layer 6 circuit modules in the barrel cortex that link long-range inputs and outputs. Cell Rep. 21, 3065–3078 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Egger, R. et al. Cortical output is gated by horizontally projecting neurons in the deep layers. Neuron 105, 122–137 (2020). This study illuminates the critical role of deeper-layer IT neurons in closing the CTC loop within S1.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Thomson, A. M. Neocortical layer 6, a review. Front. Neuroanat. 4, 13 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Bureau, I., von Saint Paul, F. & Svoboda, K. Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biol. 4, e382 (2006).

    PubMed  PubMed Central  Google Scholar 

  64. Audette, N. J., Urban-Ciecko, J., Matsushita, M. & Barth, A. L. POm thalamocortical input drives layer-specific microcircuits in somatosensory cortex. Cereb. Cortex 28, 1312–1328 (2018).

    PubMed  Google Scholar 

  65. Diamond, I. T. in Progress in Psychobiology and Physiological Psychology (eds Sprague, J. M. & Epstein, A. N.) 1-43 (Academic, 1979).

  66. Hatsopoulos, N. G. & Suminski, A. J. Sensing with the motor cortex. Neuron 72, 477–487 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shipp, S. The importance of being agranular: a comparative account of visual and motor cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 797–814 (2005).

    PubMed  PubMed Central  Google Scholar 

  68. Hunnicutt, B. J. et al. A comprehensive thalamocortical projection map at the mesoscopic level. Nat. Neurosci. 17, 1276–1285 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaneko, T. Local connections of excitatory neurons in motor-associated cortical areas of the rat. Front. Neural. Circuits 7, 75 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Bosch-Bouju, C., Hyland, B. I. & Parr-Brownlie, L. C. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front. Comput. Neurosci. 7, 163 (2013).

    PubMed  PubMed Central  Google Scholar 

  71. Mitchell, B. D. & Cauller, L. J. Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats. Brain Res. 921, 68–77 (2001).

    CAS  PubMed  Google Scholar 

  72. Kuramoto, E. et al. Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb. Cortex 19, 2065–2077 (2009).

    PubMed  Google Scholar 

  73. Kuramoto, E. et al. Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior–ventral lateral nuclear complex in the rat. Cereb. Cortex 25, 221–235 (2015).

    PubMed  Google Scholar 

  74. Yamawaki, N. & Shepherd, G. M. G. Synaptic circuit organization of motor corticothalamic neurons. J. Neurosci. 35, 2293–2307 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Guo, K., Yamawaki, N., Svoboda, K. & Shepherd, G. M. G. Anterolateral motor cortex connects with a medial subdivision of ventromedial thalamus through cell-type-specific circuits, forming an excitatory thalamo-cortico-thalamic loop via layer 1 apical tuft dendrites of layer 5B pyramidal tract type neurons. J. Neurosci. 38, 2849–2858 (2018).

    Google Scholar 

  76. Suter, B. A. & Shepherd, G. M. G. Reciprocal interareal connections to corticospinal neurons in mouse M1 and S2. J. Neurosci. 35, 2959–2974 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hooks, B. M. et al. Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J. Neurosci. 33, 748–760 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yamawaki, N., Borges, K., Suter, B. A., Harris, K. D. & Shepherd, G. M. G. A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity. eLife 3, e05422 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Mukherjee, A. et al. Variation of connectivity across exemplar sensory and associative thalamocortical loops in the mouse. eLife 9, e62554 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Delevich, K., Tucciarone, J., Huang, Z. J. & Li, B. The mediodorsal thalamus drives feedforward inhibition in the anterior cingulate cortex via parvalbumin interneurons. J. Neurosci. 35, 5743–5753 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cruikshank, S. J. et al. Thalamic control of layer 1 circuits in prefrontal cortex. J. Neurosci. 32, 17813–17823 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Collins, D. P., Anastasiades, P. G., Marlin, J. J. & Carter, A. G. Reciprocal circuits linking the prefrontal cortex with dorsal and ventral thalamic nuclei. Neuron 98, 366–379 (2018). This study dissects the cell type-specific excitatory connections between the PFC and the thalamus.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, N., Chen, T. W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex circuit for motor planning and movement. Nature 519, 51–56 (2015).

    CAS  PubMed  Google Scholar 

  84. Guo, Z. V. et al. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 545, 181–186 (2017). This study implicates CTC loops in mediating the preparatory activity observed in a higher-order motor cortex area.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Qiu, S., Anderson, C. T., Levitt, P. & Shepherd, G. M. G. Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated met receptor tyrosine kinase. J. Neurosci. 31, 5855–5864 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ji, X. Y. et al. Thalamocortical innervation pattern in mouse auditory and visual cortex: laminar and cell-type specificity. Cereb. Cortex 26, 2612–2625 (2016).

    PubMed  Google Scholar 

  87. Rouiller, E. M. & Welker, E. A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res. Bull. 53, 727–741 (2000).

    CAS  PubMed  Google Scholar 

  88. Winer, J. A., Diehl, J. J. & Larue, D. T. Projections of auditory cortex to the medial geniculate body of the cat. J. Comp. Neurol. 430, 27–55 (2001).

    CAS  PubMed  Google Scholar 

  89. Morgenstern, N. A., Bourg, J. & Petreanu, L. Multilaminar networks of cortical neurons integrate common inputs from sensory thalamus. Nat. Neurosci. 19, 1034–1040 (2016).

    CAS  PubMed  Google Scholar 

  90. Cruz-Martin, A. et al. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507, 358–361 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Roth, M. M. et al. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 19, 299–307 (2016).

    CAS  PubMed  Google Scholar 

  92. Zhou, N., Masterson, S. P., Damron, J. K., Guido, W. & Bickford, M. E. The mouse pulvinar nucleus links the lateral extrastriate cortex, striatum, and amygdala. J. Neurosci. 38, 347–362 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Olsen, S. R., Bortone, D. S., Adesnik, H. & Scanziani, M. Gain control by layer six in cortical circuits of vision. Nature 483, 47–52 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Blot, A. et al. Visual intracortical and transthalamic pathways carry distinct information to cortical areas. bioRxiv https://doi.org/10.1101/2020.1107.1106.189902 (2020).

    Article  Google Scholar 

  95. Callaway, E. M. Structure and function of parallel pathways in the primate early visual system. J. Physiol. 566, 13–19 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fitzpatrick, D. The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb. Cortex 6, 329–341 (1996).

    CAS  PubMed  Google Scholar 

  97. Usrey, W. M. & Sherman, S. M. Corticofugal circuits: communication lines from the cortex to the rest of the brain. J. Comp. Neurol. 527, 640–650 (2019).

    PubMed  Google Scholar 

  98. Alitto, H. J. & Usrey, W. M. Dissecting the dynamics of corticothalamic feedback. Neuron 86, 605–607 (2015).

    CAS  PubMed  Google Scholar 

  99. Briggs, F. & Usrey, W. M. Emerging views of corticothalamic function. Curr. Opin. Neurobiol. 18, 403–407 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Galvan, A., Hu, X., Smith, Y. & Wichmann, T. Effects of optogenetic activation of corticothalamic terminals in the motor thalamus of awake monkeys. J. Neurosci. 36, 3519–3530 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. da Costa, N. M. & Martin, K. A. Selective targeting of the dendrites of corticothalamic cells by thalamic afferents in area 17 of the cat. J. Neurosci. 29, 13919–13928 (2009).

    PubMed  PubMed Central  Google Scholar 

  102. Moore, B. et al. Cortical projections to the two retinotopic maps of primate pulvinar are distinct. J. Comp. Neurol. 527, 577–588 (2019).

    PubMed  Google Scholar 

  103. Collins, D. P. & Anastasiades, P. G. Cellular specificity of cortico-thalamic loops for motor planning. J. Neurosci. 39, 2577–2580 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Acsády, L. The thalamic paradox. Nat. Neurosci. 20, 901–902 (2017).

    PubMed  Google Scholar 

  105. Adesnik, H. & Naka, A. Cracking the function of layers in the sensory cortex. Neuron 100, 1028–1043 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).

    CAS  PubMed  Google Scholar 

  107. Douglas, R. J. & Martin, K. A. Recurrent neuronal circuits in the neocortex. Curr. Biol. 17, 496–500 (2007).

    Google Scholar 

  108. Shu, Y., Hasenstaub, A. & McCormick, D. A. Turning on and off recurrent balanced cortical activity. Nature 423, 288–293 (2003).

    CAS  PubMed  Google Scholar 

  109. Reinhold, K., Lien, A. D. & Scanziani, M. Distinct recurrent versus afferent dynamics in cortical visual processing. Nat. Neurosci. 18, 1789–1797 (2015).

    CAS  PubMed  Google Scholar 

  110. Lien, A. D. & Scanziani, M. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16, 1315–1323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, Y. T., Ibrahim, L. A., Liu, B. H., Zhang, L. I. & Tao, H. W. Linear transformation of thalamocortical input by intracortical excitation. Nat. Neurosci. 16, 1324–1330 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    CAS  PubMed  Google Scholar 

  113. Mao, T. et al. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72, 111–123 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yamawaki, N., Radulovic, J. & Shepherd, G. M. A corticocortical circuit directly links retrosplenial cortex to M2 in the mouse. J. Neurosci. 36, 9365–9374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Young, H., Belbut, B., Baeta, M. & Petreanu, L. Laminar-specific cortico-cortical loops in mouse visual cortex. eLife 10, e59551 (2020).

    Google Scholar 

  116. Liu, X. & Carter, A. G. Ventral hippocampal inputs preferentially drive corticocortical neurons in the infralimbic prefrontal cortex. J. Neurosci. 38, 7351–7363 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Anastasiades, P. G., Marlin, J. J. & Carter, A. G. Cell-type specificity of callosally evoked excitation and feedforward inhibition in the prefrontal cortex. Cell Rep. 22, 679–692 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kinnischtzke, A. K., Fanselow, E. E. & Simons, D. J. Target-specific M1 inputs to infragranular S1 pyramidal neurons. J. Neurophysiol. 116, 1261–1274 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Ueta, Y., Hirai, Y., Otsuka, T. & Kawaguchi, Y. Direction- and distance-dependent interareal connectivity of pyramidal cell subpopulations in the rat frontal cortex. Front. Neural Circuits 7, 164 (2013).

    PubMed  PubMed Central  Google Scholar 

  120. Kita, T. & Kita, H. The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J. Neurosci. 32, 5990–5999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Nelson, A. et al. A circuit for motor cortical modulation of auditory cortical activity. J. Neurosci. 33, 14342–14353 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Veinante, P. & Deschênes, M. Single-cell study of motor cortex projections to the barrel field in rats. J. Comp. Neurol. 464, 98–103 (2003).

    PubMed  Google Scholar 

  123. Vélez-Fort, M. et al. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing. Neuron 83, 1431–1443 (2014).

    PubMed  PubMed Central  Google Scholar 

  124. Johnson, R. R. & Burkhalter, A. A polysynaptic feedback circuit in rat visual cortex. J. Neurosci. 17, 7129–7140 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Johnson, R. R. & Burkhalter, A. Microcircuitry of forward and feedback connections within rat visual cortex. J. Comp. Neurol. 368, 383–398 (1996).

    CAS  PubMed  Google Scholar 

  126. Sherman, S. M. & Guillery, R. W. Distinct functions for direct and transthalamic corticocortical connections. J. Neurophysiol. 106, 1068–1077 (2011).

    PubMed  Google Scholar 

  127. Theyel, B. B., Llano, D. A. & Sherman, S. M. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat. Neurosci. 13, 84–88 (2010).

    CAS  PubMed  Google Scholar 

  128. Mo, C. & Sherman, S. M. A sensorimotor pathway via higher-order thalamus. J. Neurosci. 39, 692–704 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Rockland, K. S., Andresen, J., Cowie, R. J. & Robinson, D. L. Single axon analysis of pulvinocortical connections to several visual areas in the macaque. J. Comp. Neurol. 406, 221–250 (1999).

    CAS  PubMed  Google Scholar 

  130. Kuramoto, E. et al. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: a single neuron-tracing study using virus vectors. J. Comp. Neurol. 525, 166–185 (2017).

    PubMed  Google Scholar 

  131. Ohno, S. et al. A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb. Cortex 22, 2840–2857 (2012).

    PubMed  Google Scholar 

  132. Rodriguez-Moreno, J. et al. Area-specific synapse structure in branched posterior nucleus axons reveals a new level of complexity in thalamocortical networks. J. Neurosci. 40, 2663–2679 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Larkum, M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36, 141–151 (2013). This review develops a new conceptual framework about cortical and TC processing, hinging on the associative pairing of multiple inputs by layer 5 pyramidal neurons.

    CAS  PubMed  Google Scholar 

  134. Cauller, L. Layer I of primary sensory neocortex: where top-down converges upon bottom-up. Behav. Brain Res. 71, 163–170 (1995).

    CAS  PubMed  Google Scholar 

  135. Yamawaki, N. et al. Long-range inhibitory intersection of a retrosplenial thalamocortical circuit by apical tuft-targeting CA1 neurons. Nat. Neurosci. 22, 618–626 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Svoboda, K. & Li, N. Neural mechanisms of movement planning: motor cortex and beyond. Curr. Opin. Neurobiol. 49, 33–41 (2018).

    CAS  PubMed  Google Scholar 

  137. Bizzi, E. & Ajemian, R. J. From motor planning to execution: a sensorimotor loop perspective. J Neurophysiol. 124, 1815–1823 (2020).

    PubMed  Google Scholar 

  138. Edwards, L. L., King, E. M., Buetefisch, C. M. & Borich, M. R. Putting the “sensory” into sensorimotor control: the role of sensorimotor integration in goal-directed hand movements after stroke. Front. Integr. Neurosci. 13, 16 (2019).

    PubMed  PubMed Central  Google Scholar 

  139. Bostan, A. C. & Strick, P. L. The basal ganglia and the cerebellum: nodes in an integrated network. Nat. Rev. Neurosci. 19, 338–350 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Llinás, R. & Ribary, U. Consciousness and the brain. The thalamocortical dialogue in health and disease. Ann. N. Y. Acad. Sci. 929, 166–175 (2001).

    PubMed  Google Scholar 

  141. Aru, J., Suzuki, M., Rutiku, R., Larkum, M. E. & Bachmann, T. Coupling the state and contents of consciousness. Front. Syst. Neurosci. 13, 43 (2019).

    PubMed  PubMed Central  Google Scholar 

  142. Aru, J., Suzuki, M. & Larkum, M. E. Cellular mechanisms of conscious processing. Trends Cogn. Sci. 24, 814–825 (2020).

    PubMed  Google Scholar 

  143. Suzuki, M. & Larkum, M. E. General anesthesia decouples cortical pyramidal neurons. Cell 180, 666–676 (2020).

    CAS  PubMed  Google Scholar 

  144. Takahashi, N. et al. Active dendritic currents gate descending cortical outputs in perception. Nat. Neurosci. 23, 1277–1285 (2020).

    CAS  PubMed  Google Scholar 

  145. Grewe, B. F., Bonnan, A. & Frick, A. Back-propagation of physiological action potential output in dendrites of slender-tufted L5A pyramidal neurons. Front. Cell Neurosci. 4, 13 (2010).

    PubMed  PubMed Central  Google Scholar 

  146. Shepherd, G. M. G. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 14, 278–291 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Radnikow, G. & Feldmeyer, D. Layer- and cell type-specific modulation of excitatory neuronal activity in the neocortex. Front. Neuroanat. 12, 1 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. Baker, A. et al. Specialized subpopulations of deep-layer pyramidal neurons in the neocortex: bridging cellular properties to functional consequences. J. Neurosci. 38, 5441–5455 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Maheshwari, A. & Noebels, J. L. Monogenic models of absence epilepsy: windows into the complex balance between inhibition and excitation in thalamocortical microcircuits. Prog. Brain Res. 213, 223–252 (2014).

    PubMed  Google Scholar 

  150. Lam, Y. W. & Sherman, S. M. Functional organization of the thalamic input to the thalamic reticular nucleus. J. Neurosci. 31, 6791–6799 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lam, Y. W. & Sherman, S. M. Functional topographic organization of the motor reticulothalamic pathway. J. Neurophysiol. 113, 3090–3097 (2015).

    PubMed  PubMed Central  Google Scholar 

  152. Paz, J. T. et al. A new mode of corticothalamic transmission revealed in the Gria4–/– model of absence epilepsy. Nat. Neurosci. 14, 1167–1173 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Golshani, P., Liu, X. B. & Jones, E. G. Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons. Proc. Natl Acad. Sci. USA 98, 4172–4177 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Temereanca, S. & Simons, D. J. Functional topography of corticothalamic feedback enhances thalamic spatial response tuning in the somatosensory whisker/barrel system. Neuron 41, 639–651 (2004).

    CAS  PubMed  Google Scholar 

  155. Suga, N. & Ma, X. Multiparametric corticofugal modulation and plasticity in the auditory system. Nat. Rev. Neurosci. 4, 783–794 (2003).

    CAS  PubMed  Google Scholar 

  156. Briggs, F. & Usrey, W. M. Corticogeniculate feedback and visual processing in the primate. J. Physiol. 589, 33–40 (2011).

    CAS  PubMed  Google Scholar 

  157. Pinault, D. & Deschênes, M. Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. Eur. J. Neurosci. 10, 3462–3469 (1998).

    CAS  PubMed  Google Scholar 

  158. Crabtree, J. W., Collingridge, G. L. & Isaac, J. T. A new intrathalamic pathway linking modality-related nuclei in the dorsal thalamus. Nat. Neurosci. 1, 389–394 (1998).

    CAS  PubMed  Google Scholar 

  159. Crabtree, J. W. & Isaac, J. T. New intrathalamic pathways allowing modality-related and cross-modality switching in the dorsal thalamus. J. Neurosci. 22, 8754–8761 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Crabtree, J. W. Functional diversity of thalamic reticular subnetworks. Front. Syst. Neurosci. 12, 41 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Clemente-Perez, A. et al. Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep. 19, 2130–2142 (2017).

    CAS  PubMed  Google Scholar 

  162. Martinez-Garcia, R. I. et al. Two dynamically distinct circuits drive inhibition in the sensory thalamus. Nature 583, 813–818 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, Y. et al. Distinct subnetworks of the thalamic reticular nucleus. Nature 583, 819–824 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Landisman, C. E. et al. Electrical synapses in the thalamic reticular nucleus. J. Neurosci. 22, 1002–1009 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Deleuze, C. & Huguenard, J. R. Distinct electrical and chemical connectivity maps in the thalamic reticular nucleus: potential roles in synchronization and sensation. J. Neurosci. 26, 8633–8645 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lam, Y. W., Nelson, C. S. & Sherman, S. M. Mapping of the functional interconnections between thalamic reticular neurons using photostimulation. J. Neurophysiol. 96, 2593–2600 (2006).

    PubMed  Google Scholar 

  167. Parker, P. R., Cruikshank, S. J. & Connors, B. W. Stability of electrical coupling despite massive developmental changes of intrinsic neuronal physiology. J. Neurosci. 29, 9761–9770 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Hou, G., Smith, A. G. & Zhang, Z. W. Lack of intrinsic GABAergic connections in the thalamic reticular nucleus of the mouse. J. Neurosci. 36, 7246–7252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Destexhe, A., Contreras, D. & Steriade, M. Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J. Neurophysiol. 79, 999–1016 (1998).

    CAS  PubMed  Google Scholar 

  170. Andersen, P. & Sears, T. A. The role of inhibition in the phasing of spontaneous thalamo-cortical discharge. J. Physiol. 173, 459–480 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Sun, Q. Q., Huguenard, J. R. & Prince, D. A. Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J. Neurosci. 26, 1219–1230 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Bruno, R. M. & Simons, D. J. Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. J. Neurosci. 22, 10966–10975 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Agmon, A. & Connors, B. W. Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. J. Neurosci. 12, 319–329 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Swadlow, H. A. Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cereb. Cortex 13, 25–32 (2003).

    PubMed  Google Scholar 

  175. Isaacson, J. S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Gabernet, L., Jadhav, S. P., Feldman, D. E., Carandini, M. & Scanziani, M. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315–327 (2005).

    CAS  PubMed  Google Scholar 

  177. Bortone, D. S., Olsen, S. R. & Scanziani, M. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron 82, 474–485 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Ibrahim, L. A., Schuman, B., Bandler, R., Rudy, B. & Fishell, G. Mining the jewels of the cortex’s crowning mystery. Curr. Opin. Neurobiol. 63, 154–161 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Lee, A. J. et al. Canonical organization of layer 1 neuron-led cortical inhibitory and disinhibitory interneuronal circuits. Cereb. Cortex 25, 2114–2126 (2015).

    PubMed  Google Scholar 

  180. Schuman, B. et al. Four unique interneuron populations reside in neocortical layer 1. J. Neurosci. 39, 125–139 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Williams, L. E. & Holtmaat, A. Higher-order thalamocortical inputs gate synaptic long-term potentiation via disinhibition. Neuron 101, 91–102 (2019).

    CAS  PubMed  Google Scholar 

  182. Abs, E. et al. Learning-related plasticity in dendrite-targeting layer 1 interneurons. Neuron 100, 684–699 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Chou, X. L. et al. Contextual and cross-modality modulation of auditory cortical processing through pulvinar mediated suppression. eLife 9, e54157 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Anastasiades, P. G., Collins, D. P. & Carter, A. G. Mediodorsal and ventromedial thalamus engage distinct L1 circuits in the prefrontal cortex. Neuron 109, 314–330 (2021). This study identifies layer 1 inhibitory circuits engaged by TC axons in the PFC, suggesting how they function to regulate the activity of layer 5 pyramidal neurons.

    CAS  PubMed  Google Scholar 

  185. Bopp, R., Holler-Rickauer, S., Martin, K. A. & Schuhknecht, G. F. An ultrastructural study of the thalamic input to layer 4 of primary motor and primary somatosensory cortex in the mouse. J. Neurosci. 37, 2435–2448 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Goldman, P. S. Contralateral projections to the dorsal thalamus from frontal association cortex in the rhesus monkey. Brain Res. 166, 166–171 (1979).

    CAS  PubMed  Google Scholar 

  187. Sakai, S. T. & Tanaka, D. Jr. Contralateral corticothalamic projections from area 6 in the raccoon. Brain Res. 299, 371–375 (1984).

    CAS  PubMed  Google Scholar 

  188. Apicella, A., Wickersham, I. R., Seung, H. S. & Shepherd, G. M. G. Laminarly orthogonal excitation of fast spiking and low threshold spiking interneurons in mouse motor cortex. J. Neurosci. 32, 7021–7033 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Pluta, S. et al. A direct translaminar inhibitory circuit tunes cortical output. Nat. Neurosci. 18, 1631–1640 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Stoelzel, C. R., Bereshpolova, Y., Alonso, J. M. & Swadlow, H. A. Axonal conduction delays, brain state, and corticogeniculate communication. J. Neurosci. 37, 6342–6358 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Gil, Z., Connors, B. W. & Amitai, Y. Efficacy of thalamocortical and intracortical synaptic connections: quanta, innervation, and reliability. Neuron 23, 385–397 (1999).

    CAS  PubMed  Google Scholar 

  192. Lumer, E. D., Edelman, G. M. & Tononi, G. Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. Cereb. Cortex 7, 207–227 (1997).

    CAS  PubMed  Google Scholar 

  193. Lin, I.-C., Okun, M., Carandini, M. & Harris, K. D. Equations governing dynamics of excitation and inhibition in the mouse corticothalamic network. bioRxiv https://doi.org/10.1101/2020.1106.1103.132688 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Acsády, L. Heartless beat or beatless heart? Nat. Neurosci. 21, 649–651 (2018).

    PubMed  Google Scholar 

  195. Llinás, R. R., Ribary, U., Jeanmonod, D., Kronberg, E. & Mitra, P. P. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl Acad. Sci. USA 96, 15222–15227 (1999).

    PubMed  PubMed Central  Google Scholar 

  196. Economo, M. N. et al. A platform for brain-wide imaging and reconstruction of individual neurons. eLife 5, e10566 (2016).

    PubMed  PubMed Central  Google Scholar 

  197. Scala, F. et al. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature https://doi.org/10.1038/s41586-020-2907-3 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Acsády, J. M. Barrett, S. Brown, J. Huguenard and L. Petreanu for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gordon M. G. Shepherd or Naoki Yamawaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks B. Connors, who co-reviewed with J. Zaltsman, M. Wolf and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Hierarchical organization

As applied to cerebral organization, this term refers to the concept of feedforward and feedback streams of information processing across areas and regions, reflected in distinct patterns of axonal projections.

Monosynaptic

A synaptic circuit connection from one neuron or set of neurons to another that is direct, with no other intervening neurons in the circuit.

Polysynaptic

A synaptic circuit connection from one neuron or set of neurons to another that is indirect, because it involves connections to other intervening neurons in the circuit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepherd, G.M.G., Yamawaki, N. Untangling the cortico-thalamo-cortical loop: cellular pieces of a knotty circuit puzzle. Nat Rev Neurosci 22, 389–406 (2021). https://doi.org/10.1038/s41583-021-00459-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00459-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing