Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two views on the cognitive brain

Abstract

Cognition can be defined as computation over meaningful representations in the brain to produce adaptive behaviour. There are two views on the relationship between cognition and the brain that are largely implicit in the literature. The Sherringtonian view seeks to explain cognition as the result of operations on signals performed at nodes in a network and passed between them that are implemented by specific neurons and their connections in circuits in the brain. The contrasting Hopfieldian view explains cognition as the result of transformations between or movement within representational spaces that are implemented by neural populations. Thus, the Hopfieldian view relegates details regarding the identity of and connections between specific neurons to the status of secondary explainers. Only the Hopfieldian approach has the representational and computational resources needed to develop novel neurofunctional objects that can serve as primary explainers of cognition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparing and contrasting the commitments of the Sherringtonian and Hopfieldian views.
Fig. 2: Depiction of how the motion direction decision-making research programme illustrates the Sherringtonian view.
Fig. 3: Depiction of how the delayed-recall research programme illustrates the Hopfieldian view.
Fig. 4: Illustration of the revolution in Hopfieldian algorithmic approaches.

References

  1. 1.

    Gallistel, C. R. & King, A. P. Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience Vol. 3 (Wiley, 2009).

  2. 2.

    Goodman, N. Languages of Art: An Approach to a Theory of Symbols (Hackett Publishing, 1976).

  3. 3.

    Fodor, J. A. Propositional attitudes. Monist 61, 501–523 (1978).

    Google Scholar 

  4. 4.

    Fodor, J. A. Psychosemantics: The Problem of Meaning in the Philosophy of Mind (MIT Press, 1987).

  5. 5.

    Fodor, J. A. A Theory of Content and Other Essays (MIT Press, 1990).

  6. 6.

    Cummins, R. Meaning and Mental Representation (MIT Press, 1989).

  7. 7.

    Cummins, R., Putnam, H. & Block, N. Representations, Targets, and Attitudes (MIT Press, 1996).

  8. 8.

    Millikan, R. G. Language, Thought, and Other Biological Categories: New Foundations for Realism (MIT Press, 1984).

  9. 9.

    Ramsey, W. M. Representation Reconsidered (Cambridge Univ. Press, 2007).

  10. 10.

    Shea, N. Representation in Cognitive Science (Oxford Univ. Press, 2018).

  11. 11.

    Yamins, D. L. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356 (2016).

    CAS  PubMed  Google Scholar 

  12. 12.

    Rajalingham, R. & DiCarlo, J. J. Reversible inactivation of different millimeter-scale regions of primate IT results in different patterns of core object recognition deficits. Neuron 102, 493–505 (2019).

    CAS  PubMed  Google Scholar 

  13. 13.

    DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B. & Tootell, R. B. H. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 6, 989–995 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Bao, P., She, L., McGill, M. & Tsao, D. Y. A map of object space in primate inferotemporal cortex. Nature 583, 103–108 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kriegeskorte, N. & Diedrichsen, J. Peeling the onion of brain representations. Annu. Rev. Neurosci. 42, 407–432 (2019).

    CAS  PubMed  Google Scholar 

  17. 17.

    Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).

    CAS  PubMed  Google Scholar 

  18. 18.

    Eichenbaum, H. Barlow versus Hebb: when is it time to abandon the notion of feature detectors and adopt the cell assembly as the unit of cognition? Neurosci. Lett. 680, 88–93 (2018).

    CAS  PubMed  Google Scholar 

  19. 19.

    Sherrington, C. S. Observations on the scratch‐reflex in the spinal dog. J. Physiol. 34, 1–50 (1906).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Barlow, H. B. Summation and inhibition in the frog’s retina. J. Physiol. 119, 69–88 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Parker, D. Complexities and uncertainties of neuronal network function. Philos. Trans. R. Soc. B Biol. Sci. 361, 81–99 (2006).

    Google Scholar 

  22. 22.

    Tye, K. M. & Uchida, N. Editorial overview: Neurobiology of behavior. Curr. Opin. Neurobiol. 49, iv–ix (2020).

    Google Scholar 

  23. 23.

    Marder, E., Goeritz, M. L. & Otopalik, A. G. Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms. Curr. Opin. Neurobiol. 31, 156–163 (2015).

    CAS  PubMed  Google Scholar 

  24. 24.

    Creutzfeldt, O. D. Generality of the functional structure of the neocortex. Naturwissenschaften 64, 507–517 (1977).

    CAS  PubMed  Google Scholar 

  25. 25.

    Douglas, R. J., Martin, K. A. & Whitteridge, D. A canonical microcircuit for neocortex. Neural Comput. 1, 480–488 (1989).

    Google Scholar 

  26. 26.

    Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    CAS  PubMed  Google Scholar 

  28. 28.

    Salzman, C. D. & Newsome, W. T. Neural mechanisms for forming a perceptual decision. Science 264, 231–237 (1994).

    CAS  PubMed  Google Scholar 

  29. 29.

    Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Gold, J. I. & Shadlen, M. N. Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36, 299–308 (2002).

    CAS  PubMed  Google Scholar 

  31. 31.

    Shadlen, M. & Newsome, W. Motion perception: seeing and deciding. Proc. Natl Acad. Sci. USA 93, 628–633 (1996).

    CAS  PubMed  Google Scholar 

  32. 32.

    Mazurek, M. E., Roitman, J. D., Ditterich, J. & Shadlen, M. N. A role for neural integrators in perceptual decision making. Cereb. Cortex 13, 1257–1269 (2003).

    PubMed  Google Scholar 

  33. 33.

    Ditterich, J. Stochastic models of decisions about motion direction: behavior and physiology. Neural Netw. 19, 981–1012 (2006).

    PubMed  Google Scholar 

  34. 34.

    Zeki, S. M. Cells responding to changing image size and disparity in the cortex of the rhesus monkey. J. Physiol. 242, 827–841 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    CAS  PubMed  Google Scholar 

  36. 36.

    Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Blatt, G. J., Andersen, R. A. & Stoner, G. R. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J. Comp. Neurol. 299, 421–445 (1990).

    CAS  PubMed  Google Scholar 

  38. 38.

    Latimer, K. W., Yates, J. L., Meister, M. L., Huk, A. C. & Pillow, J. W. Single-trial spike trains in parietal cortex reveal discrete steps during decision-making. Science 349, 184–187 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Katz, L. N., Yates, J. L., Pillow, J. W. & Huk, A. C. Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature 535, 285–288 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386 (1958).

    CAS  PubMed  Google Scholar 

  42. 42.

    Minsky, M. & Papert, S. A. Perceptrons: An Introduction to Computational Geometry (MIT Press, 1969).

  43. 43.

    Rigotti, M., Rubin, D. B., Wang, X. J. & Fusi, S. Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses. Front. Comput. Neurosci. 4, 24 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Zador, A. M., Claiborne, B. J. & Brown, T. H. in Advances in Neural Information Processing Systems 51–58 (NIPS, 1991).

  45. 45.

    Legenstein, R. & Maass, W. Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. J. Neurosci. 31, 10787–10802 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Kimura, R. et al. Hippocampal polysynaptic computation. J. Neurosci. 31, 13168–13179 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Bianchi, D. et al. On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. J. Comput. Neurosci. 33, 207–225 (2012).

    PubMed  Google Scholar 

  48. 48.

    Gidon, A. et al. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 367, 83–87 (2020).

    CAS  PubMed  Google Scholar 

  49. 49.

    Wang, X. J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Hebb, D. The Organization of Behavior (Wiley, 1949).

  51. 51.

    McCrea, D. A. & Rybak, I. A. Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57, 134–146 (2008).

    PubMed  Google Scholar 

  52. 52.

    Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cognit. Sci. 9, 474–480 (2005).

    Google Scholar 

  53. 53.

    Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience needs behavior: correcting a reductionist bias. Neuron 93, 480–490 (2017).

    CAS  PubMed  Google Scholar 

  54. 54.

    Jazayeri, M. & Afraz, A. Navigating the neural space in search of the neural code. Neuron 93, 1003–1014 (2017).

    CAS  PubMed  Google Scholar 

  55. 55.

    Paninski, L. & Cunningham, J. P. Neural data science: accelerating the experiment–analysis–theory cycle in large-scale neuroscience. Curr. Opin. Neurobiol. 50, 232–241 (2018).

    CAS  PubMed  Google Scholar 

  56. 56.

    Hu, Y., Trousdale, J., Josić, K. & Shea-Brown, E. Motif statistics and spike correlations in neuronal networks. J. Stat. Mech. Theory Exp. 2013, P03012 (2013).

    Google Scholar 

  57. 57.

    Hu, Y., Trousdale, J., Josić, K. & Shea-Brown, E. Local paths to global coherence: cutting networks down to size. Phys. Rev. E 89, 032802 (2014).

    Google Scholar 

  58. 58.

    Hu, Y. et al. Feedback through graph motifs relates structure and function in complex networks. Phys. Rev. E 98, 062312 (2018).

    CAS  Google Scholar 

  59. 59.

    Recanatesi, S., Ocker, G. K., Buice, M. A. & Shea-Brown, E. Dimensionality in recurrent spiking networks: global trends in activity and local origins in connectivity. PLoS Comput. Biol. 15, e1006446 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    CAS  PubMed  Google Scholar 

  61. 61.

    Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl Acad. Sci. USA 81, 3088–3092 (1984).

    CAS  PubMed  Google Scholar 

  62. 62.

    Hopfield, J. J. & Tank, D. W. Computing with neural circuits: a model. Science 233, 625–633 (1986).

    CAS  PubMed  Google Scholar 

  63. 63.

    Ramón y Cajal, S. Estudios sobre la corteza cerebral humana. Corteza visual. Rev. Trim. Microgr. 4, 1–63 (1899).

    Google Scholar 

  64. 64.

    McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).

    Google Scholar 

  65. 65.

    Buzsaki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Saxena, S. & Cunningham, J. P. Towards the neural population doctrine. Curr. Opin. Neurobiol. 55, 103–111 (2019).

    CAS  PubMed  Google Scholar 

  67. 67.

    Mesulam, M.-M. From sensation to cognition. Brain J. Neurol. 121, 1013–1052 (1998).

    Google Scholar 

  68. 68.

    Anderson, M. L. After Phrenology (Oxford Univ. Press, 2014).

  69. 69.

    Sporns, O. Networks of the Brain (MIT Press, 2010).

  70. 70.

    Lashley, K. S. Mass action in cerebral function. Science 73, 245–254 (1931).

    CAS  PubMed  Google Scholar 

  71. 71.

    Trautmann, E. M. et al. Accurate estimation of neural population dynamics without spike sorting. Neuron 103, 292–308 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Clark, A. A Theory of Sentience (Clarendon Press, 2000).

  73. 73.

    Gärdenfors, P. Conceptual Spaces: The Geometry of Thought (MIT Press, 2004).

  74. 74.

    Meister, M. L., Hennig, J. A. & Huk, A. C. Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making. J. Neurosci. 33, 2254–2267 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Warden, M. R. & Miller, E. K. The representation of multiple objects in prefrontal neuronal delay activity. Cereb. Cortex 17, i41–i50 (2007).

    PubMed  Google Scholar 

  77. 77.

    Warden, M. R. & Miller, E. K. Task-dependent changes in short-term memory in the prefrontal cortex. J. Neurosci. 30, 15801–15810 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Moser, E. I. et al. Grid cells and cortical representation. Nat. Rev. Neurosci. 15, 466 (2014).

    CAS  PubMed  Google Scholar 

  80. 80.

    Moser, E. I., Moser, M.-B. & McNaughton, B. L. Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 20, 1448 (2017).

    CAS  PubMed  Google Scholar 

  81. 81.

    Fyhn, M., Molden, S., Witter, M. P., Moser, E. I. & Moser, M.-B. Spatial representation in the entorhinal cortex. Science 305, 1258–1264 (2004).

    CAS  PubMed  Google Scholar 

  82. 82.

    Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    CAS  PubMed  Google Scholar 

  83. 83.

    Sargolini, F. et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312, 758–762 (2006).

    CAS  PubMed  Google Scholar 

  84. 84.

    Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189 (1948).

    CAS  PubMed  Google Scholar 

  85. 85.

    Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Behrens, T. E. et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018).

    CAS  PubMed  Google Scholar 

  87. 87.

    Sorscher, B., Mel, G., Ganguli, S. & Ocko, S. in Advances in Neural Information Processing Systems 10003–10013 (NeurlIPS, 2019).

  88. 88.

    Cueva, C. J. & Wei, X.-X. Emergence of grid-like representations by training recurrent neural networks to perform spatial localization. Preprint at https://arxiv.org/abs/1803.07770 (2018).

  89. 89.

    Banino, A. et al. Vector-based navigation using grid-like representations in artificial agents. Nature 557, 429–433 (2018).

    CAS  PubMed  Google Scholar 

  90. 90.

    Felleman, D. & Van Essen, D. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS  PubMed  Google Scholar 

  91. 91.

    Zador, A. M. A critique of pure learning and what artificial neural networks can learn from animal brains. Nat. Commun. 10, 1–7 (2019).

    CAS  Google Scholar 

  92. 92.

    Polger, T. W. & Shapiro, L. A. The Multiple Realization Book (Oxford Univ. Press, 2016).

  93. 93.

    Bechtel, W. A bridge between cognitive science and neuroscience: the functional architecture of mind. Philos. Stud. 44, 319–330 (1983).

    Google Scholar 

  94. 94.

    Pylyshyn, Z. W. Computation and Cognition (Cambridge Univ. Press, 1984).

  95. 95.

    Ramon y Cajal, S. Estructura de los centros nerviosos de las aves [Spanish] (1888).

  96. 96.

    Sherrington, C. The Integrative Action of the Central Nervous System (Archibald Constable, 1906).

  97. 97.

    Barlow, H. Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1, 371–394 (1972).

    CAS  PubMed  Google Scholar 

  98. 98.

    Martin, K. A. A brief history of the “feature detector”. Cereb. Cortex 4, 1–7 (1994).

    CAS  PubMed  Google Scholar 

  99. 99.

    Shepherd, G. M. Foundations of the Neuron Doctrine (Oxford Univ. Press, 2015).

  100. 100.

    Kuhn, T. S. The Structure of Scientific Revolutions (Univ. of Chicago Press, 1962).

  101. 101.

    Haberkern, H. & Jayaraman, V. Studying small brains to understand the building blocks of cognition. Curr. Opin. Neurobiol. 37, 59–65 (2016).

    CAS  PubMed  Google Scholar 

  102. 102.

    Cobb, M. The Idea of the Brain: The Past and Future of Neuroscience (Basic Books, 2020).

  103. 103.

    Barack, D. L. Mental machines. Biol. Philos. 34, 63 (2019).

    Google Scholar 

  104. 104.

    Fuster, J. The Prefrontal Cortex (Academic Press, 2008).

  105. 105.

    Arbib, M. A., Plangprasopchok, A., Bonaiuto, J. & Schuler, R. E. A neuroinformatics of brain modeling and its implementation in the Brain Operation Database BODB. Neuroinformatics 12, 5–26 (2014).

    PubMed  Google Scholar 

  106. 106.

    Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012).

    CAS  Google Scholar 

  107. 107.

    Wong, K.-F. & Wang, X.-J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Song, H. F., Yang, G. R. & Wang, X.-J. Reward-based training of recurrent neural networks for cognitive and value-based tasks. eLife 6, e21492 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Song, H. F., Yang, G. R. & Wang, X.-J. Training excitatory–inhibitory recurrent neural networks for cognitive tasks: a simple and flexible framework. PLoS Comput. Biol. 12, e1004792–e1004792 (2016).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Churchland, M. M., Byron, M. Y., Ryu, S. I., Santhanam, G. & Shenoy, K. V. Neural variability in premotor cortex provides a signature of motor preparation. J. Neurosci. 26, 3697–3712 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I. & Shenoy, K. V. Cortical preparatory activity: representation of movement or first cog in a dynamical machine? Neuron 68, 387–400 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Wong, A. L., Haith, A. M. & Krakauer, J. W. Motor planning. Neuroscientist 21, 385–398 (2015).

    PubMed  Google Scholar 

  113. 113.

    Haith, A. M. & Bestmann, S. in The Cognitive Neurosciences VI (eds Poeppel, D., Mangun, R., & Gazzaniga, M. S.) 541–548 (MIT Press, 2020).

  114. 114.

    Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    CAS  PubMed  Google Scholar 

  115. 115.

    Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. Computation through neural population dynamics. Annu. Rev. Neurosci. 43, 249–275 (2020).

    CAS  PubMed  Google Scholar 

  116. 116.

    Yoo, S. B. M. & Hayden, B. Y. Economic choice as an untangling of options into actions. Neuron 99, 434–447 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Golub, M. D. et al. Learning by neural reassociation. Nat. Neurosci. 21, 607–616 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018).

    CAS  PubMed  Google Scholar 

  119. 119.

    Egger, S. W., Le, N. M. & Jazayeri, M. A neural circuit model for human sensorimotor timing. Nat. Commun. 11, 3933 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Remington, E. D., Egger, S. W., Narain, D., Wang, J. & Jazayeri, M. A dynamical systems perspective on flexible motor timing. Trends Cogn. Sci. 22, 938–952 (2018).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Sohn, H., Narain, D., Meirhaeghe, N. & Jazayeri, M. Bayesian computation through cortical latent dynamics. Neuron 103, 934–947 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Chaisangmongkon, W., Swaminathan, S. K., Freedman, D. J. & Wang, X.-J. Computing by robust transience: how the fronto-parietal network performs sequential, category-based decisions. Neuron 93, 1504–1517 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Sarafyazd, M. & Jazayeri, M. Hierarchical reasoning by neural circuits in the frontal cortex. Science 364, eaav8911 (2019).

    CAS  PubMed  Google Scholar 

  124. 124.

    Feynman, R. P. Space–time approach to quantum electrodynamics. Phys. Rev. 76, 769 (1949).

    Google Scholar 

  125. 125.

    De Regt, H. W. Understanding Scientific Understanding (Oxford Univ. Press, 2017).

  126. 126.

    Bertolero, M. A. & Bassett, D. S. On the nature of explanations offered by network science: A perspective from and for practicing neuroscientists. Top. Cogn. Sci. 12, 1272–1293 (2020).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Kohn, A. et al. Principles of corticocortical communication: proposed schemes and design considerations. Trends Neurosci. 43, 725–737 (2020).

    CAS  PubMed  Google Scholar 

  128. 128.

    Nelson, S. B. Cortical microcircuits: diverse or canonical? Neuron 36, 19–27 (2002).

    CAS  PubMed  Google Scholar 

  129. 129.

    Churchland, P. M. Cognitive neurobiology: a computational hypothesis for laminar cortex. Biol. Philos. 1, 25–51 (1986).

    Google Scholar 

  130. 130.

    Lisman, J. et al. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190 (2002).

    CAS  PubMed  Google Scholar 

  131. 131.

    Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Churchland, M. M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Marr, D. Vision (Henry Holt, 1982).

  134. 134.

    Sterelny, K. The Representational Theory of Mind: An Introduction (Blackwell, 1990).

  135. 135.

    Shagrir, O. Marr on computational-level theories. Philos. Sci. 77, 477–500 (2010).

    Google Scholar 

  136. 136.

    Haugeland, J. Artificial Intelligence: The Very Idea (MIT Press, 1985).

Download references

Author information

Affiliations

Authors

Contributions

D.L.B. and J.W.K. contributed equally to this work.

Corresponding authors

Correspondence to David L. Barack or John W. Krakauer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks T. Behrens, who co-reviewed with A. Baram; R. Krauzlis; and E. Miller for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Content

The referent of a state, what the state is about.

Dimensionality

The set of basis elements whose combinations can describe any point in that space.

Exclusive disjunction

Either A or B but not both A and B.

Neural spaces

Conceptualizations of brain regions as N-dimensional spaces where each Nth dimension is a representation of a neuron and the value along the dimension is the firing rate of that neuron.

Perceptrons

Early artificial neural network models.

Reticularism

An early idea about the brain’s biological organization that maintained the brain is a continuous network not divisible into cells.

Semantic representations

Representations that have semantic content and can be mapped on to the content given some context of use.

State

A point or a region of neural space.

Tonotopy

An orderly arrangement of the representation of auditory tones in the brain from lowest to highest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barack, D.L., Krakauer, J.W. Two views on the cognitive brain. Nat Rev Neurosci 22, 359–371 (2021). https://doi.org/10.1038/s41583-021-00448-6

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing