Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation

Abstract

Cytoplasmic aggregation of TAR DNA-binding protein 43 (TDP43; also known as TARDBP or TDP-43) is a key pathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP43 typically resides in the nucleus but can shuttle between the nucleus and the cytoplasm to exert its multiple functions, which include regulation of the splicing, trafficking and stabilization of RNA. Cytoplasmic mislocalization and nuclear loss of TDP43 have both been associated with ALS and FTD, suggesting that calibrated levels and correct localization of TDP43 — achieved through an autoregulatory loop and tightly controlled nucleocytoplasmic transport — safeguard its normal function. Furthermore, TDP43 can undergo phase transitions, including its dispersion into liquid droplets and its accumulation into irreversible cytoplasmic aggregates. Thus, autoregulation, nucleocytoplasmic transport and phase transition are all part of an intrinsic control system regulating the physiological levels and localization of TDP43, and together are essential for the cellular homeostasis that is affected in neurodegenerative disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TDP43 protein structure.
Fig. 2: Mechanisms of TDP43 autoregulation.
Fig. 3: Nucleocytoplasmic transport and diffusion of TDP43.
Fig. 4: Phase transition of TDP43.
Fig. 5: Mechanisms of TDP43 control.

Similar content being viewed by others

References

  1. Ou, S. H., Wu, F., Harrich, D., García-Martínez, L. F. & Gaynor, R. B. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol. 69, 3584–3596 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buratti, E. et al. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 20, 1774–1784 (2001). This paper was the first to describe splicing regulation as a major function of TDP43 activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006). Together with Neumann et al. (2006), this paper identifies TDP43 as the main component of proteinaceous inclusions in ALS and FTD, and describes nuclear depletion and cytoplasmic accumulation as major hallmarks of disease.

    Article  CAS  PubMed  Google Scholar 

  5. Heyburn, L. & Moussa, C. E.-H. TDP-43 in the spectrum of MND-FTLD pathologies. Mol. Cell. Neurosci. 83, 46–54 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robberecht, W. & Philips, T. The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 14, 248–264 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Ling, S.-C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cook, C., Zhang, Y.-J., Xu, Y., Dickson, D. W. & Petrucelli, L. TDP-43 in neurodegenerative disorders. Expert Opin. Biol. Ther. 8, 969–978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arai, T. et al. Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol. 117, 125–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Gao, J., Wang, L., Huntley, M. L., Perry, G. & Wang, X. Pathomechanisms of TDP-43 in neurodegeneration. J. Neurochem. 146, 7–20 (2018).

    Article  CAS  Google Scholar 

  11. McAleese, K. E. et al. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol. 27, 472–479 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. James, B. D. et al. TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain 139, 2983–2993 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Amador-Ortiz, C. et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann. Neurol. 61, 435–445 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakashima-Yasuda, H. et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 114, 221–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Higashi, S. et al. Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res. 1184, 284–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Schwab, C., Arai, T., Hasegawa, M., Yu, S. & McGeer, P. L. Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J. Neuropathol. Exp. Neurol. 67, 1159–1165 (2008).

    Article  PubMed  Google Scholar 

  17. Uryu, K. et al. Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J. Neuropathol. Exp. Neurol. 67, 555–564 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Takeda, T. Possible concurrence of TDP-43, tau and other proteins in amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Neuropathology 38, 72–81 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Buratti, E. & Baralle, F. E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H. Y., Wang, I. F., Bose, J. & Shen, C. K. J. Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83, 130–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Ayala, Y. M. et al. Human, Drosophila, and C. elegans TDP43: nucleic acid binding properties and splicing regulatory function. J. Mol. Biol. 348, 575–588 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, E. B., Lee, V. M.-Y. & Trojanowski, J. Q. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 13, 38–50 (2012).

    Article  CAS  Google Scholar 

  24. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buratti, E. et al. TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J. Biol. Chem. 280, 37572–37584 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Freibaum, B. D., Chitta, R. K., High, A. A. & Taylor, J. P. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J. Proteome Res. 9, 1104–1120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Budini, M. et al. Role of selected mutations in the Q/N rich region of TDP-43 in EGFP-12xQ/N-induced aggregate formation. Brain Res. 1462, 139–150 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Budini, M. et al. Cellular model of TAR DNA-binding protein 43 (TDP-43) aggregation based on its C-terminal Gln/Asn-rich region. J. Biol. Chem. 287, 7512–7525 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cushman, M., Johnson, B. S., King, O. D., Gitler, A. D. & Shorter, J. Prion-like disorders: blurring the divide between transmissibility and infectivity. J. Cell Sci. 123, 1191–1201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fuentealba, R. A. et al. Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43. J. Biol. Chem. 285, 26304–26314 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang, L.-L. et al. Two mutations G335D and Q343R within the amyloidogenic core region of TDP-43 influence its aggregation and inclusion formation. Sci. Rep. 6, 23928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmidt, H. B., Barreau, A. & Rohatgi, R. Phase separation-deficient TDP43 remains functional in splicing. Nat. Commun. 10, 4890 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mompeán, M. et al. Structural characterization of the minimal segment of TDP-43 competent for aggregation. Arch. Biochem. Biophys. 545, 53–62 (2014).

    Article  PubMed  Google Scholar 

  34. Conicella, A. E., Zerze, G. H., Mittal, J. & Fawzi, N. L. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537–1549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Conicella, A. E. et al. TDP-43 α-helical structure tunes liquid–liquid phase separation and function. Proc. Natl Acad. Sci. USA 117, 5883–5894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bolognesi, B. et al. The mutational landscape of a prion-like domain. Nat. Commun. 10, 4162 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hughes, M. P. et al. Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science 359, 698–701 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guenther, E. L. et al. Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nat. Struct. Mol. Biol. 25, 463–471 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guenther, E. L. et al. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat. Struct. Mol. Biol. 25, 311–319 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao, Q., Boyer, D. R., Sawaya, M. R., Ge, P. & Eisenberg, D. S. Cryo-EM structures of four polymorphic TDP-43 amyloid cores. Nat. Struct. Mol. Biol. 26, 619–627 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Afroz, T. et al. Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat. Commun. 8, 45 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mercado, P. A., Ayala, Y. M., Romano, M., Buratti, E. & Baralle, F. E. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res. 33, 6000–6010 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gu, J. et al. Transactive response DNA-binding protein 43 (TDP-43) regulates alternative splicing of tau exon 10: implications for the pathogenesis of tauopathies. J. Biol. Chem. 292, 10600–10612 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. & Crowther, R. A. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3, 519–526 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Mulot, S. F. C., Hughes, K., Woodgett, J. R., Anderton, B. H. & Hanger, D. P. PHF-tau from Alzheimer’s brain comprises four species on SDS-PAGE which can be mimicked by in vitro phosphorylation of human brain tau by glycogen synthase kinase-3β. FEBS Lett. 349, 359–364 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, W.-K. et al. Relationship of the extended tau haplotype to tau biochemistry and neuropathology in progressive supranuclear palsy. Ann. Neurol. 50, 494–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Takanashi, M., Mori, H., Arima, K., Mizuno, Y. & Hattori, N. Expression patterns of tau mRNA isoforms correlate with susceptible lesions in progressive supranuclear palsy and corticobasal degeneration. Mol. Brain Res. 104, 210–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Umeda, Y. et al. Alterations in human tau transcripts correlate with those of neurofilament in sporadic tauopathies. Neurosci. Lett. 359, 151–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Becker, L. A. et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544, 367–371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ling, S. C. et al. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc. Natl Acad. Sci. USA 107, 13318–13323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Appocher, C. et al. Major hnRNP proteins act as general TDP-43 functional modifiers both in Drosophila and human neuronal cells. Nucleic Acids Res. 45, 8026–8045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Prudencio, M. et al. Misregulation of human sortilin splicing leads to the generation of a nonfunctional progranulin receptor. Proc. Natl Acad. Sci. USA 109, 21510–21515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shiga, A. et al. Alteration of POLDIP3 splicing associated with loss of function of TDP-43 in tissues affected with ALS. PLoS ONE 7, e43120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Deshaies, J.-E. et al. TDP-43 regulates the alternative splicing of hnRNP A1 to yield an aggregation-prone variant in amyotrophic lateral sclerosis. Brain 141, 1320–1333 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. D’Ambrogio, A. et al. Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res. 37, 4116–4126 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xiao, S. et al. RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol. Cell. Neurosci. 47, 167–180 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Bhardwaj, A., Myers, M. P., Buratti, E. & Baralle, F. E. Characterizing TDP-43 interaction with its RNA targets. Nucleic Acids Res. 41, 5062–5074 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fan, Z., Chen, X. & Chen, R. Transcriptome-wide analysis of TDP-43 binding small RNAs identifies miR-NID1 (miR-8485), a novel miRNA that represses NRXN1 expression. Genomics 103, 76–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Kapeli, K. et al. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat. Commun. 7, 12143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fratta, P. et al. Mice with endogenous TDP-43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. EMBO J. 37, e98684 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ling, J. P., Pletnikova, O., Troncoso, J. C. & Wong, P. C. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349, 650–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tan, Q. et al. Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Hum. Mol. Genet. 25, 5083–5093 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rot, G. et al. High-resolution RNA maps suggest common principles of splicing and polyadenylation regulation by TDP-43. Cell Rep. 19, 1056–1067 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Melamed, Z. et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat. Neurosci. 22, 180–190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Klim, J. R. et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat. Neurosci. 22, 167–179 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Prudencio, M. et al. Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. J. Clin. Invest. 130, 6080–6092 (2020). Together with Melamed et al. (2019) and Klim et al. (2019), this paper identifies and describes TDP43-mediated regulation of stathmin-2 by TDP43 and its disease-related deregulation as a defining feature of ALS and FTD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. White, M. A. et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nat. Neurosci. 21, 552–563 (2018). This study introduces a single amino acid change in mouse TDP43 mimicking ALS-related mutant Q331K that affects the 3D structure and function of its low-complexity domain, thereby uncovering a direct relation to defective autoregulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnson, B. S., McCaffery, J. M., Lindquist, S. & Gitler, A. D. A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc. Natl Acad. Sci. USA 105, 6439–6444 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, Y. et al. A Drosophila model for TDP-43 proteinopathy. Proc. Natl Acad. Sci. USA 107, 3169–3174 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Diaper, D. C. et al. Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes. Hum. Mol. Genet. 22, 1539–1557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schmid, B. et al. Loss of ALS-associated TDP-43 in zebrafish causes muscle degeneration, vascular dysfunction, and reduced motor neuron axon outgrowth. Proc. Natl Acad. Sci. USA 110, 4986–4991 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wils, H. et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA 107, 3858–3863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wegorzewska, I., Bell, S., Cairns, N. J., Miller, T. M. & Baloh, R. H. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA 106, 18809–18814 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Swarup, V. et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain 134, 2610–2626 (2011).

    Article  PubMed  Google Scholar 

  77. Dayton, R. D. et al. Selective forelimb impairment in rats expressing a pathological TDP-43 25 kDa C-terminal fragment to mimic amyotrophic lateral sclerosis. Mol. Ther. 21, 1324–1334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Uchida, A. et al. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43. Brain 135, 833–846 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ayala, Y. M. et al. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 30, 277–288 (2011). This study was the first to report that autoregulation of TDP43 is a mechanism to regulate its expression level and localization.

    Article  CAS  PubMed  Google Scholar 

  80. Avendaño-Vázquez, S. E. et al. Autoregulation of TDP-43 mRNA levels involves interplay between transcription, splicing, and alternative polyA site selection. Genes Dev. 26, 1679–1684 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Koyama, A. et al. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43. Nucleic Acids Res. 44, 5820–5836 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bembich, S. et al. Predominance of spliceosomal complex formation over polyadenylation site selection in TDP-43 autoregulation. Nucleic Acids Res. 42, 3362–3371 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Pons, M. et al. Splicing factors act as genetic modulators of TDP-43 production in a new autoregulatory TDP-43 Drosophila model. Hum. Mol. Genet. 26, 3396–3408 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. D’Alton, S., Altshuler, M. & Lewis, J. Studies of alternative isoforms provide insight into TDP-43 autoregulation and pathogenesis. RNA 21, 1419–1432 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sugai, A. et al. Non-genetically modified models exhibit TARDBP mRNA increase due to perturbed TDP-43 autoregulation. Neurobiol. Dis. 130, 104534 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Flores, B. N. et al. An intramolecular salt bridge linking TDP43 RNA binding, protein stability, and TDP43-dependent neurodegeneration. Cell Rep. 27, 1133–1150.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weskamp, K. et al. Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS. J. Clin. Invest. 130, 1139–1155 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gitcho, M. A. et al. TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy. Acta Neuropathol. 118, 633–645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, S. M. et al. TDP-43 cytoplasmic inclusion formation is disrupted in C9orf72-associated amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Brain Commun. 1, fcz014 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chook, Y. M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11, 703–715 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Prpar Mihevc, S. et al. Nuclear trafficking in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Brain 140, 13–26 (2017).

    Article  PubMed  Google Scholar 

  92. Nishimura, A. L. et al. Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration. Brain 133, 1763–1771 (2010). This study was the first to show direct interactions between TDP43 and karyopherins, alterations of which characterize ALS and FTD.

    Article  PubMed  Google Scholar 

  93. Winton, M. J. et al. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J. Biol. Chem. 283, 13302–13309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ederle, H. et al. Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/CRM1. Sci. Rep. 8, 7084 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Murphy, R. & Wente, S. R. An RNA-export mediator with an essential nuclear export signal. Nature 383, 357–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Ederle, H. & Dormann, D. TDP-43 and FUS en route from the nucleus to the cytoplasm. FEBS Lett. 591, 1489–1507 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Folkmann, A. W., Dawson, T. R. & Wente, S. R. Insights into mRNA export-linked molecular mechanisms of human disease through a Gle1 structure–function analysis. Adv. Biol. Regul. 54, 74–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Kaneb, H. M. et al. Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic lateral sclerosis. Hum. Mol. Genet. 24, 1363–1373 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Aditi, Glass, L., Dawson, T. R. & Wente, S. R. An amyotrophic lateral sclerosis-linked mutation in GLE1 alters the cellular pool of human Gle1 functional isoforms. Adv. Biol. Regul. 62, 25–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Berson, A. et al. Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropathol. Commun. 7, 65 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Pinarbasi, E. S. et al. Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization. Sci. Rep. 8, 7083 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Archbold, H. C. et al. TDP43 nuclear export and neurodegeneration in models of amyotrophic lateral sclerosis and frontotemporal dementia. Sci. Rep. 8, 4606 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wickramasinghe, V. O. & Laskey, R. A. Control of mammalian gene expression by selective mRNA export. Nat. Rev. Mol. Cell Biol. 16, 431–442 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Igaz, L. M. et al. Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J. Clin. Invest. 121, 726–738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Walker, A. K. et al. Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta Neuropathol. 130, 643–660 (2015). This study shows that the reversible expression of human TARDBP carrying a deletion of the TDP43 NLS in mice results in accumulation of cytoplasmic aggregates and loss of nuclear TDP43, leading to neurodegeneration and motor dysfunction. The subsequent removal of cytoplasmic TDP43 and return of nuclear TDP43 lead to neuron preservation, muscle reinnervation and functional recovery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Scaber, J. & Talbot, K. What is the role of TDP-43 in C9orf72-related amyotrophic lateral sclerosis and frontemporal dementia? Brain 139, 3057–3059 (2016).

    Article  PubMed  Google Scholar 

  109. Mori, K. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, K. et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Freibaum, B. D. et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jovičić, A. et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat. Neurosci. 18, 1226–1229 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lee, K. H. et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167, 774–788 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Boeynaems, S., Bogaert, E., Van Damme, P. & Van Den Bosch, L. Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathol. 132, 159–173 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Boeynaems, S. et al. Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci. Rep. 6, 20877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chou, C.-C. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228–239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Solomon, D. A. et al. A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-α mediates C9orf72-related neurodegeneration. Brain 141, 2908–2924 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Babinchak, W. M. et al. The role of liquid–liquid phase separation in aggregation of the TDP-43 low-complexity domain. J. Biol. Chem. 294, 6306–6317 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Alberti, S. & Hyman, A. A. Are aberrant phase transitions a driver of cellular aging? BioEssays 38, 959–968 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, 4382 (2017).

    Article  Google Scholar 

  122. French, R. L. et al. Detection of TAR DNA-binding protein 43 (TDP-43) oligomers as initial intermediate species during aggregate formation. J. Biol. Chem. 294, 6696–6709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Guo, L. et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173, 677–692 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gasset-Rosa, F. et al. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron 102, 339–357 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mann, J. R. et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron 102, 321–338.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gopal, P. P., Nirschl, J. J., Klinman, E. & Holzbaur, E. L. F. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc. Natl Acad. Sci. USA 114, E2466–E2475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, A. et al. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J. 37, e97452 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, H. R., Chiang, W. C., Chou, P. C., Wang, W. J. & Huang, J. R. TAR DNA-binding protein 43 (TDP-43) liquid–liquid phase separation is mediated by just a few aromatic residues. J. Biol. Chem. 293, 6090–6098 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Brettschneider, J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 74, 20–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Brettschneider, J. et al. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol. 127, 423–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kawakami, I., Arai, T. & Hasegawa, M. The basis of clinicopathological heterogeneity in TDP-43 proteinopathy. Acta Neuropathol. 138, 751–770 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719.e13 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Woerner, A. C. et al. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science 351, 173–176 (2016). This study shows, using cell culture models, that cytoplasmic accumulation of TDP43 fragments causes the sequestration and mislocalization of proteins containing disordered and low-complexity domains. These include multiple factors involved in the nuclear import and export machinery, leading to impaired nucleocytoplasmic transport.

    Article  CAS  PubMed  Google Scholar 

  136. Kosyna, F. K. & Depping, R. Controlling the gatekeeper: therapeutic targeting of nuclear transport. Cells 7, 221 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  137. Haines, J. D. et al. Nuclear export inhibitors avert progression in preclinical models of inflammatory demyelination. Nat. Neurosci. 18, 511–520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hasegawa, M. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann. Neurol. 64, 60–70 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Neumann, M. et al. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol. 117, 137–149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank somersault18:24 for valuable assistance with figure assembly and design. P.T. thanks M. Kalthoff for helpful discussions during the preparation of the manuscript. Research by P.T. and L.V.D.B. is supported by VIB, KU Leuven (C1 and Opening the Future Fund), the Fund for Scientific Research Flanders (FWO-Vlaanderen), the Thierry Latran Foundation, the Association Belge contre les Maladies neuro-Musculaires (ABMM), the Muscular Dystrophy Association (MDA), the Association Française contre les Myopathies (AFM), Target ALS, the ALS Liga België (A Cure for ALS) and the ALS Association (ALSA). P.T. is a PhD fellow of FWO-Vlaanderen (11C7621N). F.H. acknowledges support from the UK Medical Research Council (G0701498; MR/L010666/1), the MND Association (Hirth/Nov15/914-793; Hirth/Oct13/6202; Hirth/Mar12/6085; Hirth/Oct07/6233) and Alzheimer’s Research UK (Hirth/ARUK/2012).

Author information

Authors and Affiliations

Authors

Contributions

P.T. and F.H. wrote the manuscript and all authors made substantial contributions to the discussion of the content and reviewed and edited the article.

Corresponding authors

Correspondence to Ludo Van Den Bosch or Frank Hirth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks E. Buratti, C. Lagier-Tourenne and J. Ule (who co-reviewed with M. Hallegger) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Heterogeneous nuclear ribonucleoprotein

(hnRNP). An RNA-binding protein involved in several aspects of nucleic acid metabolism such as transcriptional and translational regulation, alternative splicing and mRNA stabilization.

Splicing

A form of processing of a newly synthesized precursor mRNA transcript during which introns are removed and exons are joined together, thereby transforming it into a mature mRNA.

Proteinaceous inclusions

Aggregates of one or more proteins found in the nucleus and/or the cytoplasm, a main characteristic of many neurodegenerative diseases.

Aggregates

Accumulations of misfolded and/or intrinsically disordered proteins that form amyloid-like fibrils and insoluble depositions in the nucleus and/or the cytoplasm and are highly associated with neurodegeneration and pathology.

Low-complexity domain

An intrinsically disordered protein sequence that is unable to form orderly 3D structures, such as α-helices or β-strands, and is thus prone to intermolecular interactions and involved in phase separation and the formation of pathological aggregates.

Stress granules

Membraneless organelles formed upon cellular stress by liquid demixing and accumulation of RNA and proteins.

Phase separation

The creation of two different phases from a homogeneous mixture, which can occur by liquid demixing of soluble monomeric proteins and includes their dispersion into liquid droplets and accumulation into irreversible cytoplasmic aggregates.

Polymorphs

Proteins whose sequences enable them to adopt different structural conformations.

Cellular stress

A consequence of environmental or chemical stressors, such as extreme temperatures, alterations in pH or exposure to toxins, that threatens the internal state and, ultimately, the survival of a cell.

Cryptic exons

Coding sequences within a precursor mRNA that are normally not included in the mature RNA but can occur in an alternative form of the mRNA.

Nonsense-mediated decay

A surveillance and degradation mechanism in eukaryotes, mainly eliminating mRNAs containing premature stop codons.

Alternative polyadenylation

A process of gene regulation leading to the production of mRNA isoforms in which the formation of poly(A) tails is initiated at different positions in the precursor mRNA.

RNA exosome

A ring-structured multi-protein complex found in the cytoplasm, nucleus or nucleolus, responsible for degrading different kinds of RNA molecules.

Molecular chaperones

Proteins that assist in the correct and timely folding or unfolding of other proteins or the assembly and disassembly of macromolecular complexes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tziortzouda, P., Van Den Bosch, L. & Hirth, F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat Rev Neurosci 22, 197–208 (2021). https://doi.org/10.1038/s41583-021-00431-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00431-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing