Improving translation of animal models of addiction and relapse by reverse translation

Abstract

Critical features of human addiction are increasingly being incorporated into complementary animal models, including escalation of drug intake, punished drug seeking and taking, intermittent drug access, choice between drug and non-drug rewards, and assessment of individual differences based on criteria in the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Combined with new technologies, these models advanced our understanding of brain mechanisms of drug self-administration and relapse, but these mechanistic gains have not led to improvements in addiction treatment. This problem is not unique to addiction neuroscience, but it is an increasing source of disappointment and calls to regroup. Here we first summarize behavioural and neurobiological results from the animal models mentioned above. We then propose a reverse translational approach, whose goal is to develop models that mimic successful treatments: opioid agonist maintenance, contingency management and the community-reinforcement approach. These reverse-translated ‘treatments’ may provide an ecologically relevant platform from which to discover new circuits, test new medications and improve translation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Addiction phase and animal models.
Fig. 2: Brain circuits that play a role in drug taking and drug seeking in different animal models.
Fig. 3: Effect of heroin withdrawal and buprenorphine or methadone maintenance on drug choice in rhesus monkeys.
Fig. 4: Addiction treatment and animal models.

References

  1. 1.

    Association, A. P. Diagnostic and Statistical Manual of Mental Disorders: DSM-5. (American Psychiatric Association Publishing Incorporated, 2013).

  2. 2.

    Carvalho, A. F., Heilig, M., Perez, A., Probst, C. & Rehm, J. Alcohol use disorders. Lancet 394, 781–792 (2019).

    PubMed  Google Scholar 

  3. 3.

    Volkow, N. D. & Collins, F. S. The role of science in addressing the opioid crisis. N. Engl. J. Med. 377, 391–394 (2017).

    PubMed  Google Scholar 

  4. 4.

    Volkow, N. D. Stigma and the toll of addiction. N. Engl. J. Med. 382, 1289–1290 (2020).

    PubMed  Google Scholar 

  5. 5.

    Heilig, M., Epstein, D. H., Nader, M. A. & Shaham, Y. Time to connect: bringing social context into addiction neuroscience. Nat. Rev. Neurosci. 17, 592–599 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Pickard, H. Responsibility without blame for addiction. Neuroethics 10, 169–180 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Pickard, H. The purpose in chronic addiction. AJOB Neurosci. 3, 40–49 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Leshner, A. I. Addiction is a brain disease, and it matters. Science 278, 45–47 (1997). An influential opinion piece that popularized the notion of addiction as a brain disease.

    CAS  PubMed  Google Scholar 

  9. 9.

    Nestler, E. J. & Aghajanian, G. K. Molecular and cellular basis of addiction. Science 278, 58–63 (1997).

    CAS  PubMed  Google Scholar 

  10. 10.

    Koob, G. F. & Le Moal, M. Drug abuse: hedonic homeostatic dysregulation. Science 278, 52–58 (1997).

    CAS  PubMed  Google Scholar 

  11. 11.

    Steketee, J. D. & Kalivas, P. W. Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacol. Rev. 63, 348–365 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Russo, S. J. et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 33, 267–276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Koob, G. F. Neurobiology of opioid addiction: opponent process, hyperkatifeia, and negative reinforcement. Biol. Psychiatry 87, 44–53 (2020).

    CAS  PubMed  Google Scholar 

  14. 14.

    Jaramillo, A. A. et al. Functional role for suppression of the insular-striatal circuit in modulating interoceptive effects of alcohol. Addict. Biol. 23, 1020–1031 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Wise, R. A. & Koob, G. F. The development and maintenance of drug addiction. Neuropsychopharmacology 39, 254–262 (2014).

    PubMed  Google Scholar 

  16. 16.

    Jonkman, S. & Kenny, P. J. Molecular, cellular, and structural mechanisms of cocaine addiction: a key role for microRNAs. Neuropsychopharmacology 38, 198–211 (2013).

    CAS  PubMed  Google Scholar 

  17. 17.

    Peters, J., Kalivas, P. W. & Quirk, G. J. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn. Mem. 16, 279–288 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    McNally, G. P. Extinction of drug seeking: neural circuits and approaches to augmentation. Neuropharmacology 76, 528–532 (2014).

    CAS  PubMed  Google Scholar 

  19. 19.

    Bossert, J. M., Marchant, N. J., Calu, D. J. & Shaham, Y. The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology 229, 453–476 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Dong, Y., Taylor, J. R., Wolf, M. E. & Shaham, Y. Circuit and synaptic plasticity mechanisms of drug relapse. J. Neurosci. 37, 10867–10876 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Epstein, D. H., Heilig, M. & Shaham, Y. Science-based actions can help address the opioid crisis. Trends Pharmacol. Sci. 39, 911–916 (2018).

    CAS  PubMed  Google Scholar 

  22. 22.

    Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13, 1161–1169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ahmed, S. H. Validation crisis in animal models of drug addiction: beyond non-disordered drug use toward drug addiction. Neurosci. Biobehav. Rev. 35, 172–184 (2010).

    CAS  PubMed  Google Scholar 

  24. 24.

    Field, M. & Kersbergen, I. Are animal models of addiction useful? Addiction 115, 6–12 (2020).

    PubMed  Google Scholar 

  25. 25.

    Ahmed, S. H. & Koob, G. F. Transition from moderate to excessive drug intake: change in hedonic set point. Science 282, 298–300 (1998). An influential article that introduces the escalation model currently used by numerous researchers.

    CAS  PubMed  Google Scholar 

  26. 26.

    Katz, J. L. & Higgins, S. T. The validity of the reinstatement model of craving and relapse to drug use. Psychopharmacology 168, 21–30 (2003).

    CAS  PubMed  Google Scholar 

  27. 27.

    Venniro, M., Caprioli, D. & Shaham, Y. Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog. Brain Res. 224, 25–52 (2016).

    PubMed  Google Scholar 

  28. 28.

    Epstein, D. H. & Preston, K. L. The reinstatement model and relapse prevention: a clinical perspective. Psychopharmacology 168, 31–41 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Markou, A. et al. Animal models of drug craving. Psychopharmacology 112, 163–182 (1993).

    CAS  PubMed  Google Scholar 

  30. 30.

    Sarter, M. & Bruno, J. P. in Biolotical Psychiatry (eds H. D’haenen, J.A. den Boer & Willner, P.) 1-8 (Johns Willey & Sons Ltd., 2002).

  31. 31.

    Sorge, R. E., Rajabi, H. & Stewart, J. Rats maintained chronically on buprenorphine show reduced heroin and cocaine seeking in tests of extinction and drug-induced reinstatement. Neuropsychopharmacology 30, 1681–1692 (2005).

    CAS  PubMed  Google Scholar 

  32. 32.

    Leri, F., Tremblay, A., Sorge, R. E. & Stewart, J. Methadone maintenance reduces heroin- and cocaine-induced relapse without affecting stress-induced relapse in a rodent model of poly-drug use. Neuropsychopharmacology 29, 1312–1320 (2004).

    CAS  PubMed  Google Scholar 

  33. 33.

    Spanagel, R. Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol.Rev. 89, 649–705 (2009).

    CAS  PubMed  Google Scholar 

  34. 34.

    Jorenby, D. E. et al. Efficacy of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial. JAMA 296, 56–63 (2006).

    CAS  PubMed  Google Scholar 

  35. 35.

    Jonas, D. E. et al. Pharmacotherapy for adults with alcohol use disorders in outpatient settings: a systematic review and meta-analysis. JAMA 311, 1889–1900 (2014).

    PubMed  Google Scholar 

  36. 36.

    Banks, M. L. & Negus, S. S. Insights from preclinical choice models on treating drug addiction. Trends Pharmacol. Sci. 38, 181–194 (2017).

    CAS  PubMed  Google Scholar 

  37. 37.

    Vanderschuren, L. J. M., Minnaard, A. M., Smeets, J. A. S. & Lesscher, H. M. B. Punishment models of addictive behavior. Cur Opin. Behav. Sci. 13, 77–84 (2017).

    Google Scholar 

  38. 38.

    Kawa, A. B., Allain, F., Robinson, T. E. & Samaha, A. N. The transition to cocaine addiction: the importance of pharmacokinetics for preclinical models. Psychopharmacology 236, 1145–1157 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Ahmed, S. H. Trying to make sense of rodents’ drug choice behavior. Prog. Neuropsychopharmacol. Biol. Psychiatry 87, 3–10 (2018).

    CAS  PubMed  Google Scholar 

  40. 40.

    Deroche-Gamonet, V. & Piazza, P. V. Psychobiology of cocaine addiction: contribution of a multi-symptomatic animal model of loss of control. Neuropharmacology 76 Pt B, 437–449 (2014).

    PubMed  Google Scholar 

  41. 41.

    Perry, W. et al. A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch. Gen. Psychiatry 66, 1072–1080 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Bossert, J. M. et al. In a rat model of opioid maintenance, the G protein-biased mu opioid receptor agonist TRV130 decreases relapse to oxycodone seeking and taking and prevents oxycodone-induced brain hypoxia. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2020.02.014 (2020). A recent article where the authors use an animal model of opioid maintenance as a platform to identify new opioid agonist-based treatments.

  43. 43.

    Caprioli, D. et al. Effect of the novel positive allosteric modulator of metabotropic glutamate receptor 2 AZD8529 on incubation of methamphetamine craving after prolonged voluntary abstinence in a rat model. Biol. Psychiatry 78, 463–473 (2015). An article where the authors modify the classic food versus drug choice model to study relapse after contingency management (food choice-induced voluntary abstinence).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Venniro, M. et al. Volitional social interaction prevents drug addiction in rat models. Nat. Neurosci. 21, 1520–1529 (2018). A recent article where the authors show that rats trained to self-administer heroin or methamphetamine using gold standard addiction models strongly prefer operant social interaction over the drugs.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Deneau, G., Yanagita, T. & Seevers, M. H. Self-administration of psychoactive substances by the monkey. Psychopharmacologia 16, 30–48 (1969). A seminal early article demonstrating binge-like cocaine self-administration in a non-human primate model.

    CAS  PubMed  Google Scholar 

  46. 46.

    Yokel, R. A. & Pickens, R. Self-administration of optical isomers of amphetamine and methylamphetamine by rats. J. Pharmacol. Exp. Ther. 187, 27–33 (1973).

    CAS  PubMed  Google Scholar 

  47. 47.

    Johanson, C. E., Balster, R. L. & Bonese, K. Self-administration of psychomotor stimulant drugs: the effects of unlimited access. Pharmacol. Biochem. Behav. 4, 45–51 (1976).

    CAS  PubMed  Google Scholar 

  48. 48.

    Bozarth, M. A. & Wise, R. A. Toxicity associated with long-term intravenous heroin and cocaine self- administration in the rat. J. Am. Med. Assoc. 254, 81–83 (1985).

    CAS  Google Scholar 

  49. 49.

    Badiani, A., Belin, D., Epstein, D., Calu, D. & Shaham, Y. Opiate versus psychostimulant addiction: the differences do matter. Nat. Rev. Neurosci. 12, 685–700 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Heilig, M. & Koob, G. F. A key role for corticotropin-releasing factor in alcohol dependence. Trends Neurosci. 30, 399–406 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Tornatzky, W. & Miczek, K. A. Cocaine self-administration “binges”: transition from behavioral and autonomic regulation toward homeostatic dysregulation in rats. Psychopharmacology 148, 289–298 (2000).

    CAS  PubMed  Google Scholar 

  52. 52.

    Zernig, G. et al. Explaining the escalation of drug use in substance dependence: models and appropriate animal laboratory tests. Pharmacology 80, 65–119 (2007).

    CAS  PubMed  Google Scholar 

  53. 53.

    Vanderschuren, L. J. & Ahmed, S. H. Animal studies of addictive behavior. Cold Spring Harb. Perspect. Med. 3, a011932 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Pelloux, Y., Everitt, B. J. & Dickinson, A. Compulsive drug seeking by rats under punishment: effects of drug taking history. Psychopharmacology 194, 127–137 (2007).

    CAS  PubMed  Google Scholar 

  55. 55.

    Mantsch, J. R., Baker, D. A., Funk, D., Le, A. D. & Shaham, Y. Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacology 41, 335–356 (2016).

    CAS  PubMed  Google Scholar 

  56. 56.

    Koob, G. F. A role for brain stress systems in addiction. Neuron 59, 11–34 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Wee, S. & Koob, G. F. The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology 210, 121–135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Grieder, T. E. et al. VTA CRF neurons mediate the aversive effects of nicotine withdrawal and promote intake escalation. Nat. Neurosci. 17, 1751–1758 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Schlosburg, J. E. et al. Long-term antagonism of kappa opioid receptors prevents escalation of and increased motivation for heroin intake. J. Neurosci. 33, 19384–19392 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Schmeichel, B. E., Herman, M. A., Roberto, M. & Koob, G. F. Hypocretin neurotransmission within the central amygdala mediates escalated cocaine self-administration and stress-induced reinstatement in rats. Biol. Psychiatry 81, 606–615 (2017).

    CAS  PubMed  Google Scholar 

  61. 61.

    Kallupi, M. et al. Nociceptin attenuates the escalation of oxycodone self-administration by normalizing CeA-GABA transmission in highly addicted rats. Proc. Natl Acad. Sci. USA 117, 2140–2148 (2020).

    CAS  PubMed  Google Scholar 

  62. 62.

    Funk, C. K., O’Dell, L. E., Crawford, E. F. & Koob, G. F. Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanol-dependent rats. J. Neurosci. 26, 11324–11332 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Hollander, J. A. et al. Striatal microRNA controls cocaine intake through CREB signalling. Nature 466, 197–202 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Im, H. I., Hollander, J. A., Bali, P. & Kenny, P. J. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat. Neurosci. 13, 1120–1127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Ahmed, S. H. et al. Gene expression evidence for remodeling of lateral hypothalamic circuitry in cocaine addiction. Proc. Natl Acad. Sci. USA 102, 11533–11538 (2005).

    CAS  PubMed  Google Scholar 

  66. 66.

    Ben-Shahar, O. et al. Extended daily access to cocaine results in distinct alterations in Homer 1b/c and NMDA receptor subunit expression within the medial prefrontal cortex. Synapse 63, 598–609 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Calipari, E. S., Ferris, M. J. & Jones, S. R. Extended access of cocaine self-administration results in tolerance to the dopamine-elevating and locomotor-stimulating effects of cocaine. J. Neurochem. 128, 224–232 (2014).

    CAS  PubMed  Google Scholar 

  68. 68.

    Willuhn, I., Burgeno, L. M., Groblewski, P. A. & Phillips, P. E. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum. Nat. Neurosci. 17, 704–709 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Reed, B., Butelman, E. R., Fry, R. S., Kimani, R. & Kreek, M. J. Repeated administration of opra kappa (LY2456302), a novel, short-acting, selective KOP-r antagonist, in persons with and without cocaine dependence. Neuropsychopharmacology 43, 739–750 (2018).

    CAS  PubMed  Google Scholar 

  70. 70.

    Banks, M. L. The rise and fall of kappa-opioid receptors in drug abuse research. Handb. Exp. Pharmacol. 258, 147–165 (2019).

    Google Scholar 

  71. 71.

    Kwako, L. E. et al. The corticotropin releasing hormone-1 (CRH1) receptor antagonist pexacerfont in alcohol dependence: a randomized controlled experimental medicine study. Neuropsychopharmacology 40, 1053–1063 (2015). A study, together with that of Schwandt et al. (2016), that shows lack of efficacy of a CRFR1 antagonist (a major target for addiction treatment on the basis of results from animal models since the 1990s) in human laboratory studies.

    CAS  PubMed  Google Scholar 

  72. 72.

    Schwandt, M. L. et al. The CRF1 antagonist verucerfont in anxious alcohol-dependent women: Translation of neuroendocrine, but not of anti-craving effects. Neuropsychopharmacology 41, 2818–2829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Shaham, Y. & de Wit, H. Lost in translation: CRF1 receptor antagonists and addiction treatment. Neuropsychopharmacology 41, 2795–2797 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Deroche-Gamonet, V. et al. The glucocorticoid receptor as a potential target to reduce cocaine abuse. J. Neurosci. 23, 4785–4790 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Mantsch, J. R. et al. Surgical adrenalectomy with diurnal corticosterone replacement slows escalation and prevents the augmentation of cocaine-induced reinstatement in rats self-administering cocaine under long-access conditions. Neuropsychopharmacology 33, 814–826 (2008).

    CAS  PubMed  Google Scholar 

  76. 76.

    Vendruscolo, L. F. et al. Glucocorticoid receptor antagonism decreases alcohol seeking in alcohol-dependent individuals. J. Clin. Invest. 125, 3193–3197 (2015). A rare example of a potential successful forward translation (see Vendruscolo et al. (2012)) showing the efficacy of a glucocorticoid receptor antagonist in both an animal model and a clinical study.

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Vendruscolo, L. F. et al. Corticosteroid-dependent plasticity mediates compulsive alcohol drinking in rats. J. Neurosci. 32, 7563–7571 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Roberts, D. C., Brebner, K., Vincler, M. & Lynch, W. J. Patterns of cocaine self-administration in rats produced by various access conditions under a discrete trials procedure. Drug Alcohol Depend. 67, 291–299 (2002).

    CAS  PubMed  Google Scholar 

  79. 79.

    Zimmer, B. A., Oleson, E. B. & Roberts, D. C. The motivation to self-administer is increased after a history of spiking brain levels of cocaine. Neuropsychopharmacology 37, 1901–1910 (2012). An important study introducing the increasingly popular intermittent drug access animal model of addiction.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Allain, F., Minogianis, E. A., Roberts, D. C. & Samaha, A. N. How fast and how often: the pharmacokinetics of drug use are decisive in addiction. Neurosci. Biobehav. Rev. 56, 166–179 (2015).

    PubMed  Google Scholar 

  81. 81.

    Kawa, A. B., Valenta, A. C., Kennedy, R. T. & Robinson, T. E. Incentive and dopamine sensitization produced by intermittent but not long access cocaine self-administration. Eur. J. Neurosci. 50, 2663–2682 (2019).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Xue, Y., Steketee, J. D. & Sun, W. Inactivation of the central nucleus of the amygdala reduces the effect of punishment on cocaine self-administration in rats. Eur. J. Neurosci. 35, 775–783 (2012).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Kawa, A. B., Bentzley, B. S. & Robinson, T. E. Less is more: prolonged intermittent access cocaine self-administration produces incentive-sensitization and addiction-like behavior. Psychopharmacology 233, 3587–3602 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Hao, Y., Martin-Fardon, R. & Weiss, F. Behavioral and functional evidence of metabotropic glutamate receptor 2/3 and metabotropic glutamate receptor 5 dysregulation in cocaine-escalated rats: factor in the transition to dependence. Biol. Psychiatry 68, 240–248 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Allain, F., Roberts, D. C. S., Levesque, D. & Samaha, A. N. Intermittent intake of rapid cocaine injections promotes robust psychomotor sensitization, increased incentive motivation for the drug and mGlu2/3 receptor dysregulation. Neuropharmacology 117, 227–237 (2017).

    CAS  PubMed  Google Scholar 

  86. 86.

    James, M. H. et al. Increased number and activity of a lateral subpopulation of hypothalamic orexin/hypocretin neurons underlies the expression of an addicted state in rats. Biol. Psychiatry 85, 925–935 (2019).

    CAS  PubMed  Google Scholar 

  87. 87.

    Nicolas, C. et al. Incubation of cocaine craving after intermittent-access self-administration: sex differences and estrous cycle. Biol. Psychiatry 85, 915–924 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Calipari, E. S., Ferris, M. J., Zimmer, B. A., Roberts, D. C. & Jones, S. R. Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology 38, 2385–2392 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    James, I. E. et al. A first time in human clinical study with TRV734, an orally bioavailable G-protein-biased ligand at the μ-opioid receptor. Clin. Pharmacol. Drug Dev. 9, 256–266 (2019).

    PubMed  Google Scholar 

  90. 90.

    O’Neal, T. J., Nooney, M. N., Thien, K. & Ferguson, S. M. Chemogenetic modulation of accumbens direct or indirect pathways bidirectionally alters reinstatement of heroin-seeking in high- but not low-risk rats. Neuropsychopharmacology 45, 1251–1262 (2019).

    PubMed  Google Scholar 

  91. 91.

    Bentzley, B. S., Fender, K. M. & Aston-Jones, G. The behavioral economics of drug self-administration: a review and new analytical approach for within-session procedures. Psychopharmacology 226, 113–125 (2013).

    CAS  PubMed  Google Scholar 

  92. 92.

    Mohammadkhani, A. et al. Orexin-1 receptor signaling in ventral pallidum regulates motivation for the opioid remifentanil. J. Neurosci. 39, 9831–9840 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Townsend, E. A., Negus, S. S., Caine, S. B., Thomsen, M. & Banks, M. L. Sex differences in opioid reinforcement under a fentanyl vs. food choice procedure in rats. Neuropsychopharmacology 44, 2022–2029 (2019).

    PubMed  Google Scholar 

  94. 94.

    Fragale, J. E., Pantazis, C. B., James, M. H. & Aston-Jones, G. The role of orexin-1 receptor signaling in demand for the opioid fentanyl. Neuropsychopharmacology 44, 1690–1697 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Goldberg, S. R. Stimuli associated with drug injections as events that control behavior. Pharmacol. Rev. 27, 325–340 (1975).

    CAS  PubMed  Google Scholar 

  96. 96.

    Goldberg, S. R. Comparable behavior maintained under fixed-ratio and second-order schedules of food presentation, cocaine injection or d-amphetamine injection in the squirrel monkey. J. Pharmacol. Exp. Ther. 186, 18–30 (1973).

    CAS  PubMed  Google Scholar 

  97. 97.

    Whitelaw, R. B., Markou, A., Robbins, T. W. & Everitt, B. J. Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement. Psychopharmacology 127, 213–224 (1996).

    CAS  PubMed  Google Scholar 

  98. 98.

    Weissenborn, R., Robbins, T. W. & Everitt, B. J. Effects of medial prefrontal or anterior cingulate cortex lesions on responding for cocaine under fixed-ratio and second-order schedules of reinforcement in rats. Psychopharmacology 134, 242–257 (1997).

    CAS  PubMed  Google Scholar 

  99. 99.

    Wise, R. A. et al. Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology 120, 10–20 (1995).

    CAS  PubMed  Google Scholar 

  100. 100.

    Ito, R., Dalley, J. W., Howes, S. R., Robbins, T. W. & Everitt, B. J. Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J. Neurosci. 20, 7489–7495 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Ito, R., Dalley, J. W., Robbins, T. W. & Everitt, B. J. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J. Neurosci. 22, 6247–6253 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Ito, R., Robbins, T. W. & Everitt, B. J. Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat. Neurosci. 7, 389–397 (2004).

    CAS  PubMed  Google Scholar 

  103. 103.

    Hutcheson, D. M., Parkinson, J. A., Robbins, T. W. & Everitt, B. J. The effects of nucleus accumbens core and shell lesions on intravenous heroin self-administration and the acquisition of drug-seeking behaviour under a second-order schedule of heroin reinforcement. Psychopharmacology 153, 464–472 (2001).

    CAS  PubMed  Google Scholar 

  104. 104.

    Di Ciano, P. & Everitt, B. J. Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J. Neurosci. 24, 7167–7173 (2004).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Di Ciano, P. & Everitt, B. J. Contribution of the ventral tegmental area to cocaine-seeking maintained by a drug-paired conditioned stimulus in rats. Eur. J. Neurosci. 19, 1661–1667 (2004).

    PubMed  Google Scholar 

  106. 106.

    Wise, R. A. Neurobiology of addiction. Curr. Opin. Neurobiol. 6, 243–251 (1996).

    CAS  PubMed  Google Scholar 

  107. 107.

    Peak, J., Hart, G. & Balleine, B. W. From learning to action: the integration of dorsal striatal input and output pathways in instrumental conditioning. Eur. J. Neurosci. 49, 658–671 (2019).

    PubMed  Google Scholar 

  108. 108.

    Everitt, B. J. & Robbins, T. W. Drug addiction: updating actions to habits to compulsions ten years on. Annu. Rev. Psychol. 67, 23–50 (2016).

    PubMed  Google Scholar 

  109. 109.

    Zapata, A., Minney, V. L. & Shippenberg, T. S. Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J. Neurosci. 30, 15457–15463 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Hodebourg, R. et al. Heroin seeking becomes dependent on dorsal striatal dopaminergic mechanisms and can be decreased by N-acetylcysteine. Eur. J. Neurosci. 50, 2036–2044 (2019).

    PubMed  Google Scholar 

  111. 111.

    Giuliano, C. et al. The Novel mu-opioid receptor antagonist GSK1521498 decreases both alcohol seeking and drinking: Evidence from a new preclinical model of alcohol seeking. Neuropsychopharmacology 40, 2981–2992 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Murray, J. E., Belin, D. & Everitt, B. J. Double dissociation of the dorsomedial and dorsolateral striatal control over the acquisition and performance of cocaine seeking. Neuropsychopharmacology 37, 2456–2466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Belin, D. & Everitt, B. J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432–441 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Murray, J. E. et al. Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits. Nat. Commun. 6, 10088 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Lukas, S. E., Mello, N. K., Drieze, J. M. & Mendelson, J. H. Buprenorphine-induced alterations of cocaine’s reinforcing effects in rhesus monkey: a dose-response analysis. Drug Alcohol Depend. 40, 87–98 (1995).

    CAS  PubMed  Google Scholar 

  116. 116.

    Newman, J. L., Negus, S. S., Lozama, A., Prisinzano, T. E. & Mello, N. K. Behavioral evaluation of modafinil and the abuse-related effects of cocaine in rhesus monkeys. Exp. Clin. Psychopharmacol. 18, 395–408 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Mello, N. K., Fivel, P. A., Kohut, S. J. & Bergman, J. Effects of chronic buspirone treatment on cocaine self-administration. Neuropsychopharmacology 38, 455–467 (2013).

    CAS  PubMed  Google Scholar 

  118. 118.

    Winhusen, T. M. et al. Multisite, randomized, double-blind, placebo-controlled pilot clinical trial to evaluate the efficacy of buspirone as a relapse-prevention treatment for cocaine dependence. J. Clin. Psychiatry 75, 757–764 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Ling, W. et al. Buprenorphine+naloxone plus naltrexone for the treatment of cocaine dependence: the Cocaine Use Reduction with Buprenorphine (CURB) study. Addiction 111, 1416–1427 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Sangroula, D. et al. Modafinil treatment of cocaine dependence: a systematic review and meta-analysis. Subst. Use Misuse 52, 1292–1306 (2017).

    PubMed  Google Scholar 

  121. 121.

    Di Ciano, P., Underwood, R. J., Hagan, J. J. & Everitt, B. J. Attenuation of cue-controlled cocaine-seeking by a selective D3 dopamine receptor antagonist SB-277011-A. Neuropsychopharmacology 28, 329–338 (2003).

    PubMed  Google Scholar 

  122. 122.

    Pilla, M. et al. Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 400, 371–375 (1999).

    CAS  PubMed  Google Scholar 

  123. 123.

    Le Foll, B. et al. Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings. Prog. Brain Res. 211, 255–275 (2014).

    PubMed  Google Scholar 

  124. 124.

    Leggio, G. M., Bucolo, C., Platania, C. B., Salomone, S. & Drago, F. Current drug treatments targeting dopamine D3 receptor. Pharmacol. Ther. 165, 164–177 (2016).

    CAS  PubMed  Google Scholar 

  125. 125.

    Gilbert, J. G. et al. Acute administration of SB-277011A, NGB 2904, or BP 897 inhibits cocaine cue-induced reinstatement of drug-seeking behavior in rats: role of dopamine D3 receptors. Synapse 57, 17–28 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Newman, A. H., Grundt, P. & Nader, M. A. Dopamine D3 receptor partial agonists and antagonists as potential drug abuse therapeutic agents. J. Med. Chem. 48, 3663–3679 (2005).

    CAS  PubMed  Google Scholar 

  127. 127.

    Spragg, S. D. S. Morphine addiction in chimpanzees. Comp. Psychol. Mono 15, 132 (1940).

    Google Scholar 

  128. 128.

    Griffiths, R. R., Wurster, R. M. & Brady, J. V. Discrete-trial choice procedure: effects of naloxone and methadone on choice between food and heroin. Pharmacol. Rev. 27, 357–365 (1975).

    CAS  PubMed  Google Scholar 

  129. 129.

    Negus, S. S. Choice between heroin and food in nondependent and heroin-dependent rhesus monkeys: effects of naloxone, buprenorphine, and methadone. J. Pharmacol. Exp. Ther. 317, 711–723 (2006). An important study demonstrating that opioid dependence and withdrawal increase heroin choice in rhesus monkeys and that this effect is reversed by opioid agonist treatment (methadone or buprenorphine).

    CAS  PubMed  Google Scholar 

  130. 130.

    Lenoir, M., Cantin, L., Vanhille, N., Serre, F. & Ahmed, S. H. Extended heroin access increases heroin choices over a potent nondrug alternative. Neuropsychopharmacology 38, 1209–1220 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Townsend, E. A. et al. Conjugate vaccine produces long-lasting attenuation of fentanyl vs. food choice and blocks expression of opioid withdrawal-induced increases in fentanyl choice in rats. Neuropsychopharmacology 44, 1681–1689 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Banks, M. L. & Negus, S. S. Effects of extended cocaine access and cocaine withdrawal on choice between cocaine and food in rhesus monkeys. Neuropsychopharmacology 35, 493–504 (2010).

    CAS  PubMed  Google Scholar 

  133. 133.

    Hutsell, B. A., Negus, S. S. & Banks, M. L. Effects of 21-day d-amphetamine and risperidone treatment on cocaine vs food choice and extended-access cocaine intake in male rhesus monkeys. Drug Alcohol Depend. 168, 36–44 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Cantin, L. et al. Cocaine is low on the value ladder of rats: possible evidence for resilience to addiction. PLoS ONE 5, e11592 (2010).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Caprioli, D., Zeric, T., Thorndike, E. B. & Venniro, M. Persistent palatable food preference in rats with a history of limited and extended access to methamphetamine self-administration. Addict. Biol. 20, 913–926 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Badiani, A. & Spagnolo, P. A. Role of environmental factors in cocaine addiction. Curr. Pharm. Des. 19, 6996–7008 (2013).

    CAS  PubMed  Google Scholar 

  137. 137.

    Caprioli, D. et al. Ambience and drug choice: cocaine- and heroin-taking as a function of environmental context in humans and rats. Biol. Psychiatry 65, 893–899 (2009).

    CAS  PubMed  Google Scholar 

  138. 138.

    Johanson, C. E. & Aigner, T. Comparison of the reinforcing properties of cocaine and procaine in rhesus monkeys. Pharmacol. Biochem. Behav. 15, 49–53 (1981).

    CAS  PubMed  Google Scholar 

  139. 139.

    Nader, M. A. & Woolverton, W. L. Cocaine vs. food choice in rhesus monkeys: effects of increasing the response cost for cocaine. NIDA Res. Monogr. 105, 621 (1990).

    CAS  PubMed  Google Scholar 

  140. 140.

    Tunstall, B. J. & Kearns, D. N. Reinstatement in a cocaine versus food choice situation: reversal of preference between drug and non-drug rewards. Addict. Biol. 19, 838–848 (2014).

    PubMed  Google Scholar 

  141. 141.

    Woolverton, W. L. & Anderson, K. G. Effects of delay to reinforcement on the choice between cocaine and food in rhesus monkeys. Psychopharmacology 186, 99–106 (2006).

    CAS  PubMed  Google Scholar 

  142. 142.

    Lenoir, M., Serre, F., Cantin, L. & Ahmed, S. H. Intense sweetness surpasses cocaine reward. PLoS ONE 2, e698 (2007). The first in a series of important studies unexpectedly showing that rats strongly prefer palatable food over addictive drugs in the drug self-administration model.

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Canchy, L., Girardeau, P., Durand, A., Vouillac-Mendoza, C. & Ahmed, S. H. Pharmacokinetics trumps pharmacodynamics during cocaine choice: a reconciliation with the dopamine hypothesis of addiction. Neuropsychopharmacology https://doi.org/10.1038/s41386-020-0786-9 (2020).

  144. 144.

    Foltin, R. W. et al. Development of translational preclinical models in substance abuse: effects of cocaine administration on cocaine choice in humans and non-human primates. Pharmacol. Biochem. Behav. 134, 12–21 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Lile, J. A. et al. Pharmacological validation of a translational model of cocaine use disorder: effects of d-amphetamine maintenance on choice between intravenous cocaine and a nondrug alternative in humans and rhesus monkeys. Exp. Clin. Psychopharmacol. 28, 169–180 (2020).

    PubMed  Google Scholar 

  146. 146.

    Higgins, S. T., Heil, S. H. & Lussier, J. P. Clinical implications of reinforcement as a determinant of substance use disorders. Annu. Rev. Psychol. 55, 431–461 (2004).

    PubMed  Google Scholar 

  147. 147.

    Guillem, K. & Ahmed, S. H. Preference for cocaine is represented in the orbitofrontal cortex by an increased proportion of cocaine use-coding neurons. Cereb. Cortex 28, 819–832 (2018).

    PubMed  Google Scholar 

  148. 148.

    Guillem, K. & Ahmed, S. H. A neuronal population code for resemblance between drug and nondrug reward outcomes in the orbitofrontal cortex. Brain Struct. Funct. 224, 883–890 (2019).

    PubMed  Google Scholar 

  149. 149.

    Cameron, C. M. & Carelli, R. M. Cocaine abstinence alters nucleus accumbens firing dynamics during goal-directed behaviors for cocaine and sucrose. Eur. J. Neurosci. 35, 940–951 (2012).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Carelli, R. M., Ijames, S. G. & Crumling, A. J. Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus “natural” (water and food) reward. J. Neurosci. 20, 4255–4266 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Pfarr, S. et al. Choice for drug or natural reward engages largely overlapping neuronal ensembles in the infralimbic prefrontal cortex. J. Neurosci. 38, 3507–3519 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Warren, B. L. et al. Separate vmPFC ensembles control cocaine self-administration versus extinction in rats. J. Neurosci. 39, 7394–7407 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Warren, B. L. et al. Distinct Fos-expressing neuronal ensembles in the ventromedial prefrontal cortex mediate food reward and extinction memories. J. Neurosci. 36, 6691–6703 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Augier, E. et al. A molecular mechanism for choosing alcohol over an alternative reward. Science 360, 1321–1326 (2018).

    CAS  PubMed  Google Scholar 

  155. 155.

    Sikora, M. et al. Generalization of effects of environmental enrichment on seeking for different classes of drugs of abuse. Behav. Brain Res. 341, 109–113 (2018).

    PubMed  Google Scholar 

  156. 156.

    Chauvet, C., Goldberg, S. R., Jaber, M. & Solinas, M. Effects of environmental enrichment on the incubation of cocaine craving. Neuropharmacology 63, 635–641 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Solinas, M., Chauvet, C., Thiriet, N., El Rawas, R. & Jaber, M. Reversal of cocaine addiction by environmental enrichment. Proc. Natl Acad. Sci. USA 105, 17145–17150 (2008).

    CAS  PubMed  Google Scholar 

  158. 158.

    Zlebnik, N. E. & Carroll, M. E. Prevention of the incubation of cocaine seeking by aerobic exercise in female rats. Psychopharmacology 232, 3507–3513 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Zlebnik, N. E., Anker, J. J. & Carroll, M. E. Exercise to reduce the escalation of cocaine self-administration in adolescent and adult rats. Psychopharmacology 224, 387–400 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Zernig, G., Kummer, K. K. & Prast, J. M. Dyadic social interaction as an alternative reward to cocaine. Front. Psychiatry 4, 100 (2013).

    PubMed  PubMed Central  Google Scholar 

  161. 161.

    Higgins, S. T. et al. A behavioral approach to achieving initial cocaine abstinence. Am. J. Psychiatry 148, 1218–1224 (1991).

    CAS  PubMed  Google Scholar 

  162. 162.

    Townsend, E. A., Negus, S. S., Poklis, J. L. & Banks, M. L. Lorcaserin maintenance fails to attenuate heroin vs. food choice in rhesus monkeys. Drug Alcohol Depend. 208, 107848 (2020).

    CAS  PubMed  Google Scholar 

  163. 163.

    Brandt, L. et al. Effects of lorcaserin on oxycodone self-administration and subjective responses in participants with opioid use disorder. Drug Alcohol Depend. 208, 107859 (2020).

    CAS  PubMed  Google Scholar 

  164. 164.

    Luscher, C., Robbins, T. W. & Everitt, B. J. The transition to compulsion in addiction. Nat. Rev. Neurosci. 21, 247–263 (2020).

    CAS  PubMed  Google Scholar 

  165. 165.

    Smith, S. G. & Davis, W. M. Punishment of amphetamine and morphine self-administration behavior. Psychol. Rec. 24, 477–480 (1974).

    Google Scholar 

  166. 166.

    Wolffgramm, J. & Heyne, A. From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav. Brain Res. 70, 77–94 (1995). An important early review of the authors’ efforts to develop animal models of compulsive drug use and loss of control.

    CAS  PubMed  Google Scholar 

  167. 167.

    Holtz, N. A. & Carroll, M. E. Escalation of i.v. cocaine intake in peri-adolescent vs. adult rats selectively bred for high (HiS) vs. low (LoS) saccharin intake. Psychopharmacology 227, 243–250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Vanderschuren, L. J. & Everitt, B. J. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305, 1017–1019 (2004).

    CAS  PubMed  Google Scholar 

  169. 169.

    Negus, S. S. Effects of punishment on choice between cocaine and food in rhesus monkeys. Psychopharmacology 181, 244–252 (2005).

    CAS  PubMed  Google Scholar 

  170. 170.

    Woolverton, W. L., Freeman, K. B., Myerson, J. & Green, L. Suppression of cocaine self-administration in monkeys: effects of delayed punishment. Psychopharmacology 220, 509–517 (2012).

    CAS  PubMed  Google Scholar 

  171. 171.

    Marchant, N. J., Campbell, E. J., Pelloux, Y., Bossert, J. M. & Shaham, Y. Context-induced relapse after extinction versus punishment: similarities and differences. Psychopharmacology 236, 439–448 (2019).

    CAS  PubMed  Google Scholar 

  172. 172.

    Jenkins, T. N., Warner, L. H. & Warden, C. J. Standard apparatus for the study of animal motivation. J. Comp. Psychol. 6, 361–382 (1926).

    Google Scholar 

  173. 173.

    Panlilio, L., Thorndike, E. & Schindler, C. Reinstatement of punishment-suppressed opioid self-administration in rats: an alternative model of relapse to drug abuse. Psychopharmacology 168, 229–235 (2003).

    CAS  PubMed  Google Scholar 

  174. 174.

    Marchant, N. J., Khuc, T. N., Pickens, C. L., Bonci, A. & Shaham, Y. Context-induced relapse to alcohol seeking after punishment in a rat model. Biol. Psychiatry 73, 256–262 (2013).

    CAS  PubMed  Google Scholar 

  175. 175.

    Cooper, A., Barnea-Ygael, N., Levy, D., Shaham, Y. & Zangen, A. A conflict rat model of cue-induced relapse to cocaine seeking. Psychopharmacology 194, 117–125 (2007).

    CAS  PubMed  Google Scholar 

  176. 176.

    Fredriksson, I. et al. Effect of the dopamine stabilizer (-)-OSU6162 on potentiated incubation of opioid craving after electric barrier-induced voluntary abstinence. Neuropsychopharmacology 45, 770–779 (2020).

    CAS  PubMed  Google Scholar 

  177. 177.

    Chen, B. T. et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496, 359–362 (2013).

    CAS  PubMed  Google Scholar 

  178. 178.

    Siciliano, C. A. et al. A cortical-brainstem circuit predicts and governs compulsive alcohol drinking. Science 366, 1008–1012 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Seif, T. et al. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nat. Neurosci. 16, 1094–1100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Pelloux, Y., Dilleen, R., Economidou, D., Theobald, D. & Everitt, B. J. Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats. Neuropsychopharmacology 37, 2505–2514 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Pelloux, Y., Murray, J. E. & Everitt, B. J. Differential roles of the prefrontal cortical subregions and basolateral amygdala in compulsive cocaine seeking and relapse after voluntary abstinence in rats. Eur. J. Neurosci. 38, 3018–3026 (2013).

    PubMed  PubMed Central  Google Scholar 

  182. 182.

    Jonkman, S., Pelloux, Y. & Everitt, B. J. Differential roles of the dorsolateral and midlateral striatum in punished cocaine seeking. J. Neurosci. 32, 4645–4650 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Hopf, F. W. & Lesscher, H. M. Rodent models for compulsive alcohol intake. Alcohol 48, 253–264 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Pascoli, V., Terrier, J., Hiver, A. & Luscher, C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88, 1054–1066 (2015).

    CAS  PubMed  Google Scholar 

  185. 185.

    Pascoli, V. et al. Stochastic synaptic plasticity underlying compulsion in a model of addiction. Nature 564, 366–371 (2018).

    CAS  PubMed  Google Scholar 

  186. 186.

    Krasnova, I. N. et al. Incubation of methamphetamine and palatable food craving after punishment-induced abstinence. Neuropsychopharmacology 39, 2008–2016 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Marchant, N. J. et al. Role of ventral subiculum in context-induced relapse to alcohol seeking after punishment-imposed abstinence. J. Neurosci. 36, 3281–3294 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Marchant, N. J. et al. A critical role of lateral hypothalamus in context-induced relapse to alcohol seeking after punishment-imposed abstinence. J. Neurosci. 34, 7447–7457 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Campbell, E. J. et al. Anterior insular cortex is critical for the propensity to relapse following punishment-imposed abstinence of alcohol seeking. J. Neurosci. 39, 1077–1087 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Farrell, M. R. et al. Ventral pallidum is essential for cocaine relapse after voluntary abstinence in rats. Neuropsychopharmacology 44, 2174–2185 (2019).

    PubMed  Google Scholar 

  191. 191.

    Pelloux, Y., Minier-Toribio, A., Hoots, J. K., Bossert, J. M. & Shaham, Y. Opposite effects of basolateral amygdala inactivation on context-induced relapse to cocaine seeking after extinction versus punishment. J. Neurosci. 38, 51–59 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Crombag, H. & Shaham, Y. Renewal of drug seeking by contextual cues after prolonged extinction in rats. Behav. Neurosci. 116, 169–173 (2002).

    CAS  PubMed  Google Scholar 

  193. 193.

    Saunders, B. T., Yager, L. M. & Robinson, T. E. Cue-evoked cocaine “craving”: role of dopamine in the accumbens core. J. Neurosci. 33, 13989–14000 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Pelloux, Y. et al. Context-induced relapse to cocaine seeking after punishment-imposed abstinence is associated with activation of cortical and subcortical brain regions. Addict. Biol. 23, 699–712 (2018).

    CAS  PubMed  Google Scholar 

  195. 195.

    Giuliano, C. et al. Evidence for a long-lasting compulsive alcohol seeking phenotype in rats. Neuropsychopharmacology 43, 728–738 (2018).

    CAS  PubMed  Google Scholar 

  196. 196.

    Ziauddeen, H. et al. Opioid antagonists and the A118G polymorphism in the mu-opioid receptor gene: effects of GSK1521498 and naltrexone in healthy drinkers stratified by OPRM1 genotype. Neuropsychopharmacology 41, 2647–2657 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197.

    Leggio, L., Garbutt, J. C. & Addolorato, G. Effectiveness and safety of baclofen in the treatment of alcohol dependent patients. CNS Neurol. Disord. Drug Targets 9, 33–44 (2010).

    CAS  PubMed  Google Scholar 

  198. 198.

    Marti-Prats, L. et al. Baclofen decreases compulsive alcohol drinking in rats characterised by reduced levels of GAT-3 in the central amygdala. Preprint at https://www.biorxiv.org/content/10.1101/2020.06.29.178236v1 (2020).

  199. 199.

    Anthony, J. C., Warner, L. A. & Kessler, R. C. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey. Drug Alcohol Depend. 2, 244–268 (1994).

    Google Scholar 

  200. 200.

    Wikler, A. & Pescor, F. T. Classical conditioning of a morphine abstinence phenomenon, reinforcement of opioid-drinking behavior and “relapse” in morphine-addicted rats. Psychopharmacologia 10, 255–284 (1967).

    CAS  PubMed  Google Scholar 

  201. 201.

    Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004). An important article describing the development of the conceptually influential individual differences DSM-IV rat model.

    CAS  PubMed  Google Scholar 

  202. 202.

    Belin, D., Mar, A. C., Dalley, J. W., Robbins, T. W. & Everitt, B. J. High impulsivity predicts the switch to compulsive cocaine-taking. Science 320, 1352–1355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Kasanetz, F. et al. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 328, 1709–1712 (2010).

    CAS  PubMed  Google Scholar 

  204. 204.

    Kasanetz, F. et al. Prefrontal synaptic markers of cocaine addiction-like behavior in rats. Mol. Psychiatry 18, 729–737 (2013).

    CAS  PubMed  Google Scholar 

  205. 205.

    Cannella, N. et al. The mGluR2/3 agonist LY379268 induced anti-reinstatement effects in rats exhibiting addiction-like behavior. Neuropsychopharmacology 38, 2048–2056 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Bock, R. et al. Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat. Neurosci. 16, 632–638 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207.

    Piazza, P. V. & Deroche-Gamonet, V. A multistep general theory of transition to addiction. Psychopharmacology 229, 387–413 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. 208.

    Liechti, M. E. & Markou, A. Role of the glutamatergic system in nicotine dependence: implications for the discovery and development of new pharmacological smoking cessation therapies. CNS Drugs 22, 705–724 (2008).

    CAS  PubMed  Google Scholar 

  209. 209.

    Shaham, Y., Shalev, U., Lu, L., De Wit, H. & Stewart, J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology 168, 3–20 (2003).

    CAS  PubMed  Google Scholar 

  210. 210.

    Dole, V. P. & Nyswander, M. A medical treatment for diacetylmorphine (heroin) addiction. A clinical trial with methadone hydrochloride. JAMA 193, 646–650 (1965).

    CAS  PubMed  Google Scholar 

  211. 211.

    Jasinski, D. R., Pevnick, J. S. & Griffith, J. D. Human pharmacology and abuse potential of the analgesic buprenorphine: a potential agent for treating narcotic addiction. Arch. Gen. Psychiatry 35, 501–516 (1978).

    CAS  PubMed  Google Scholar 

  212. 212.

    Hunt, G. M. & Azrin, N. H. A community-reinforcement approach to alcoholism. Behav. Res. Ther. 11, 91–104 (1973).

    CAS  PubMed  Google Scholar 

  213. 213.

    Shaham, Y., Rajabi, H. & Stewart, J. Relapse to heroin-seeking in rats under opioid maintenance: The effects of stress, heroin priming, and withdrawal. J. Neurosci. 16, 1957–1963 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214.

    Bossert, J. M. et al. Role of mu, but not delta or kappa, opioid receptors in context-induced reinstatement of oxycodone seeking. Eur. J. Neurosci. 50, 2075–2085 (2019).

    PubMed  Google Scholar 

  215. 215.

    DeWire, S. M. et al. A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther. 344, 708–717 (2013).

    CAS  PubMed  Google Scholar 

  216. 216.

    Gillis, A. et al. Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci. Signal. 13, eaaz3140 (2020).

    CAS  PubMed  Google Scholar 

  217. 217.

    Viscusi, E. R. et al. A randomized, phase 2 study investigating TRV130, a biased ligand of the mu-opioid receptor, for the intravenous treatment of acute pain. Pain 157, 264–272 (2016).

    CAS  PubMed  Google Scholar 

  218. 218.

    Grabowski, J. et al. Dextroamphetamine for cocaine-dependence treatment: a double-blind randomized clinical trial. J. Clin. Psychopharmacol. 21, 522–526 (2001).

    CAS  PubMed  Google Scholar 

  219. 219.

    Siciliano, C. A. et al. Amphetamine reverses escalated cocaine intake via restoration of dopamine transporter conformation. J. Neurosci. 38, 484–497 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. 220.

    Negus, S. S. & Mello, N. K. Effects of chronic d-amphetamine treatment on cocaine- and food-maintained responding under a second-order schedule in rhesus monkeys. Drug Alcohol Depend. 70, 39–52 (2003).

    CAS  PubMed  Google Scholar 

  221. 221.

    Tardelli, V. S. et al. Prescription psychostimulants for the treatment of stimulant use disorder: a systematic review and meta-analysis. Psychopharmacology 237, 2233–2255 (2020).

    CAS  PubMed  Google Scholar 

  222. 222.

    Justinova, Z. et al. The novel metabotropic glutamate receptor 2 positive allosteric modulator, AZD8529, decreases nicotine self-administration and relapse in squirrel monkeys. Biol. Psychiatry 78, 452–462 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223.

    Venniro, M., Zhang, M., Shaham, Y. & Caprioli, D. Incubation of methamphetamine but not heroin craving after voluntary abstinence in male and female rats. Neuropsychopharmacology 42, 1126–1135 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. 224.

    Bedi, G. et al. Incubation of cue-induced cigarette craving during abstinence in human smokers. Biol. Psychiatry 69, 708–711 (2011).

    PubMed  PubMed Central  Google Scholar 

  225. 225.

    Cruz, F. C. et al. New technologies for examining the role of neuronal ensembles in drug addiction and fear. Nat. Rev. Neurosci. 14, 743–754 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. 226.

    Caprioli, D. et al. Role of dorsomedial striatum neuronal ensembles in incubation of methamphetamine craving after voluntary abstinence. J. Neurosci. 37, 1014–1027 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. 227.

    Rossi, L. M. et al. Role of nucleus accumbens core but not shell in incubation of methamphetamine craving after voluntary abstinence. Neuropsychopharmacology 45, 256–265 (2020).

    CAS  PubMed  Google Scholar 

  228. 228.

    Venniro, M. et al. The anterior insular cortex–>central amygdala glutamatergic pathway Is critical to relapse after contingency management. Neuron 96, 414–427 e418 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. 229.

    Reiner, D. J. et al. Role of projections between piriform cortex and orbitofrontal cortex in relapse to fentanyl seeking after palatable food choice-induced voluntary abstinence. J. Neurosci. 40, 2485–2497 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. 230.

    Stitzer, M. L., Jones, H. E., Tuten, M. & Wong, C. in Handbook of Motivational Counseling: Goal-Based Approaches to Assessment and Intervention with Addiction and Other Problems (eds Cox, W. M. & Klinger, E.) (John Wiley & Sons Ltd, 2011).

  231. 231.

    Silverman, K., DeFulio, A. & Sigurdsson, S. O. Maintenance of reinforcement to address the chronic nature of drug addiction. Prev. Med. 55, S46–S53 (2012).

    PubMed  PubMed Central  Google Scholar 

  232. 232.

    Mason, W. A., Hollins, J. H. & Sharpe, L. G. Differential responses of chimpanzees to social stimulation. J. Comp. Physiol. Psychol. 55, 1105–1110 (1962).

    Google Scholar 

  233. 233.

    Venniro, M. & Shaham, Y. An operant social self-administration and choice model in rats. Nat. Protoc. 15, 1542–1559 (2020).

    CAS  PubMed  Google Scholar 

  234. 234.

    Venniro, M., Russell, T. I., Zhang, M. & Shaham, Y. Operant social reward decreases incubation of heroin craving in male and female rats. Biol. Psychiatry 86, 848–856 (2019).

    CAS  PubMed  Google Scholar 

  235. 235.

    Grundemann, J. & Luthi, A. Ensemble coding in amygdala circuits for associative learning. Curr. Opin. Neurobiol. 35, 200–206 (2015).

    CAS  PubMed  Google Scholar 

  236. 236.

    Venniro, M. et al. Abstinence-dependent dissociable central amygdala microcircuits control drug craving. Proc. Natl Acad. Sci. USA 117, 8126–8134 (2020).

    CAS  PubMed  Google Scholar 

  237. 237.

    Leboyer, M. et al. Psychiatric genetics: search for phenotypes. Trends Neurosci. 21, 102–105 (1998).

    CAS  PubMed  Google Scholar 

  238. 238.

    Swerdlow, N. R., Braff, D. L. & Geyer, M. A. Sensorimotor gating of the startle reflex: what we said 25 years ago, what has happened since then, and what comes next. J. Psychopharmacol. 30, 1072–1081 (2016).

    PubMed  PubMed Central  Google Scholar 

  239. 239.

    Anderzhanova, E., Kirmeier, T. & Wotjak, C. T. Animal models in psychiatric research: the RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol. Stress. 7, 47–56 (2017).

    PubMed  PubMed Central  Google Scholar 

  240. 240.

    Falk, D. E. et al. Evaluation of drinking risk levels as outcomes in alcohol pharmacotherapy trials: A secondary analysis of 3 randomized clinical trials. JAMA Psychiatry 76, 374–381 (2019).

    PubMed  PubMed Central  Google Scholar 

  241. 241.

    Center for Drug Evaluation and Research. Opioid use disorder: endpoints for demonstrating effectiveness of drugs for medication-assisted treatment guidance for industry. US Food and Drug Association https://www.fda.gov/regulatory-information/search-fda-guidance-documents/opioid-use-disorder-endpoints-demonstrating-effectiveness-drugs-medication-assisted-treatment (2018).

  242. 242.

    Heilig, M., Sommer, W. H. & Spanagel, R. The need for treatment responsive translational biomarkers in alcoholism research. Curr. Top. Behav. Neurosci. 28, 151–171 (2016).

    CAS  PubMed  Google Scholar 

  243. 243.

    Kakko, J. et al. A stepped care strategy using buprenorphine and methadone versus conventional methadone maintenance in heroin dependence: a randomized controlled trial. Am. J. Psychiatry 164, 797–803 (2007).

    PubMed  Google Scholar 

  244. 244.

    Zhu, Y. et al. Correlates of long-term opioid abstinence after randomization to methadone versus buprenorphine/naloxone in a multi-site trial. J. Neuroimmune Pharmacol. 13, 488–497 (2018).

    PubMed  PubMed Central  Google Scholar 

  245. 245.

    Donny, E. C., Walsh, S. L., Bigelow, G. E., Eissenberg, T. & Stitzer, M. L. High-dose methadone produces superior opioid blockade and comparable withdrawal suppression to lower doses in opioid-dependent humans. Psychopharmacology 161, 202–212 (2002).

    CAS  PubMed  Google Scholar 

  246. 246.

    Mattick, R. P., Breen, C., Kimber, J. & Davoli, M. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD002207.pub4 (2014).

  247. 247.

    Greenwald, M. K., Comer, S. D. & Fiellin, D. A. Buprenorphine maintenance and mu-opioid receptor availability in the treatment of opioid use disorder: implications for clinical use and policy. Drug Alcohol Depend. 144, 1–11 (2014).

    CAS  PubMed  Google Scholar 

  248. 248.

    Kliewer, A. et al. Morphine-induced respiratory depression is independent of beta-arrestin2 signalling. Br. J. Pharmacol. 177, 2923–2931 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. 249.

    Haight, B. R. et al. Efficacy and safety of a monthly buprenorphine depot injection for opioid use disorder: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 393, 778–790 (2019).

    CAS  PubMed  Google Scholar 

  250. 250.

    Lofwall, M. R. et al. Weekly and monthly subcutaneous buprenorphine depot formulations vs daily sublingual buprenorphine With naloxone for treatment of opioid use disorder: a randomized clinical trial. JAMA Intern. Med. 178, 764–773 (2018).

    PubMed  PubMed Central  Google Scholar 

  251. 251.

    Moore, D. et al. Effectiveness and safety of nicotine replacement therapy assisted reduction to stop smoking: systematic review and meta-analysis. BMJ 338, b1024 (2009).

    PubMed  PubMed Central  Google Scholar 

  252. 252.

    Cahill, K., Stevens, S., Perera, R. & Lancaster, T. Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD009329.pub2 (2013).

  253. 253.

    van den Brink, W. et al. Efficacy and safety of sodium oxybate in alcohol-dependent patients with a very high drinking risk level. Addict. Biol. 23, 969–986 (2018).

    PubMed  Google Scholar 

  254. 254.

    D’Souza, D. C. et al. Efficacy and safety of a fatty acid amide hydrolase inhibitor (PF-04457845) in the treatment of cannabis withdrawal and dependence in men: a double-blind, placebo-controlled, parallel group, phase 2a single-site randomised controlled trial. Lancet Psychiatry 6, 35–45 (2019).

    PubMed  Google Scholar 

  255. 255.

    Mayo, L. M. et al. Elevated anandamide, enhanced recall of fear extinction, and attenuated stress responses following inhibition of fatty acid amide hydrolase: a randomized, controlled experimental medicine trial. Biol. Psychiatry 87, 538–547 (2020).

    PubMed  Google Scholar 

  256. 256.

    Dakwar, E. et al. a single ketamine infusion combined with motivational enhancement therapy for alcohol use disorder: a randomized midazolam-controlled pilot trial. Am. J. Psychiatry 177, 125–133 (2020).

    PubMed  Google Scholar 

  257. 257.

    Dakwar, E. et al. A single ketamine infusion combined with mindfulness-based behavioral modification to treat cocaine dependence: a randomized clinical trial. Am. J. Psychiatry 176, 923–930 (2019).

    PubMed  Google Scholar 

  258. 258.

    de Wit, H., Epstein, D. H. & Preston, K. L. Does human language limit translatability of clinical and preclinical addiction research? Neuropsychopharmacology 43, 1985–1988 (2018).

    PubMed  PubMed Central  Google Scholar 

  259. 259.

    Czajkowski, S. M. et al. From ideas to efficacy: The ORBIT model for developing behavioral treatments for chronic diseases. Health Psychol. 34, 971–982 (2015).

    PubMed  PubMed Central  Google Scholar 

  260. 260.

    Cabral, T. S. The 15th anniversary of the Portuguese drug policy: its history, its success and its future. Drug Sci. Policy Law https://doi.org/10.1177/2050324516683640 (2017).

  261. 261.

    Badiani, A. Substance-specific environmental influences on drug use and drug preference in animals and humans. Curr. Opin. Neurobiol. 23, 588–596 (2013).

    CAS  PubMed  Google Scholar 

  262. 262.

    Insel, T. R. Digital phenotyping: technology for a new science of behavior. JAMA 318, 1215–1216 (2017).

    PubMed  Google Scholar 

  263. 263.

    Negus, S. S. Rapid assessment of choice between cocaine and food in rhesus monkeys: effects of environmental manipulations and treatment with d-amphetamine and flupenthixol. Neuropsychopharmacology 28, 919–931 (2003).

    PubMed  Google Scholar 

  264. 264.

    Collins, G. T., Gerak, L. R., Javors, M. A. & France, C. P. Lorcaserin reduces the discriminative stimulus and reinforcing effects of cocaine in rhesus monkeys. J. Pharmacol. Exp. Ther. 356, 85–95 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. 265.

    Pirtle, J. L. et al. The serotonin-2C agonist lorcaserin delays intravenous choice and modifies the subjective and cardiovascular effects of cocaine: A randomized, controlled human laboratory study. Pharmacol. Biochem. Behav. 180, 52–59 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. 266.

    Harvey-Lewis, C., Li, Z., Higgins, G. A. & Fletcher, P. J. The 5-HT2C receptor agonist lorcaserin reduces cocaine self-administration, reinstatement of cocaine-seeking and cocaine induced locomotor activity. Neuropharmacology 101, 237–245 (2016).

    CAS  PubMed  Google Scholar 

  267. 267.

    Negus, S. S. & Banks, M. L. Learning from lorcaserin: lessons from the negative clinical trial of lorcaserin to treat cocaine use disorder. Neuropsychopharmacology https://doi.org/10.1038/s41386-020-00815-4 (2020).

    Article  PubMed  Google Scholar 

  268. 268.

    Karila, L. et al. Dopamine transporter correlates and occupancy by modafinil in cocaine-dependent patients: a controlled study with high-resolution PET and [11C]-PE2I. Neuropsychopharmacology 41, 2294–2302 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. 269.

    Hart, C. L., Haney, M., Vosburg, S. K., Rubin, E. & Foltin, R. W. Smoked cocaine self-administration is decreased by modafinil. Neuropsychopharmacology 33, 761–768 (2008).

    CAS  PubMed  Google Scholar 

  270. 270.

    Verrico, C. D. et al. Treatment with modafinil and escitalopram, alone and in combination, on cocaine-induced effects: a randomized, double blind, placebo-controlled human laboratory study. Drug Alcohol Depend. 141, 72–78 (2014).

    PubMed  PubMed Central  Google Scholar 

  271. 271.

    Zhang, H. Y. et al. The novel modafinil analog, JJC8-016, as a potential cocaine abuse pharmacotherapeutic. Neuropsychopharmacology 42, 1871–1883 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. 272.

    Collins, G. T. & France, C. P. Effects of lorcaserin and buspirone, administered alone and as a mixture, on cocaine self-administration in male and female rhesus monkeys. Exp. Clin. Psychopharmacol. 26, 488–496 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. 273.

    Bolin, B. L. et al. Buspirone reduces sexual risk-taking intent but not cocaine self-administration. Exp. Clin. Psychopharmacol. 24, 162–173 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. 274.

    Haney, M., Gunderson, E. W., Jiang, H., Collins, E. D. & Foltin, R. W. Cocaine-specific antibodies blunt the subjective effects of smoked cocaine in humans. Biol. Psychiatry 67, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. 275.

    Kosten, T. R. et al. Vaccine for cocaine dependence: a randomized double-blind placebo-controlled efficacy trial. Drug Alcohol Depend. 140, 42–47 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. 276.

    Wee, S. et al. Novel cocaine vaccine linked to a disrupted adenovirus gene transfer vector blocks cocaine psychostimulant and reinforcing effects. Neuropsychopharmacology 37, 1083–1091 (2012).

    CAS  PubMed  Google Scholar 

  277. 277.

    Bergman, J., Kamien, J. B. & Spealman, R. D. Antagonism of cocaine self-administration by selective dopamine D(1) and D(2) antagonists. Behav. Pharmacol. 1, 355–363 (1990).

    PubMed  Google Scholar 

  278. 278.

    Haney, M., Ward, A. S., Foltin, R. W. & Fischman, M. W. Effects of ecopipam, a selective dopamine D1 antagonist, on smoked cocaine self-administration by humans. Psychopharmacology 155, 330–337 (2001).

    CAS  PubMed  Google Scholar 

  279. 279.

    Nann-Vernotica, E., Donny, E. C., Bigelow, G. E. & Walsh, S. L. Repeated administration of the D1/5 antagonist ecopipam fails to attenuate the subjective effects of cocaine. Psychopharmacology 155, 338–347 (2001).

    CAS  PubMed  Google Scholar 

  280. 280.

    Maldonado, R., Robledo, P., Chover, A. J., Caine, S. B. & Koob, G. F. D1 dopamine receptors in the nucleus accumbens modulate cocaine self-administration in the rat. Pharmacol. Biochem. Behav. 45, 239–242 (1993).

    CAS  PubMed  Google Scholar 

  281. 281.

    Howell, L. L., Wilcox, K. M., Lindsey, K. P. & Kimmel, H. L. Olanzapine-induced suppression of cocaine self-administration in rhesus monkeys. Neuropsychopharmacology 31, 585–593 (2006).

    CAS  PubMed  Google Scholar 

  282. 282.

    Meil, W. M. & Schechter, M. D. Olanzapine attenuates the reinforcing effects of cocaine. Eur. J. Pharmacol. 340, 17–26 (1997).

    CAS  PubMed  Google Scholar 

  283. 283.

    Kampman, K. M., Pettinati, H., Lynch, K. G., Sparkman, T. & O’Brien, C. P. A pilot trial of olanzapine for the treatment of cocaine dependence. Drug Alcohol Depend. 70, 265–273 (2003).

    CAS  PubMed  Google Scholar 

  284. 284.

    Hamilton, J. D., Nguyen, Q. X., Gerber, R. M. & Rubio, N. B. Olanzapine in cocaine dependence: a double-blind, placebo-controlled trial. Am. J. Addict. 18, 48–52 (2009).

    PubMed  Google Scholar 

  285. 285.

    Glick, S. D., Maisonneuve, I. M., Raucci, J. & Archer, S. Kappa opioid inhibition of morphine and cocaine self-administration in rats. Brain Res. 681, 147–152 (1995).

    CAS  PubMed  Google Scholar 

  286. 286.

    Mello, N. K. & Negus, S. S. Effects of kappa opioid agonists on cocaine- and food-maintained responding by rhesus monkeys. J. Pharmacol. Exp. Ther. 286, 812–824 (1998).

    CAS  PubMed  Google Scholar 

  287. 287.

    Walsh, S. L., Geter-Douglas, B., Strain, E. C. & Bigelow, G. E. Enadoline and butorphanol: evaluation of kappa-agonists on cocaine pharmacodynamics and cocaine self-administration in humans. J. Pharmacol. Exp. Ther. 299, 147–158 (2001).

    CAS  PubMed  Google Scholar 

  288. 288.

    Fotio, Y. et al. Activation of peroxisome proliferator-activated receptor gamma reduces alcohol drinking and seeking by modulating multiple mesocorticolimbic regions in rats. Neuropsychopharmacology https://doi.org/10.1038/s41386-020-0754-4 (2020).

  289. 289.

    Schwandt, M. L. et al. PPARgamma activation by pioglitazone does not suppress cravings for alcohol, and is associated with a risk of myopathy in treatment seeking alcohol dependent patients: a randomized controlled proof of principle study. Psychopharmacology 237, 2367–2380 (2020).

    CAS  PubMed  Google Scholar 

  290. 290.

    Schroeder, J. R. et al. Assessment of pioglitazone and proinflammatory cytokines during buprenorphine taper in patients with opioid use disorder. Psychopharmacology 235, 2957–2966 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. 291.

    Scofield, M. D. et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharmacol. Rev. 68, 816–871 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. 292.

    LaRowe, S. D. et al. A double-blind placebo-controlled trial of N-acetylcysteine in the treatment of cocaine dependence. Am. J. Addict. 22, 443–452 (2013).

    PubMed  PubMed Central  Google Scholar 

  293. 293.

    Anker, J. J. et al. Cocaine hydrolase encoded in viral vector blocks the reinstatement of cocaine seeking in rats for 6 months. Biol. Psychiatry 71, 700–705 (2012).

    CAS  PubMed  Google Scholar 

  294. 294.

    Simpson, T. L. et al. Double-blind randomized clinical trial of prazosin for alcohol use disorder. Am. J. Psychiatry 175, 1216–1224 (2018).

    PubMed  PubMed Central  Google Scholar 

  295. 295.

    Fox, H. C. et al. Prazosin effects on stress- and cue-induced craving and stress response in alcohol-dependent individuals: preliminary findings. Alcohol Clin. Exp. Res. 36, 351–360 (2012).

    CAS  PubMed  Google Scholar 

  296. 296.

    Kowalczyk, W. J. et al. Clonidine maintenance prolongs opioid abstinence and decouples stress from craving in daily life: A randomized controlled trial With ecological momentary assessment. Am. J. Psychiatry 172, 760–767 (2015).

    PubMed  PubMed Central  Google Scholar 

  297. 297.

    Jobes, M. L. et al. Clonidine blocks stress-induced craving in cocaine users. Psychopharmacology 218, 83–88 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. 298.

    Caprioli, D., Justinova, Z., Venniro, M. & Shaham, Y. Effect of novel allosteric modulators of metabotropic glutamate receptors on drug self-administration and relapse: a review of preclinical atudies and their clinical implications. Biol. Psychiatry 84, 180–192 (2018).

    CAS  PubMed  Google Scholar 

  299. 299.

    Shwe, G. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02401022 (2017).

  300. 300.

    Shelton, K. L., Hendrick, E. S. & Beardsley, P. M. Efficacy of buspirone for attenuating cocaine and methamphetamine reinstatement in rats. Drug Alcohol Depend. 129, 210–216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. 301.

    Stopponi, S. et al. Activation of nuclear PPARgamma receptors by the antidiabetic agent pioglitazone suppresses alcohol drinking and relapse to alcohol seeking. Biol. Psychiatry 69, 642–649 (2011).

    CAS  PubMed  Google Scholar 

  302. 302.

    Negus, S. S. & Rice, K. C. Mechanisms of withdrawal-associated increases in heroin self-administration: pharmacologic modulation of heroin vs food choice in heroin-dependent rhesus monkeys. Neuropsychopharmacology 34, 899–911 (2009).

    CAS  PubMed  Google Scholar 

  303. 303.

    Jones, J. D. et al. A randomized, double-blind, placebo-controlled study of the kappa opioid receptor antagonist, CERC-501, in a human laboratory model of smoking behavior. Addict. Biol. 25, e12799 (2020).

    CAS  PubMed  Google Scholar 

  304. 304.

    Czoty, P. W., Stoops, W. W. & Rush, C. R. Evaluation of the “pipeline” for dvelopment of medications for cocaine use disorder: a review of translational preclinical, human laboratory, and clinical trial research. Pharmacol. Rev. 68, 533–562 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. 305.

    Nuijten, M. et al. Sustained-release dexamfetamine in the treatment of chronic cocaine-dependent patients on heroin-assisted treatment: a randomised, double-blind, placebo-controlled trial. Lancet 387, 2226–2234 (2016).

    CAS  PubMed  Google Scholar 

  306. 306.

    Kohut, S. J., Fivel, P. A. & Mello, N. K. Differential effects of acute and chronic treatment with the alpha2-adrenergic agonist, lofexidine, on cocaine self-administration in rhesus monkeys. Drug Alcohol Depend. 133, 593–599 (2013).

    CAS  PubMed  Google Scholar 

  307. 307.

    Wee, S., Mandyam, C. D., Lekic, D. M. & Koob, G. F. Alpha 1-noradrenergic system role in increased motivation for cocaine intake in rats with prolonged access. Eur. Neuropsychopharmacol. 18, 303–311 (2008).

    CAS  PubMed  Google Scholar 

  308. 308.

    Czoty, P. W. & Nader, M. A. Effects of the alpha-2 adrenergic receptor agonist lofexidine on food-cocaine choice in socially housed cynomolgus monkeys. J. Pharmacol. Exp. Ther. https://doi.org/10.1124/jpet.120.266007 (2020).

  309. 309.

    Jin, X. et al. The mGluR2 positive allosteric modulator BINA decreases cocaine self-administration and cue-induced cocaine-seeking and counteracts cocaine-induced enhancement of brain reward function in rats. Neuropsychopharmacology 35, 2021–2036 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  310. 310.

    Bauzo, R. M., Kimmel, H. L. & Howell, L. L. Interactions between the mGluR2/3 agonist, LY379268, and cocaine on in vivo neurochemistry and behavior in squirrel monkeys. Pharmacol. Biochem. Behav. 94, 204–210 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  311. 311.

    Czoty, P. W., Blough, B. E., Landavazo, A. & Nader, M. A. Effects of the mGluR2/3 receptor agonist LY379268 on the reinforcing strength of cocaine in rhesus monkeys. Psychopharmacology 237, 409–417 (2020).

    CAS  PubMed  Google Scholar 

  312. 312.

    Evans, S. M. et al. Efficacy of an adenovirus-based anti-cocaine vaccine to reduce cocaine self-administration and reacqusition using a choice procedure in rhesus macaques. Pharmacol. Biochem. Behav. 150151, 76–86 (2016).

  313. 313.

    Thomsen, M. et al. Effects of acute and chronic aripiprazole treatment on choice between cocaine self-administration and food under a concurrent schedule of reinforcement in rats. Psychopharmacology 201, 43–53 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  314. 314.

    Haney, M., Rubin, E. & Foltin, R. W. Aripiprazole maintenance increases smoked cocaine self-administration in humans. Psychopharmacology 216, 379–387 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  315. 315.

    Lofwall, M. R., Nuzzo, P. A., Campbell, C. & Walsh, S. L. Aripiprazole effects on self-administration and pharmacodynamics of intravenous cocaine and cigarette smoking in humans. Exp. Clin. Psychopharmacol. 22, 238–247 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  316. 316.

    Moran, L. M. et al. Aripiprazole for cocaine abstinence: a randomized-controlled trial with ecological momentary assessment. Behav. Pharmacol. 28, 63–73 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  317. 317.

    Wee, S., Wang, Z., Woolverton, W. L., Pulvirenti, L. & Koob, G. F. Effect of aripiprazole, a partial dopamine D2 receptor agonist, on increased rate of methamphetamine self-administration in rats with prolonged session duration. Neuropsychopharmacology 32, 2238–2247 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  318. 318.

    John, W. S., Banala, A. K., Newman, A. H. & Nader, M. A. Effects of buspirone and the dopamine D3 receptor compound PG619 on cocaine and methamphetamine self-administration in rhesus monkeys using a food-drug choice paradigm. Psychopharmacology 232, 1279–1289 (2015).

    CAS  PubMed  Google Scholar 

  319. 319.

    Negus, S. S. Effects of the kappa opioid agonist U50,488 and the kappa opioid antagonist nor-binaltorphimine on choice between cocaine and food in rhesus monkeys. Psychopharmacology 176, 204–213 (2004).

    PubMed  Google Scholar 

  320. 320.

    Negus, S. S., Mello, N. K., Portoghese, P. S. & Lin, C. E. Effects of kappa opioids on cocaine self-administration by rhesus monkeys. J. Pharmacol. Exp. Ther. 282, 44–55 (1997).

    CAS  PubMed  Google Scholar 

  321. 321.

    Banks, M. L. & Blough, B. E. Effects of environmental manipulations and treatment with bupropion and risperidone on choice between methamphetamine and food in rhesus monkeys. Neuropsychopharmacology 40, 2198–2206 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  322. 322.

    Shoptaw, S. et al. Bupropion hydrochloride versus placebo, in combination with cognitive behavioral therapy, for the treatment of cocaine abuse/dependence. J. Addict. Dis. 27, 13–23 (2008).

    PubMed  Google Scholar 

  323. 323.

    Stoops, W. W., Pike, E., Hays, L. R., Glaser, P. E. & Rush, C. R. Naltrexone and bupropion, alone or combined, do not alter the reinforcing effects of intranasal methamphetamine. Pharmacol. Biochem. Behav. 129, 45–50 (2015).

    CAS  PubMed  Google Scholar 

  324. 324.

    Elkashef, A. M. et al. Bupropion for the treatment of methamphetamine dependence. Neuropsychopharmacology 33, 1162–1170 (2008).

    CAS  PubMed  Google Scholar 

  325. 325.

    de Moura, F. B. et al. Effects of chronic treatment with bupropion on self-administration of nicotine+cocaine mixtures in nonhuman primates. Exp. Clin. Psychopharmacol. https://doi.org/10.1037/pha0000333 (2019).

    Article  PubMed  Google Scholar 

  326. 326.

    Foltin, R. W. & Fischman, M. W. Effects of buprenorphine on the self-administration of cocaine by humans. Behav. Pharmacol. 5, 79–89 (1994).

    CAS  PubMed  Google Scholar 

  327. 327.

    Schottenfeld, R. S., Pakes, J. R., Oliveto, A., Ziedonis, D. & Kosten, T. R. Buprenorphine vs methadone maintenance treatment for concurrent opioid dependence and cocaine abuse. Arch. Gen. Psychiatry 54, 713–720 (1997).

    CAS  PubMed  Google Scholar 

  328. 328.

    Wee, S., Vendruscolo, L. F., Misra, K. K., Schlosburg, J. E. & Koob, G. F. A combination of buprenorphine and naltrexone blocks compulsive cocaine intake in rodents without producing dependence. Sci. Transl. Med. 4, 146ra110 (2012).

    PubMed  PubMed Central  Google Scholar 

  329. 329.

    Banks, M. L., Blough, B. E., Fennell, T. R., Snyder, R. W. & Negus, S. S. Effects of phendimetrazine treatment on cocaine vs food choice and extended-access cocaine consumption in rhesus monkeys. Neuropsychopharmacology 38, 2698–2707 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  330. 330.

    Banks, M. L., Blough, B. E. & Negus, S. S. Effects of 14-day treatment with the schedule III anorectic phendimetrazine on choice between cocaine and food in rhesus monkeys. Drug Alcohol Depend. 131, 204–213 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  331. 331.

    Stoops, W. W. et al. Influence of phendimetrazine maintenance on the reinforcing, subjective, performance, and physiological effects of intranasal cocaine. Psychopharmacology 236, 2569–2577 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  332. 332.

    Mooney, M. E. et al. Pilot study of the effects of lisdexamfetamine on cocaine use: a randomized, double-blind, placebo-controlled trial. Drug Alcohol Depend. 153, 94–103 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  333. 333.

    Johnson, A. R. et al. Development of a translational model to screen medications for cocaine use disorder I: choice between cocaine and food in rhesus monkeys. Drug Alcohol Depend. 165, 103–110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  334. 334.

    Negus, S. S. & Banks, M. L. Modulation of drug choice by extended drug access and withdrawal in rhesus monkeys: Implications for negative reinforcement as a driver of addiction and target for medications development. Pharmacol. Biochem. Behav. 164, 32–39 (2018).

    CAS  PubMed  Google Scholar 

  335. 335.

    Morgan, D. et al. Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat. Neurosci. 5, 169–174 (2002).

    CAS  PubMed  Google Scholar 

  336. 336.

    Nader, M. A. et al. Social dominance in female monkeys: dopamine receptor function and cocaine reinforcement. Biol. Psychiatry 72, 414–421 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  337. 337.

    Nader, M. A. et al. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat. Neurosci. 9, 1050–1056 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The writing of this Review was supported by a grant from the US NIDA (K99DA047976 to M.V.), the Intramural Research Program of the NIH, NIDA (D.H.E. and Y.S.), UG3DA050311, R01DA026946 and UH3DA041146 from NIDA (M.L.B.), and the Swedish Research Council (M.H.). The authors thank S. Negus for helpful comments on the Review.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to the writing of the review.

Corresponding authors

Correspondence to Marco Venniro or Yavin Shaham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks Robert Gould, who co-reviewed with Kimberly Holter; Paul Kenny and the other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Relapse

Resumption of drug-taking behaviour during self-imposed (voluntary) or forced abstinence in humans and laboratory animals.

Compulsive drug use

Continued use of a drug despite (known) adverse consequences.

Drug craving

An affective state described as an urge for drug; it can be induced in human drug users by exposure to the self-administered drug, drug cues or stress.

Predictive validity

The extent to which laboratory-animal behaviour induced by an experimental manipulation predicts human behaviour induced by a similar event in the modelled condition; it often refers to a model’s ability to prospectively identify treatments that are effective in humans.

Postdictive validity

The ability of a laboratory model to retrospectively demonstrate an established human phenomenon.

Forward translation

The process of using mechanistic discoveries from animal models to develop new treatments for the modelled human condition.

Contingency management

A learning-based treatment in which abstinence is maintained by providing non-drug rewards (monetary vouchers, prizes or other incentives, usually tangible/material and given promptly and predictably) in exchange for negative drug test results.

The community-reinforcement approach

A learning-based treatment developed for alcohol addiction in the 1970s, where the goal is to replace drug use with non-drug social rewards (family support and employment) contingent on decrease or cessation of drug use.

Binge self-administration

Self-administration characterized by irregular (variable) interinfusion intervals, with alternating periods of high responding and no responding.

Progressive ratio reinforcement schedule

A schedule of reinforcement in which a reinforcer is presented only on the completion of a set number of responses. The number of required responses progressively increases after each presented reinforcement.

Punishment

A consequence that follows an operant response that decreases the likelihood that the response will occur in the future.

Q 0

A measure, in behavioural economics, of maximal consumption when the ‘price’ of a commodity is zero or at the lowest price possible (that is, FR1 reinforcement schedule in self-administration studies).

P max

A measure, in behavioural economics, of the maximum ‘price’ that maintains maximal responding and represents the inflection point (that is, slope of −1) between inelastic and elastic demand (in other words, the price at which a proportional change in price results in an equal proportional change in consumption of the commodity).

α

A measure, in behavioural economics, of the elasticity of a demand curve or how quickly consumption of a commodity falls with increases in ‘price’ (response requirement divided by unit drug dose in self-administration studies).

Demand elasticity

In behavioural economics, how quickly demand falls with increases in ‘price’ (response requirements in self-administration studies).

Second-order reinforcement schedules

Reinforcement schedules in which completion of the response requirements of one schedule (the unit schedule) is treated as a unitary response that is reinforced according to another schedule.

Disconnection procedure

A procedure in which a role of a neuronal pathway or projection in a given behaviour is inferred when behaviour is disrupted by the contralateral, but not ipsilateral, inactivation of two anatomically connected brain regions.

Opioid maintenance therapy

Pharmacological treatment method in which long-acting opioid agonists such as methadone or buprenorphine are administered orally or via depot formulation, producing few or no acute subjective effects in tolerant patients but reducing craving for, and use of, other opioids.

ABA renewal

The resumption of a conditioned response in the original training context after extinction in a different context (also called ‘context-induced reinstatement’).

Sign tracking

Behaviour directed towards a stimulus as a result of a learned association between the stimulus and the reward. Sign-tracking responses develop even though reward delivery is not contingent on a response.

Reverse translation

The use of data from humans (for example, that a treatment is effective for a condition) to develop animal models whose goals are to uncover underlying mechanisms and identify new treatments.

G-protein-biased MOR agonist

An agonist of µ opioid receptor (MOR) that preferentially activates the G-protein-coupled intracellular pathway over the β-arrestin pathway.

Daun02 inactivation procedure

A pharmacogenetic lesion approach (conversion of Daun02 into cytotoxic daunorubicin by β-galactosidase) to determine the behavioural relevance of FOS-expressing neuronal ensembles in FOSlacZ rats that express FOS and β-galactosidase in activated neurons.

Endophenotype

Also known as intermediate phenotype, a quantitative trait unseen by the unaided eye, located along the pathway between a genomic locus that contributes to the heritability of a complex disease phenotype and the disease itself.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Venniro, M., Banks, M.L., Heilig, M. et al. Improving translation of animal models of addiction and relapse by reverse translation. Nat Rev Neurosci 21, 625–643 (2020). https://doi.org/10.1038/s41583-020-0378-z

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing