Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emergence of abstract rules in the primate brain

Abstract

Various aspects of human cognition are shaped and enriched by abstract rules, which help to describe, link and classify discrete events and experiences into meaningful concepts. However, where and how these entities emerge in the primate brain and the neuronal mechanisms underlying them remain the subject of extensive research and debate. Evidence from imaging studies in humans and single-neuron recordings in monkeys suggests a pivotal role for the prefrontal cortex in the representation of abstract rules; however, behavioural studies in lesioned monkeys and data from neuropsychological examinations of patients with prefrontal damage indicate substantial functional dissociations and task dependency in the contribution of prefrontal cortical regions to rule-guided behaviour. This Review describes our current understanding of the dynamic emergence of abstract rules in primate cognition, and of the distributed neural network that supports abstract rule formation, maintenance, revision and task-dependent implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuronal representation of abstract rules and multifaceted categories.
Fig. 2: Neural representations of shifts between abstract rules.
Fig. 3: Prefrontal cortical neurons represent interactions of abstract rules and executive functions.
Fig. 4: Rule-guided behaviour in primates.
Fig. 5: Abstract rules emerge from dynamic multistage processes.

Similar content being viewed by others

References

  1. Ashby, F. G. & Ell, S. W. The neurobiology of human category learning. Trends Cogn. Sci. 5, 204–210 (2001).

    PubMed  Google Scholar 

  2. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    CAS  PubMed  Google Scholar 

  3. Mansouri, F. A. & Buckley, M. J. Context-dependent adjustments in executive control of goal-directed behaviour: contribution of frontal brain areas to conflict-induced behavioural adjustments in primates. Adv. Neurobiol. 21, 71–83 (2018).

    PubMed  Google Scholar 

  4. Mansouri, F. A., Egner, T. & Buckley, M. J. Monitoring demands for executive control: shared functions between human and nonhuman primates. Trends Neurosci. 40, 15–27 (2017).

    CAS  PubMed  Google Scholar 

  5. Mansouri, F. A., Koechlin, E., Rosa, M. G. P. & Buckley, M. J. Managing competing goals — a key role for the frontopolar cortex. Nat. Rev. Neurosci. 18, 645–657 (2017). This comprehensive review proposes that the frontopolar cortex is involved in adjusting the balance between exploitation and exploration in primates.

    CAS  PubMed  Google Scholar 

  6. Mansouri, F. A., Tanaka, K. & Buckley, M. J. Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nat. Rev. Neurosci. 10, 141–152 (2009).

    CAS  PubMed  Google Scholar 

  7. Buckley, M. J. et al. Dissociable components of rule-guided behavior depend on distinct medial and prefrontal regions. Science 325, 52–58 (2009). This study examines the effects of selective lesions within different prefrontal regions on cognitive flexibility in shifting between abstract rules.

    CAS  PubMed  Google Scholar 

  8. Freedman, D. J. & Assad, J. A. Neuronal mechanisms of visual categorization: an abstract view on decision making. Annu. Rev. Neurosci. 39, 129–147 (2016).

    CAS  PubMed  Google Scholar 

  9. Katz, J. S., Wright, A. A. & Bodily, K. D. Issues in the comparative cognition of abstract-concept learning. Comp. Cogn. Behav. Rev. 2, 79–92 (2007).

    PubMed  PubMed Central  Google Scholar 

  10. Pan, X. & Sakagami, M. Category representation and generalization in the prefrontal cortex. Eur. J. Neurosci. 35, 1083–1091 (2012).

    PubMed  Google Scholar 

  11. Alderson-Day, B. & McGonigle-Chalmers, M. Is it a bird? Is it a plane? Category use in problem-solving in children with autism spectrum disorders. J. Autism Dev. Disord. 41, 555–565 (2011).

    PubMed  Google Scholar 

  12. Gastgeb, H. Z., Dundas, E. M., Minshew, N. J. & Strauss, M. S. Category formation in autism: can individuals with autism form categories and prototypes of dot patterns? J. Autism Dev. Disord. 42, 1694–1704 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Jones, E. J., Webb, S. J., Estes, A. & Dawson, G. Rule learning in autism: the role of reward type and social context. Dev. Neuropsychol. 38, 58–77 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Keri, S., Kalman, J., Kelemen, O., Benedek, G. & Janka, Z. Are Alzheimer’s disease patients able to learn visual prototypes? Neuropsychologia 39, 1218–1223 (2001).

    CAS  PubMed  Google Scholar 

  15. Keri, S. et al. Abstraction is impaired at the perceptual level in schizophrenic patients. Neurosci. Lett. 243, 93–96 (1998).

    CAS  PubMed  Google Scholar 

  16. Yerys, B. E. et al. Neural correlates of set-shifting in children with autism. Autism Res. 8, 386–397 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Bunge, S. A. How we use rules to select actions: a review of evidence from cognitive neuroscience. Cogn. Affect. Behav. Neurosci. 4, 564–579 (2004).

    PubMed  Google Scholar 

  18. Koechlin, E., Ody, C. & Kouneiher, F. The architecture of cognitive control in the human prefrontal cortex. Science 302, 1181–1185 (2003).

    CAS  PubMed  Google Scholar 

  19. Koechlin, E. & Summerfield, C. An information theoretical approach to prefrontal executive function. Trends Cogn. Sci. 11, 229–235 (2007).

    PubMed  Google Scholar 

  20. Seger, C. A. & Miller, E. K. Category learning in the brain. Annu. Rev. Neurosci. 33, 203–219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Viswanathan, P. & Nieder, A. Neuronal correlates of a visual ‘sense of number’ in primate parietal and prefrontal cortices. Proc. Natl Acad. Sci. USA 110, 11187–11192 (2013).

    CAS  PubMed  Google Scholar 

  22. Cole, M. W., Etzel, J. A., Zacks, J. M., Schneider, W. & Braver, T. S. Rapid transfer of abstract rules to novel contexts in human lateral prefrontal cortex. Front. Hum. Neurosci. 5, 142 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Buckley, M. J. & Sigala, N. Is top-down control from prefrontal cortex necessary for visual categorization? Neuron 66, 471–473 (2010).

    CAS  PubMed  Google Scholar 

  24. Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).

    CAS  PubMed  Google Scholar 

  25. Hoshi, E., Shima, K. & Tanji, J. Neuronal activity in the primate prefrontal cortex in the process of motor selection based on two behavioral rules. J. Neurophysiol. 83, 2355–2373 (2000).

    CAS  PubMed  Google Scholar 

  26. Mansouri, F. A., Buckley, M. J., Fehring, D. J. & Tanaka, K. The role of primate prefrontal cortex in bias and shift between visual dimensions. Cereb. Cortex 30, 85–99 (2020). This cross-species study reveals that both monkeys and humans show bias to a particular dimension in the WCST and that such biases are not dependent on the PFC.

    PubMed  Google Scholar 

  27. Mansouri, F. A., Buckley, M. J., Mahboubi, M. & Tanaka, K. Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices. Proc. Natl Acad. Sci. USA 112, E3940–E3949 (2015).

    CAS  PubMed  Google Scholar 

  28. Mansouri, F. A., Buckley, M. J. & Tanaka, K. Mnemonic function of the dorsolateral prefrontal cortex in conflict-induced behavioral adjustment. Science 318, 987–990 (2007).

    CAS  PubMed  Google Scholar 

  29. Mansouri, F. A., Buckley, M. J. & Tanaka, K. The essential role of primate orbitofrontal cortex in conflict-induced executive control adjustment. J. Neurosci. 34, 11016–11031 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mansouri, F. A., Fehring, D. J., Gaillard, A., Jaberzadeh, S. & Parkington, H. Sex dependency of inhibitory control functions. Biol. Sex. Differ. 7, 11 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Mansouri, F. A., Matsumoto, K. & Tanaka, K. Prefrontal cell activities related to monkeys’ success and failure in adapting to rule changes in a Wisconsin Card Sorting Test analog. J. Neurosci. 26, 2745–2756 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mansouri, F. A., Rosa, M. G. & Atapour, N. Working memory in the service of executive control functions. Front. Syst. Neurosci. 9, 166 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Mansouri, F. A. & Tanaka, K. Behavioral evidence for working memory of sensory dimension in macaque monkeys. Behav. Brain Res. 136, 415–426 (2002).

    PubMed  Google Scholar 

  34. Wallis, J. D., Anderson, K. C. & Miller, E. K. Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953–956 (2001). This paper shows how the activity of single neurons in the monkey PFC conveys information about abstract rules.

    CAS  PubMed  Google Scholar 

  35. Wallis, J. D. & Miller, E. K. From rule to response: neuronal processes in the premotor and prefrontal cortex. J. Neurophysiol. 90, 1790–1806 (2003).

    PubMed  Google Scholar 

  36. Nieder, A. Counting on neurons: the neurobiology of numerical competence. Nat. Rev. Neurosci. 6, 177–190 (2005).

    CAS  PubMed  Google Scholar 

  37. Nieder, A. & Dehaene, S. Representation of number in the brain. Annu. Rev. Neurosci. 32, 185–208 (2009).

    CAS  PubMed  Google Scholar 

  38. Nieder, A., Freedman, D. J. & Miller, E. K. Representation of the quantity of visual items in the primate prefrontal cortex. Science 297, 1708–1711 (2002). This pioneering study shows how single neurons in the monkey PFC encode abstract numerical information.

    CAS  PubMed  Google Scholar 

  39. Drewe, E. A. The effect of type and area of brain lesion on Wisconsin Card Sorting Test performance. Cortex 10, 159–170 (1974).

    CAS  PubMed  Google Scholar 

  40. Milner, B. Effects of different brain lesions on card sorting. Arch. Neurol. 9, 90–100 (1963).

    Google Scholar 

  41. Stuss, D. T. et al. The involvement of orbitofrontal cerebrum in cognitive tasks. Neuropsychologia 21, 235–248 (1983).

    CAS  PubMed  Google Scholar 

  42. Stuss, D. T. et al. Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: effects of lesion location and test structure on separable cognitive processes. Neuropsychologia 38, 388–402 (2000).

    CAS  PubMed  Google Scholar 

  43. La Camera, G., Bouret, S. & Richmond, B. J. Contributions of lateral and orbital frontal regions to abstract rule acquisition and reversal in monkeys. Front. Neurosci. 12, 165 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Matsumoto, N., Eldridge, M. A., Saunders, R. C., Reoli, R. & Richmond, B. J. Mild perceptual categorization deficits follow bilateral removal of anterior inferior temporal cortex in rhesus monkeys. J. Neurosci. 36, 43–53 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Crescentini, C. et al. Mechanisms of rule acquisition and rule following in inductive reasoning. J. Neurosci. 31, 7763–7774 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Miller, E. K., Nieder, A., Freedman, D. J. & Wallis, J. D. Neural correlates of categories and concepts. Curr. Opin. Neurobiol. 13, 198–203 (2003).

    CAS  PubMed  Google Scholar 

  47. Bunge, S. A. & Wallis, J. D. Neuroscience of Rule-Guided Behavior (Oxford Univ. Press, 2008).

  48. Lazarowski, L., Goodman, A., Galizio, M. & Bruce, K. Effects of set size on identity and oddity abstract-concept learning in rats. Anim. Cogn. 22, 733–742 (2019).

    PubMed  Google Scholar 

  49. Smith, J. D. et al. Generalization of category knowledge and dimensional categorization in humans (Homo sapiens) and nonhuman primates (Macaca mulatta). J. Exp. Psychol. Anim. Learn. Cogn. 41, 322–335 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Freedman, D. J. & Assad, J. A. Experience-dependent representation of visual categories in parietal cortex. Nature 443, 85–88 (2006).

    CAS  PubMed  Google Scholar 

  51. Freedman, D. J. & Miller, E. K. Neural mechanisms of visual categorization: insights from neurophysiology. Neurosci. Biobehav. Rev. 32, 311–329 (2008).

    PubMed  Google Scholar 

  52. Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001). This pioneering study shows how single neurons in the monkey PFC encode multifaceted categories.

    CAS  PubMed  Google Scholar 

  53. Baugh, A. T., Akre, K. L. & Ryan, M. J. Categorical perception of a natural, multivariate signal: mating call recognition in tungara frogs. Proc. Natl Acad. Sci. USA 105, 8985–8988 (2008).

    CAS  PubMed  Google Scholar 

  54. Veit, L. & Nieder, A. Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nat. Commun. 4, 2878 (2013).

    PubMed  Google Scholar 

  55. Wyttenbach, R. A., May, M. L. & Hoy, R. R. Categorical perception of sound frequency by crickets. Science 273, 1542–1544 (1996). This pioneering study provides solid evidence for category-guided behaviour in insects.

    CAS  PubMed  Google Scholar 

  56. Giurfa, M., Zhang, S., Jenett, A., Menzel, R. & Srinivasan, M. V. The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410, 930–933 (2001).

    CAS  PubMed  Google Scholar 

  57. DeGutis, J. & D’Esposito, M. Distinct mechanisms in visual category learning. Cogn. Affect. Behav. Neurosci. 7, 251–259 (2007).

    PubMed  Google Scholar 

  58. Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J. Neurosci. 23, 5235–5246 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mahon, B. Z. & Caramazza, A. Concepts and categories: a cognitive neuropsychological perspective. Annu. Rev. Psychol. 60, 27–51 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Sigala, N. & Logothetis, N. K. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415, 318–320 (2002).

    CAS  PubMed  Google Scholar 

  61. ten Cate, C. & Okanoya, K. Revisiting the syntactic abilities of non-human animals: natural vocalizations and artificial grammar learning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1984–1994 (2012).

    PubMed  PubMed Central  Google Scholar 

  62. Tanji, J., Shima, K. & Mushiake, H. Concept-based behavioral planning and the lateral prefrontal cortex. Trends Cogn. Sci. 11, 528–534 (2007).

    PubMed  Google Scholar 

  63. Muhammad, R., Wallis, J. D. & Miller, E. K. A comparison of abstract rules in the prefrontal cortex, premotor cortex, inferior temporal cortex, and striatum. J. Cogn. Neurosci. 18, 974–989 (2006).

    PubMed  Google Scholar 

  64. Bunge, S. A., Kahn, I., Wallis, J. D., Miller, E. K. & Wagner, A. D. Neural circuits subserving the retrieval and maintenance of abstract rules. J. Neurophysiol. 90, 3419–3428 (2003).

    PubMed  Google Scholar 

  65. Elliott, R. & Dolan, R. J. Differential neural responses during performance of matching and nonmatching to sample tasks at two delay intervals. J. Neurosci. 19, 5066–5073 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Balsters, J. H., Whelan, C. D., Robertson, I. H. & Ramnani, N. Cerebellum and cognition: evidence for the encoding of higher order rules. Cereb. Cortex 23, 1433–1443 (2013).

    PubMed  Google Scholar 

  67. Bongard, S. & Nieder, A. Basic mathematical rules are encoded by primate prefrontal cortex neurons. Proc. Natl Acad. Sci. USA 107, 2277–2282 (2010).

    CAS  PubMed  Google Scholar 

  68. Eiselt, A. K. & Nieder, A. Representation of abstract quantitative rules applied to spatial and numerical magnitudes in primate prefrontal cortex. J. Neurosci. 33, 7526–7534 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Eiselt, A. K. & Nieder, A. Rule activity related to spatial and numerical magnitudes: comparison of prefrontal, premotor, and cingulate motor cortices. J. Cogn. Neurosci. 26, 1000–1012 (2014).

    PubMed  Google Scholar 

  70. Kutter, E. F., Bostroem, J., Elger, C. E., Mormann, F. & Nieder, A. Single neurons in the human brain encode numbers. Neuron 100, 753–761.e4 (2018).

    CAS  PubMed  Google Scholar 

  71. Nieder, A. Supramodal numerosity selectivity of neurons in primate prefrontal and posterior parietal cortices. Proc. Natl Acad. Sci. USA 109, 11860–11865 (2012).

    CAS  PubMed  Google Scholar 

  72. Vallentin, D., Bongard, S. & Nieder, A. Numerical rule coding in the prefrontal, premotor, and posterior parietal cortices of macaques. J. Neurosci. 32, 6621–6630 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Daitch, A. L. et al. Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition. Proc. Natl Acad. Sci. USA 113, E7277–E7286 (2016).

    CAS  PubMed  Google Scholar 

  74. Cromer, J. A., Roy, J. E. & Miller, E. K. Representation of multiple, independent categories in the primate prefrontal cortex. Neuron 66, 796–807 (2010). This pioneering study shows a dynamic training-dependent representation of category information in PFC neuronal activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Forstmann, B. U., Brass, M., Koch, I. & von Cramon, D. Y. Internally generated and directly cued task sets: an investigation with fMRI. Neuropsychologia 43, 943–952 (2005).

    PubMed  Google Scholar 

  76. Bengtsson, S. L., Haynes, J. D., Sakai, K., Buckley, M. J. & Passingham, R. E. The representation of abstract task rules in the human prefrontal cortex. Cereb. Cortex 19, 1929–1936 (2009).

    PubMed  Google Scholar 

  77. Mian, M. K. et al. Encoding of rules by neurons in the human dorsolateral prefrontal cortex. Cereb. Cortex 24, 807–816 (2014).

    PubMed  Google Scholar 

  78. Kuwabara, M., Mansouri, F. A., Buckley, M. J. & Tanaka, K. Cognitive control functions of anterior cingulate cortex in macaque monkeys performing a Wisconsin Card Sorting Test analog. J. Neurosci. 34, 7531–7547 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kamigaki, T., Fukushima, T. & Miyashita, Y. Cognitive set reconfiguration signaled by macaque posterior parietal neurons. Neuron 61, 941–951 (2009).

    CAS  PubMed  Google Scholar 

  80. Kamigaki, T., Fukushima, T., Tamura, K. & Miyashita, Y. Neurodynamics of cognitive set shifting in monkey frontal cortex and its causal impact on behavioral flexibility. J. Cogn. Neurosci. 24, 2171–2185 (2012).

    PubMed  Google Scholar 

  81. Sleezer, B. J., Castagno, M. D. & Hayden, B. Y. Rule encoding in orbitofrontal cortex and striatum guides selection. J. Neurosci. 36, 11223–11237 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sleezer, B. J. & Hayden, B. Y. Differential contributions of ventral and dorsal striatum to early and late phases of cognitive set reconfiguration. J. Cogn. Neurosci. 28, 1849–1864 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Sleezer, B. J., LoConte, G. A., Castagno, M. D. & Hayden, B. Y. Neuronal responses support a role for orbitofrontal cortex in cognitive set reconfiguration. Eur. J. Neurosci. 45, 940–951 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Nakahara, K., Hayashi, T., Konishi, S. & Miyashita, Y. Functional MRI of macaque monkeys performing a cognitive set-shifting task. Science 295, 1532–1536 (2002). This pioneering fMRI study in monkeys and humans reveals how shifting between rules is represented in the PFC.

    CAS  PubMed  Google Scholar 

  85. Petrides, M., Tomaiuolo, F., Yeterian, E. H. & Pandya, D. N. The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48, 46–57 (2012).

    PubMed  Google Scholar 

  86. Konishi, S. et al. Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test. Cereb. Cortex 9, 745–753 (1999).

    CAS  PubMed  Google Scholar 

  87. Konishi, S. et al. Transient activation of inferior prefrontal cortex during cognitive set shifting. Nat. Neurosci. 1, 80–84 (1998).

    CAS  PubMed  Google Scholar 

  88. Asari, T., Konishi, S., Jimura, K. & Miyashita, Y. Multiple components of lateral posterior parietal activation associated with cognitive set shifting. Neuroimage 26, 694–702 (2005).

    PubMed  Google Scholar 

  89. Buchsbaum, B. R., Greer, S., Chang, W. L. & Berman, K. F. Meta-analysis of neuroimaging studies of the Wisconsin card-sorting task and component processes. Hum. Brain Mapp. 25, 35–45 (2005).

    PubMed  PubMed Central  Google Scholar 

  90. Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Mentzel, H. J. et al. Cognitive stimulation with the Wisconsin Card Sorting Test: functional MR imaging at 1.5T. Radiology 207, 399–404 (1998).

    CAS  PubMed  Google Scholar 

  92. Monchi, O., Petrides, M., Petre, V., Worsley, K. & Dagher, A. Wisconsin card sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J. Neurosci. 21, 7733–7741 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ravizza, S. M. & Carter, C. S. Shifting set about task switching: behavioral and neural evidence for distinct forms of cognitive flexibility. Neuropsychologia 46, 2924–2935 (2008).

    PubMed  PubMed Central  Google Scholar 

  94. Wang, J., Cao, B., Cai, X., Gao, H. & Li, F. Brain activation of negative feedback in rule acquisition revealed in a segmented Wisconsin Card Sorting Test. PLoS ONE 10, e0140731 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Zeithamova, D. et al. Brain mechanisms of concept learning. J. Neurosci. 39, 8259–8266 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Konishi, S. et al. Hemispheric asymmetry in human lateral prefrontal cortex during cognitive set shifting. Proc. Natl Acad. Sci. USA 99, 7803–7808 (2002).

    CAS  PubMed  Google Scholar 

  97. Genovesio, A., Brasted, P. J., Mitz, A. R. & Wise, S. P. Prefrontal cortex activity related to abstract response strategies. Neuron 47, 307–320 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bussey, T. J., Wise, S. P. & Murray, E. A. The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 115, 971–982 (2001).

    CAS  PubMed  Google Scholar 

  99. Stoet, G. & Snyder, L. H. Single neurons in posterior parietal cortex of monkeys encode cognitive set. Neuron 42, 1003–1012 (2004).

    CAS  PubMed  Google Scholar 

  100. Stoet, G. & Snyder, L. H. Neural correlates of executive control functions in the monkey. Trends Cogn. Sci. 13, 228–234 (2009).

    PubMed  PubMed Central  Google Scholar 

  101. White, I. M. & Wise, S. P. Rule-dependent neuronal activity in the prefrontal cortex. Exp. Brain Res. 126, 315–335 (1999).

    CAS  PubMed  Google Scholar 

  102. Asaad, W. F., Rainer, G. & Miller, E. K. Task-specific neural activity in the primate prefrontal cortex. J. Neurophysiol. 84, 451–459 (2000).

    CAS  PubMed  Google Scholar 

  103. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Crowe, D. A. et al. Prefrontal neurons transmit signals to parietal neurons that reflect executive control of cognition. Nat. Neurosci. 16, 1484–1491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Goodwin, S. J., Blackman, R. K., Sakellaridi, S. & Chafee, M. V. Executive control over cognition: stronger and earlier rule-based modulation of spatial category signals in prefrontal cortex relative to parietal cortex. J. Neurosci. 32, 3499–3515 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sakai, K. & Passingham, R. E. Prefrontal interactions reflect future task operations. Nat. Neurosci. 6, 75–81 (2003).

    CAS  PubMed  Google Scholar 

  107. Swaminathan, S. K. & Freedman, D. J. Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex. Nat. Neurosci. 15, 315–320 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lie, C. H., Specht, K., Marshall, J. C. & Fink, G. R. Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage 30, 1038–1049 (2006).

    PubMed  Google Scholar 

  109. Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000). This influential paper proposes that a distributed network including prefrontal, cingulate and parietal cortices supports the organization and execution of various goal-directed behaviours.

    CAS  PubMed  Google Scholar 

  110. Brown, V. J. & Tait, D. S. Attentional set-shifting across species. Curr. Top. Behav. Neurosci. 28, 363–395 (2016).

    CAS  PubMed  Google Scholar 

  111. Goldman, P. S. & Rosvold, H. E. Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp. Neurol. 27, 291–304 (1970).

    CAS  PubMed  Google Scholar 

  112. Petrides, M. Motor conditional associative-learning after selective prefrontal lesions in the monkey. Behav. Brain Res. 5, 407–413 (1982).

    CAS  PubMed  Google Scholar 

  113. Petrides, M. Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behav. Brain Res. 16, 95–101 (1985).

    CAS  PubMed  Google Scholar 

  114. Podbros, L. Z., Stamm, J. S. & Denaro, F. J. Associative function of the arcuate segment of the monkey’s prefrontal cortex. Physiol. Behav. 24, 103–109 (1980).

    CAS  PubMed  Google Scholar 

  115. Petrides, M. Deficits on conditional associative-learning tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 23, 601–614 (1985).

    CAS  PubMed  Google Scholar 

  116. Petrides, M. Visuo-motor conditional associative learning after frontal and temporal lesions in the human brain. Neuropsychologia 35, 989–997 (1997).

    CAS  PubMed  Google Scholar 

  117. Kowalska, D. M., Bachevalier, J. & Mishkin, M. The role of the inferior prefrontal convexity in performance of delayed nonmatching-to-sample. Neuropsychologia 29, 583–600 (1991).

    CAS  PubMed  Google Scholar 

  118. Bachevalier, J. & Mishkin, M. Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav. Brain Res. 20, 249–261 (1986).

    CAS  PubMed  Google Scholar 

  119. Meunier, M., Bachevalier, J. & Mishkin, M. Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia 35, 999–1015 (1997).

    CAS  PubMed  Google Scholar 

  120. Bauer, R. H. & Fuster, J. M. Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J. Comp. Physiol. Psychol. 90, 293–302 (1976).

    CAS  PubMed  Google Scholar 

  121. Elliott, R., Dolan, R. J. & Frith, C. D. Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb. Cortex 10, 308–317 (2000).

    CAS  PubMed  Google Scholar 

  122. Moore, T. L., Schettler, S. P., Killiany, R. J., Rosene, D. L. & Moss, M. B. Impairment in delayed nonmatching to sample following lesions of dorsal prefrontal cortex. Behav. Neurosci. 126, 772–780 (2012).

    PubMed  PubMed Central  Google Scholar 

  123. Rao, S. C., Rainer, G. & Miller, E. K. Integration of what and where in the primate prefrontal cortex. Science 276, 821–824 (1997).

    CAS  PubMed  Google Scholar 

  124. Shallice, T. & Burgess, P. W. Deficits in strategy application following frontal lobe damage in man. Brain 114, 727–741 (1991).

    PubMed  Google Scholar 

  125. Boschin, E. A., Brkic, M. M., Simons, J. S. & Buckley, M. J. Distinct roles for the anterior cingulate and dorsolateral prefrontal cortices during conflict between abstract rules. Cereb. Cortex 27, 34–45 (2017).

    PubMed  Google Scholar 

  126. Glascher, J. et al. Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proc. Natl Acad. Sci. USA 109, 14681–14686 (2012). This paper presents a comprehensive neuropsychological examination of the effects of brain lesions on cognitive flexibility in shifting between abstract rules.

    CAS  PubMed  Google Scholar 

  127. Minamimoto, T., Saunders, R. C. & Richmond, B. J. Monkeys quickly learn and generalize visual categories without lateral prefrontal cortex. Neuron 66, 501–507 (2010). This paper reports that large lesions in the PFC do not impair using learned categories or learning new categories.

    CAS  PubMed  Google Scholar 

  128. Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996). This comprehensive review describes the architecture of the ventral visual pathway of object recognition in primates.

    CAS  PubMed  Google Scholar 

  129. Buckley, M. J. & Gaffan, D. Perirhinal cortical contributions to object perception. Trends Cogn. Sci. 10, 100–107 (2006).

    PubMed  Google Scholar 

  130. Cools, R., Clark, L. & Robbins, T. W. Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance. J. Neurosci. 24, 1129–1135 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Bowman, C. R. & Zeithamova, D. Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization. J. Neurosci. 38, 2605–2614 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Murray, E. A. & Wise, S. P. Role of the hippocampus plus subjacent cortex but not amygdala in visuomotor conditional learning in rhesus monkeys. Behav. Neurosci. 110, 1261–1270 (1996).

    CAS  PubMed  Google Scholar 

  133. Orbach, J., Milner, B. & Rasmussen, T. Learning and retention in monkeys after amygdala–hippocampus resection. Arch. Neurol. 3, 230–251 (1960).

    CAS  PubMed  Google Scholar 

  134. Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J. & Robbins, T. W. Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 29, 993–1006 (1991).

    CAS  PubMed  Google Scholar 

  135. Filoteo, J. V. et al. Cortical and subcortical brain regions involved in rule-based category learning. Neuroreport 16, 111–115 (2005).

    PubMed  Google Scholar 

  136. Sloutsky, V. M. From perceptual categories to concepts: what develops? Cogn. Sci. 34, 1244–1286 (2010).

    PubMed  PubMed Central  Google Scholar 

  137. Boschin, E. A., Piekema, C. & Buckley, M. J. Essential functions of primate frontopolar cortex in cognition. Proc. Natl Acad. Sci. USA 112, E1020–E1027 (2015).

    CAS  PubMed  Google Scholar 

  138. Boorman, E. D., Behrens, T. E. & Rushworth, M. F. Counterfactual choice and learning in a neural network centered on human lateral frontopolar cortex. PLoS Biol. 9, e1001093 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Wise, S. P. & Murray, E. A. Arbitrary associations between antecedents and actions. Trends Neurosci. 23, 271–276 (2000).

    CAS  PubMed  Google Scholar 

  141. Zhou, Y. & Freedman, D. J. Posterior parietal cortex plays a causal role in perceptual and categorical decisions. Science 365, 180–185 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Donohue, S. E., Wendelken, C., Crone, E. A. & Bunge, S. A. Retrieving rules for behavior from long-term memory. Neuroimage 26, 1140–1149 (2005).

    PubMed  Google Scholar 

  143. Ibos, G. & Freedman, D. J. Dynamic integration of task-relevant visual features in posterior parietal cortex. Neuron 83, 1468–1480 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Tremblay, L., Gettner, S. N. & Olson, C. R. Neurons with object-centered spatial selectivity in macaque SEF: do they represent locations or rules? J. Neurophysiol. 87, 333–350 (2002).

    PubMed  Google Scholar 

  145. Konishi, S. et al. Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain 122, 981–991 (1999).

    PubMed  Google Scholar 

  146. Niendam, T. A. et al. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn. Affect. Behav. Neurosci. 12, 241–268 (2012).

    PubMed  PubMed Central  Google Scholar 

  147. Eldridge, M. A. et al. Chemogenetic disconnection of monkey orbitofrontal and rhinal cortex reversibly disrupts reward value. Nat. Neurosci. 19, 37–39 (2016).

    CAS  PubMed  Google Scholar 

  148. Whissell, P. D., Tohyama, S. & Martin, L. J. The use of DREADDs to deconstruct behavior. Front. Genet. 7, 70 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. Reed, P., Watts, H. & Truzoli, R. Flexibility in young people with autism spectrum disorders on a card sort task. Autism 17, 162–171 (2013).

    PubMed  Google Scholar 

  150. Luck, S. J. & Gold, J. M. The construct of attention in schizophrenia. Biol. Psychiatry 64, 34–39 (2008).

    PubMed  PubMed Central  Google Scholar 

  151. Barbalat, G., Chambon, V., Franck, N., Koechlin, E. & Farrer, C. Organization of cognitive control within the lateral prefrontal cortex in schizophrenia. Arch. Gen. Psychiatry 66, 377–386 (2009).

    PubMed  Google Scholar 

  152. den Braber, A. et al. Brain activation during cognitive planning in twins discordant or concordant for obsessive–compulsive symptoms. Brain 133, 3123–3140 (2010).

    Google Scholar 

  153. Badre, D. & D’Esposito, M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat. Rev. Neurosci. 10, 659–669 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Badre, D. & Nee, D. E. Frontal cortex and the hierarchical control of behavior. Trends Cogn. Sci. 22, 170–188 (2018).

    PubMed  Google Scholar 

  155. Bahlmann, J., Blumenfeld, R. S. & D’Esposito, M. The rostro-caudal axis of frontal cortex is sensitive to the domain of stimulus information. Cereb. Cortex 25, 1815–1826 (2015).

    PubMed  Google Scholar 

  156. Wendelken, C., Chung, D. & Bunge, S. A. Rostrolateral prefrontal cortex: domain-general or domain-sensitive? Hum. Brain Mapp. 33, 1952–1963 (2012).

    PubMed  Google Scholar 

  157. Pischedda, D., Gorgen, K., Haynes, J. D. & Reverberi, C. Neural representations of hierarchical rule sets: the human control system represents rules irrespective of the hierarchical level to which they belong. J. Neurosci. 37, 12281–12296 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Tsujimoto, S., Genovesio, A. & Wise, S. P. Evaluating self-generated decisions in frontal pole cortex of monkeys. Nat. Neurosci. 13, 120–126 (2010). This pioneering study describes the activity of frontopolar cortex cells in monkeys performing cognitive tasks.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank K. Tanaka (RIKEN Centre for Brain Science, Japan) for his contribution to our proposed model of the interaction between abstract rules and executive functions. The authors also thank the Australian Research Council (ARC) Centre of Excellence in Integrative Brain Function; the authors’ research work is partially funded by an ARC Discovery project grant to F.A.M. and a UK Medical Research Project grant to M.J.B.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Farshad Alizadeh Mansouri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks S. Bunge, G. Ashby and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Exploration

The cognitive ability to consider other goals and resources, such as reward, outside the ongoing task.

Executive functions

Brain mechanisms that organize and optimize the use of cognitive resources to achieve a goal.

Exploitation

The cognitive ability to optimize gain and decrease cost while performing an ongoing task.

Selective attention

Neural mechanisms involved in focusing cognitive resources on task-relevant sensory-perceptual processes and inhibiting goal-irrelevant stimuli to facilitate achieving goals.

Extra-dimensional shift

In the context of object-discrimination tasks, individuals learn to select an object on the basis of a feature in a specific dimension that is reinforced by a reward; a shift in reinforcement to another feature in a different dimension (for example, from red colour to triangle shape) means that individuals need to shift their choice accordingly to get the reward.

Intra-dimensional shift

In the context of object-discrimination tasks, individuals learn to select an object on the basis of a feature in a specific dimension that is reinforced by a reward; a shift in reinforcement to another feature in the same dimension (for example, from red to blue colour) means that individuals need to shift their choice accordingly to get the reward.

Stimulus–reward reversal

In the context of object-discrimination tasks, the object–reward association contingency of two objects is reversed; individuals must learn to select the currently rewarded object, which was previously the unrewarded object.

Conflict resolution

Achieving goals in cognitive tasks might require resolution of a conflict (competition) between two sources of information or between two opposing responses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, F.A., Freedman, D.J. & Buckley, M.J. Emergence of abstract rules in the primate brain. Nat Rev Neurosci 21, 595–610 (2020). https://doi.org/10.1038/s41583-020-0364-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-0364-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing