Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multidimensional processing in the amygdala

Abstract

Brain-wide circuits that coordinate affective and social behaviours intersect in the amygdala. Consequently, amygdala lesions cause a heterogeneous array of social and non-social deficits. Social behaviours are not localized to subdivisions of the amygdala even though the inputs and outputs that carry social signals are anatomically restricted to distinct subnuclear regions. This observation may be explained by the multidimensional response properties of the component neurons. Indeed, the multitudes of circuits that converge in the amygdala enlist the same subset of neurons into different ensembles that combine social and non-social elements into high-dimensional representations. These representations may enable flexible, context-dependent social decisions. As such, multidimensional processing may operate in parallel with subcircuits of genetically identical neurons that serve specialized and functionally dissociable functions. When combined, the activity of specialized circuits may grant specificity to social behaviours, whereas multidimensional processing facilitates the flexibility and nuance needed for complex social behaviour.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Alternative functional organization schemes of the primate amygdala.
Fig. 2: Face-responsive neurons show non-linear combinations of selectivity.
Fig. 3: Multidimensional selectivity arises from the intersection of brain-wide circuits.

References

  1. Laberge, F., Mühlenbrock-Lenter, S., Grunwald, W. & Roth, G. Evolution of the amygdala: new insights from studies in amphibians. Brain Behav. Evol. 67, 177–187 (2006).

    PubMed  Google Scholar 

  2. Brown, S. & Schafer, E. A. XI. An investigation into the functions of the occipital and temporal lobes of the monkey’s brain. Philos. Trans. R. Soc. London 179, 303–327 (1888).

    Google Scholar 

  3. Adolphs, R. What does the amygdala contribute to social cognition? Ann. N. Y. Acad. Sci. 1191, 42–61 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Meunier, M., Bachevalier, J., Murray, E. A., Málková, L. & Mishkin, M. Effects of aspiration versus neurotoxic lesions of the amygdala on emotional responses in monkeys: amygdala lesions and emotional responses. Eur. J. Neurosci. 11, 4403–4418 (1999).

    CAS  PubMed  Google Scholar 

  5. Wassum, K. M. & Izquierdo, A. The basolateral amygdala in reward learning and addiction. Neurosci. Biobehav. Rev. 57, 271–283 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Mobbs, D. et al. Viewpoints: approaches to defining and investigating fear. Nat. Neurosci. 22, 1205–1216 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S. A. & Tonegawa, S. Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93, 1464–1479.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, B. Central amygdala cells for learning and expressing aversive emotional memories. Curr. Opin. Behav. Sci. 26, 40–45 (2019).

    PubMed  Google Scholar 

  9. Pignatelli, M. & Beyeler, A. Valence coding in amygdala circuits. Curr. Opin. Behav. Sci. 26, 97–106 (2019).

    PubMed  Google Scholar 

  10. Cai, H., Haubensak, W., Anthony, T. E. & Anderson, D. J. Central amygdala PKC-δ+ neurons mediate the influence of multiple anorexigenic signals. Nat. Neurosci. 17, 1240–1248 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Douglass, A. M. et al. Central amygdala circuits modulate food consumption through a positive-valence mechanism. Nat. Neurosci. 20, 1384–1394 (2017).

    CAS  PubMed  Google Scholar 

  12. Han, W. et al. Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 168, 311–324.e18 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Headley, D. B., Kanta, V., Kyriazi, P. & Paré, D. Embracing complexity in defensive networks. Neuron 103, 189–201 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shabel, S. J. & Janak, P. H. Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal. Proc. Natl Acad. Sci. USA 106, 15031–15036 (2009).

    CAS  PubMed  Google Scholar 

  15. Peck, C. J., Lau, B. & Salzman, C. D. The primate amygdala combines information about space and value. Nat. Neurosci. 16, 340–348 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kyriazi, P., Headley, D. B. & Pare, D. Multi-dimensional coding by basolateral amygdala neurons. Neuron 99, 1315–1328.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Putnam, P. T. & Gothard, K. M. Multidimensional neural selectivity in the primate amygdala. eNeuro https://doi.org/10.1523/ENEURO.0153-19.2019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).

    CAS  PubMed  Google Scholar 

  20. Bickart, K. C., Dickerson, B. C. & Feldman Barrett, L. The amygdala as a hub in brain networks that support social life. Neuropsychologia 63, 235–248 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Rutishauser, U., Mamelak, A. N. & Adolphs, R. The primate amygdala in social perception — insights from electrophysiological recordings and stimulation. Trends Neurosci. 38, 295–306 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kling, A., Lancaster, J. & Benitone, J. Amygdalectomy in the free-ranging vervet (Cercopithecus aethiops). J. Psychiatr. Res. 7, 191–199 (1970).

    CAS  PubMed  Google Scholar 

  23. Bachevalier, J., Málková, L. & Mishkin, M. Effects of selective neonatal temporal lobe lesions on socioemotional behavior in infant rhesus monkeys (Macaca mulatta). Behav. Neurosci. 115, 545–559 (2001).

    CAS  PubMed  Google Scholar 

  24. Livneh, U., Resnik, J., Shohat, Y. & Paz, R. Self-monitoring of social facial expressions in the primate amygdala and cingulate cortex. Proc. Natl Acad. Sci. USA 109, 18956–18961 (2012).

    CAS  PubMed  Google Scholar 

  25. Burgos-Robles, A., Gothard, K. M., Monfils, M. H., Morozov, A. & Vicentic, A. Conserved features of anterior cingulate networks support observational learning across species. Neurosci. Biobehav. Rev. 107, 215–228 (2019).

    PubMed  Google Scholar 

  26. Munuera, J., Rigotti, M. & Salzman, C. D. Shared neural coding for social hierarchy and reward value in primate amygdala. Nat. Neurosci. 21, 415–423 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Minxha, J. et al. Fixations gate species-specific responses to free viewing of faces in the human and macaque amygdala. Cell Rep. 18, 878–891 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Klumpp, H. & Fitzgerald, J. M. Neuroimaging predictors and mechanisms of treatment response in social anxiety disorder: an overview of the amygdala. Curr. Psychiatry Rep. 20, 89 (2018).

    PubMed  Google Scholar 

  29. Gothard, K. M. The amygdalo-motor pathways and the control of facial expressions. Front. Neurosci. 8, 43 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Rutishauser, U. et al. Representation of retrieval confidence by single neurons in the human medial temporal lobe. Nat. Neurosci. 18, 1041–1050 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kamiński, J. et al. Persistently active neurons in human medial frontal and medial temporal lobe support working memory. Nat. Neurosci. 20, 590–601 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Laine, C. M., Spitler, K. M., Mosher, C. P. & Gothard, K. M. Behavioral triggers of skin conductance responses and their neural correlates in the primate amygdala. J. Neurophysiol. 101, 1749–1754 (2009).

    PubMed  PubMed Central  Google Scholar 

  33. Swanson, L. W. & Petrovich, G. D. What is the amygdala? Trends Neurosci. 21, 323–331 (1998).

    CAS  PubMed  Google Scholar 

  34. Sah, P., Faber, E. S. L., Lopez De Armentia, M. & Power, J. The amygdaloid complex: anatomy and physiology. Physiol. Rev. 83, 803–834 (2003).

    CAS  PubMed  Google Scholar 

  35. Pessoa, L., Medina, L., Hof, P. R. & Desfilis, E. Neural architecture of the vertebrate brain: implications for the interaction between emotion and cognition. Neurosci. Biobehav. Rev. 107, 296–312 (2019).

    PubMed  Google Scholar 

  36. Amaral, D. G., Price, J. L., Pitkanen, A. & Carmichael, T. S. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 1–66 (Wiley-Liss, 1992).

  37. Kalin, N. H., Shelton, S. E. & Davidson, R. J. The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J. Neurosci. 24, 5506–5515 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wellman, L. L., Forcelli, P. A., Aguilar, B. L. & Malkova, L. Bidirectional control of social behavior by activity within basolateral and central amygdala of primates. J. Neurosci. 36, 8746–8756 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Forcelli, P. A., Wellman, L. L. & Malkova, L. Blockade of glutamatergic transmission in the primate basolateral amygdala suppresses active behavior without altering social interaction. Behav. Neurosci. 131, 192–200 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Málková, L., Gaffan, D. & Murray, E. A. Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J. Neurosci. 17, 6011–6020 (1997).

    PubMed  PubMed Central  Google Scholar 

  41. Chudasama, Y., Izquierdo, A. & Murray, E. A. Distinct contributions of the amygdala and hippocampus to fear expression: effects of amygdala and hippocampal lesions on emotion. Eur. J. Neurosci. 30, 2327–2337 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. Apps, M. A. J., Rushworth, M. F. S. & Chang, S. W. C. The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron 90, 692–707 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Grimaldi, P., Saleem, K. S. & Tsao, D. Anatomical connections of the functionally defined “face patches” in the macaque monkey. Neuron 90, 1325–1342 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gothard, K. M., Battaglia, F. P., Erickson, C. A., Spitler, K. M. & Amaral, D. G. Neural responses to facial expression and face identity in the monkey amygdala. J. Neurophysiol. 97, 1671–1683 (2007).

    CAS  PubMed  Google Scholar 

  45. Mosher, C. P., Zimmerman, P. E. & Gothard, K. M. Neurons in the monkey amygdala detect eye contact during naturalistic social interactions. Curr. Biol. 24, 2459–2464 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rutishauser, U. et al. Single-unit responses selective for whole faces in the human amygdala. Curr. Biol. 21, 1654–1660 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nishijo, H., Ono, T. & Nishino, H. Topographic distribution of modality-specific amygdalar neurons in alert monkey. J. Neurosci. 8, 3556–3569 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mosher, C. P., Zimmerman, P. E. & Gothard, K. M. Response characteristics of basolateral and centromedial neurons in the primate amygdala. J. Neurosci. 30, 16197–16207 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, W. et al. Functional circuits and anatomical distribution of response properties in the primate amygdala. J. Neurosci. 33, 722–733 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Grabenhorst, F., Báez-Mendoza, R., Genest, W., Deco, G. & Schultz, W. Primate amygdala neurons simulate decision processes of social partners. Cell 177, 986–998.e15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).

    CAS  PubMed  Google Scholar 

  53. Morrow, J. K., Cohen, M. X. & Gothard, K. M. Mesoscopic-scale functional networks in the primate amygdala. bioRxiv https://doi.org/10.1101/2020.02.24.963587 (2020).

    Article  Google Scholar 

  54. Wang, F., Zhu, J., Zhu, H., Zhang, Q., Lin, Z. & Hu, H. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334, 693–697 (2011).

    CAS  PubMed  Google Scholar 

  55. Walum, H. & Young, L. J. The neural mechanisms and circuitry of the pair bond. Nat. Rev. Neurosci. 19, 643–654 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, Y. et al. Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell 171, 1176–1190.e17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Resnik, J. & Paz, R. Fear generalization in the primate amygdala. Nat. Neurosci. 18, 188–190 (2015).

    CAS  PubMed  Google Scholar 

  58. Duvarci, S. & Pare, D. Amygdala microcircuits controlling learned fear. Neuron 82, 966–980 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gafford, G. M. & Ressler, K. J. Mouse models of fear-related disorders: cell-type-specific manipulations in amygdala. Neuroscience 321, 108–120 (2016).

    CAS  PubMed  Google Scholar 

  61. Fadok, J. P., Markovic, M., Tovote, P. & Lüthi, A. New perspectives on central amygdala function. Curr. Opin. Neurobiol. 49, 141–147 (2018).

    CAS  PubMed  Google Scholar 

  62. Morrow, J., Mosher, C. & Gothard, K. Multisensory neurons in the primate amygdala. J. Neurosci. 39, 3663–3675 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Reitich-Stolero, T. & Paz, R. Affective memory rehearsal with temporal sequences in amygdala neurons. Nat. Neurosci. 22, 2050–2059 (2019).

    CAS  PubMed  Google Scholar 

  64. Morrison, S. E. & Salzman, C. D. Re-valuing the amygdala. Curr. Opin. Neurobiol. 20, 221–230 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Costa, V. D., Mitz, A. R. & Averbeck, B. B. Subcortical substrates of explore–exploit decisions in primates. Neuron 103, 533–545.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Grabenhorst, F., Hernadi, I. & Schultz, W. Prediction of economic choice by primate amygdala neurons. Proc. Natl Acad. Sci. USA 109, 18950–18955 (2012).

    CAS  PubMed  Google Scholar 

  67. Averbeck, B. B. & Costa, V. D. Motivational neural circuits underlying reinforcement learning. Nat. Neurosci. 20, 505–512 (2017).

    CAS  PubMed  Google Scholar 

  68. Saez, A., Rigotti, M., Ostojic, S., Fusi, S. & Salzman, C. D. Abstract context representations in primate amygdala and prefrontal cortex. Neuron 87, 869–881 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bernardi, S. & Salzman, C. D. The contribution of nonhuman primate research to the understanding of emotion and cognition and its clinical relevance. Proc. Natl Acad. Sci. USA 116, 26305–26312 (2019).

    CAS  Google Scholar 

  70. Nishijo, H., Ono, T. & Nishino, H. Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J. Neurosci. 8, 3570–3583 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Faraut, M. C. M. et al. Dataset of human medial temporal lobe single neuron activity during declarative memory encoding and recognition. Sci. Data 5, 180010 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Warden, M. R. & Miller, E. K. Task-dependent changes in short-term memory in the prefrontal cortex. J. Neurosci. 30, 15801–15810 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Johnston, W. J., Palmer, S. E. & Freedman, D. J. Nonlinear mixed selectivity supports reliable neural computation. PLoS Comput. Biol. 16, e1007544 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lindsay, G. W., Rigotti, M., Warden, M. R., Miller, E. K. & Fusi, S. Hebbian learning in a random network captures selectivity properties of the prefrontal cortex. J. Neurosci. 37, 11021–11036 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    CAS  PubMed  Google Scholar 

  76. Pessoa, L. Emotion and cognition and the amygdala: from “what is it?” to “what’s to be done?”. Neuropsychologia 48, 3416–3429 (2010).

    PubMed  PubMed Central  Google Scholar 

  77. Mosher, C. P., Zimmerman, P. E., Fuglevand, A. J. & Gothard, K. M. Tactile stimulation of the face and the production of facial expressions activate neurons in the primate amygdala. eNeuro 3, 0182–0916 (2016).

    Google Scholar 

  78. Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

    CAS  PubMed  Google Scholar 

  79. Burgess, C. R., Livneh, Y., Ramesh, R. N. & Andermann, M. L. Gating of visual processing by physiological need. Curr. Opin. Neurobiol. 49, 16–23 (2018).

    CAS  PubMed  Google Scholar 

  80. Bernardi, S. et al. The geometry of abstraction in hippocampus and pre-frontal cortex. bioRxiv https://doi.org/10.1101/408633 (2018).

    Article  Google Scholar 

  81. Zhang, C. Y. et al. Partially mixed selectivity in human posterior parietal association cortex. Neuron 95, 697–708.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

    CAS  Google Scholar 

  83. Bialek, W. et al. Statistical mechanics for natural flocks of birds. Proc. Natl Acad. Sci. USA 109, 4786–4791 (2012).

    CAS  PubMed  Google Scholar 

  84. Roy, A. K. et al. Functional connectivity of the human amygdala using resting state fMRI. NeuroImage 45, 614–626 (2009).

    PubMed  Google Scholar 

  85. Mears, D. & Pollard, H. B. Network science and the human brain: using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease: graph theory, the brain, and the amygdala. J. Neurosci. Res. 94, 590–605 (2016).

    CAS  PubMed  Google Scholar 

  86. Tomasi, D. & Volkow, N. D. Association between functional connectivity hubs and brain networks. Cereb. Cortex 21, 2003–2013 (2011).

    PubMed  PubMed Central  Google Scholar 

  87. Insel, T. R. & Fernald, R. D. How the brain processes social information: searching for the social brain. Annu. Rev. Neurosci. 27, 697–722 (2004).

    CAS  PubMed  Google Scholar 

  88. Mehler, W. R. Subcortical afferent connections of the amygdala in the monkey. J. Comp. Neurol. 190, 733–762 (1980).

    CAS  PubMed  Google Scholar 

  89. Heimer, L. & Van Hoesen, G. W. The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci. Biobehav. Rev. 30, 126–147 (2006).

    PubMed  Google Scholar 

  90. Ernst, M. & Fudge, J. L. A developmental neurobiological model of motivated behavior: anatomy, connectivity and ontogeny of the triadic nodes. Neurosci. Biobehav. Rev. 33, 367–382 (2009).

    PubMed  Google Scholar 

  91. Pitkänen, A. & Amaral, D. G. Organization of the intrinsic connections of the monkey amygdaloid complex: projections originating in the lateral nucleus. J. Comp. Neurol. 398, 431–458 (1998).

    PubMed  Google Scholar 

  92. Bogadhi, A. R., Bollimunta, A., Leopold, D. A. & Krauzlis, R. J. Brain regions modulated during covert visual attention in the macaque. Sci. Rep. 8, 15237 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Freiwald, W. A. The neural mechanisms of face processing: cells, areas, networks, and models. Curr. Opin. Neurobiol. 60, 184–191 (2020).

    CAS  PubMed  Google Scholar 

  94. Hwang, J. & Romanski, L. M. Prefrontal neuronal responses during audiovisual mnemonic processing. J. Neurosci. 35, 960–971 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Schultz, W. Neuronal reward and decision signals: from theories to data. Physiol. Rev. 95, 853–951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Morgan, J. T. & Amaral, D. G. Comparative analysis of the dendritic organization of principal neurons in the lateral and central nuclei of the rhesus macaque and rat amygdala: dendritic arbors in rhesus and rat amygdala. J. Comp. Neurol. 522, 689–716 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. Wang, X.-J. & Yang, G. R. A disinhibitory circuit motif and flexible information routing in the brain. Curr. Opin. Neurobiol. 49, 75–83 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mosher, C. P. et al. Cellular classes in the human brain revealed in vivo by heartbeat-related modulation of the extracellular action potential waveform. Cell Rep. 30, 3536–3551.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Klüver, H. & Bucy, P. C. Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol. Psychiatry 42, 979 (1939).

    Google Scholar 

  100. Rosvold, H. E., Mirsky, A. F. & Pribram, K. H. Influence of amygdalectomy on social behavior in monkeys. J. Comp. Physiol. Psychol. 47, 173–178 (1954).

    CAS  PubMed  Google Scholar 

  101. Bliss-Moreau, E., Bauman, M. D. & Amaral, D. G. Neonatal amygdala lesions result in globally blunted affect in adult rhesus macaques. Behav. Neurosci. 125, 848–858 (2011).

    PubMed  PubMed Central  Google Scholar 

  102. Weiskrantz, L. Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J. Comp. Physiol. Psychol. 49, 381–391 (1956).

    CAS  PubMed  Google Scholar 

  103. Kling, A. & Cornell, R. Amygdalectomy and social behavior in the caged stump-tailed macaque (Macaca speciosa). Folia Primatol. 14, 190–208 (1971).

    CAS  PubMed  Google Scholar 

  104. Machado, C. J. & Bachevalier, J. The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 120, 761–786 (2006).

    PubMed  Google Scholar 

  105. Machado, C. J. & Bachevalier, J. Behavioral and hormonal reactivity to threat: effects of selective amygdala, hippocampal or orbital frontal lesions in monkeys. Psychoneuroendocrinology 33, 926–941 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dicks, D., Myers, R. E. & Kling, A. Uncus and amiygdala lesions: effects on social behavior in the free-ranging rhesus monkey. Science 165, 69–71 (1969).

    CAS  PubMed  Google Scholar 

  107. Bliss-Moreau, E., Moadab, G., Bauman, M. D. & Amaral, D. G. The impact of early amygdala damage on juvenile rhesus macaque social behavior. J. Cognit. Neurosci. 25, 2124–2140 (2013).

    Google Scholar 

  108. Kalin, N. H., Shelton, S. E., Davidson, R. J. & Kelley, A. E. The primate amygdala mediates acute fear but not the behavioral and physiological components of anxious temperament. J. Neurosci. 21, 2067–2074 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Aggleton, J. & Passingham, R. Syndrome produced by lesions of the amygdala in monkeys (Macaca mulatta). J. Comp. Physiol. Psychol. 95, 961–977 (1981).

    CAS  PubMed  Google Scholar 

  110. Malkova, L., Mishkin, M., Suomi, S. J. & Bachevalier, J. Long-term effects of neonatal medial temporal ablations on socioemotional behavior in monkeys (Macaca mulatta). Behav. Neurosci. 124, 742–760 (2010).

    PubMed  PubMed Central  Google Scholar 

  111. Thompson, C. I., Bergland, R. M. & Towfighi, J. T. Social and nonsocial behaviors of adult rhesus monkeys after amygdalectomy in infancy or adulthood. J. Comp. Physiol. Psychol. 91, 533–548 (1977).

    CAS  PubMed  Google Scholar 

  112. Thompson, C. I., Schwartzbaum, J. S. & Harlow, H. F. Development of social fear after amygdalectomy in infant rhesus monkeys. Physiol. Behav. 4, 249–254 (1969).

    Google Scholar 

  113. Prather, M. D. et al. Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neuroscience 106, 653–658 (2001).

    CAS  PubMed  Google Scholar 

  114. Bauman, M. D., Lavenex, P., Mason, W. A., Capitanio, J. P. & Amaral, D. G. The development of social behavior following neonatal amygdala lesions in rhesus monkeys. J. Cognit. Neurosci. 16, 1388–1411 (2004).

    CAS  Google Scholar 

  115. Bauman, M. D., Toscano, J. E., Mason, W. A., Lavenex, P. & Amaral, D. G. The expression of social dominance following neonatal lesions of the amygdala or hippocampus in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 120, 749–760 (2006).

    CAS  PubMed  Google Scholar 

  116. Thompson, C. I. & Towfighi, J. T. Social behavior of juvenile rhesus monkeys after amygdalectomy in infancy. Physiol. Behav. 17, 831–836 (1976).

    CAS  PubMed  Google Scholar 

  117. Izquierdo, A., Suda, R. K. & Murray, E. A. Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys. J. Neurosci. 25, 8534 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Machado, C. J. et al. Bilateral neurotoxic amygdala lesions in rhesus monkeys (Macaca mulatta): consistent pattern of behavior across different social contexts. Behav. Neurosci. 122, 251–266 (2008).

    PubMed  PubMed Central  Google Scholar 

  119. Moadab, G., Bliss-Moreau, E. & Amaral, D. G. Adult social behavior with familiar partners following neonatal amygdala or hippocampus damage. Behav. Neurosci. 129, 339–350 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Emery, N. J. et al. The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 115, 515–544 (2001).

    CAS  PubMed  Google Scholar 

  121. Newman, J. D. & Bachevalier, J. Neonatal ablations of the amygdala and inferior temporal cortex alter the vocal response to social separation in rhesus macaques. Brain Res. 758, 180–186 (1997).

    CAS  PubMed  Google Scholar 

  122. Dal Monte, O., Costa, V. D., Noble, P. L., Murray, E. A. & Averbeck, B. B. Amygdala lesions in rhesus macaques decrease attention to threat. Nat. Commun. 6, 10161 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bliss-Moreau, E., Moadab, G., Santistevan, A. & Amaral, D. G. The effects of neonatal amygdala or hippocampus lesions on adult social behavior. Behav. Brain Res. 322, 123–137 (2017).

    PubMed  Google Scholar 

  124. Kling, A. Effects of amygdalectomy and testosterone on sexual behavior of male juvenile macaques. J. Comp. Physiol. Psychol. 65, 466–471 (1968).

    CAS  PubMed  Google Scholar 

  125. Toscano, J. E., Bauman, M. D., Mason, W. A. & Amaral, D. G. Interest in infants by female rhesus monkeys with neonatal lesions of the amygdala or hippocampus. Neuroscience 162, 881–891 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Raper, J., Bachevalier, J., Wallen, K. & Sanchez, M. Neonatal amygdala lesions alter basal cortisol levels in infant rhesus monkeys. Psychoneuroendocrinology 38, 818–829 (2013).

    CAS  PubMed  Google Scholar 

  127. Mitz, A. R., Chacko, R. V., Putnam, P. T., Rudebeck, P. H. & Murray, E. A. Using pupil size and heart rate to infer affective states during behavioral neurophysiology and neuropsychology experiments. J. Neurosci. Methods 279, 1–12 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. Amaral, D. G. et al. The amygdala: is it an essential component of the neural network for social cognition? Neuropsychologia 41, 235–240 (2003).

    PubMed  Google Scholar 

  129. Letzkus, J. J., Wolff, S. B. E. & Lüthi, A. Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88, 264–276 (2015).

    CAS  PubMed  Google Scholar 

  130. Lucas, E. K. & Clem, R. L. GABAergic interneurons: the orchestra or the conductor in fear learning and memory? Brain Res. Bull. 141, 13–19 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks U. Rutishauser and J. Minxha for helpful comments on an earlier versions of this manuscript and A. Martin for assistance. Supported by grants NIH/NIMH R01 MH121009 and NIH/NIMH P50MH100023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin M. Gothard.

Ethics declarations

Competing interests

The author declares no competing interests

Additional information

Peer review information

Nature Reviews Neuroscience thanks S. Chang, L. Malkova and R. Paz for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gothard, K.M. Multidimensional processing in the amygdala. Nat Rev Neurosci 21, 565–575 (2020). https://doi.org/10.1038/s41583-020-0350-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-0350-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing