Abstract
The very earliest stages of sensory processing have the potential to alter how we perceive and respond to our environment. These initial processing circuits can incorporate subcortical regions, such as the thalamus and brainstem nuclei, which mediate complex interactions with the brain’s cortical processing hierarchy. These subcortical pathways, many of which we share with other animals, are not merely vestigial but appear to function as ‘shortcuts’ that ensure processing efficiency and preservation of vital life-preserving functions, such as harm avoidance, adaptive social interactions and efficient decision-making. Here, we propose that functional interactions between these higher-order and lower-order brain areas contribute to atypical sensory and cognitive processing that characterizes numerous neuropsychiatric disorders.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kanai, R., Komura, Y., Shipp, S. & Friston, K. Cerebral hierarchies: predictive processing, precision and the pulvinar. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140169 (2015). This theoretical paper provides a neurobiological account of how the brain coordinates first-order (that is, perceptual content) and second-order (that is, modulatory gain control by the pulvinar) neural populations to optimize hierarchical predictive inference.
Weierich, M. R. & Treat, T. A. Mechanisms of visual threat detection in specific phobia. Cogn. Emot. 29, 992–1006 (2015).
Lake, A. J., Baskin-Sommers, A. R., Li, W., Curtin, J. J. & Newman, J. P. Evidence for unique threat-processing mechanisms in psychopathic and anxious individuals. Cogn. Affect. Behav. Neurosci. 11, 451–462 (2011).
Ledoux, E. & Reis, J. Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J. Neurosci. 4, 16 (1984).
Pessoa, L. & Adolphs, R. Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat. Rev. Neurosci. 11, 773–783 (2010). This Review debates against the notion that the pulvinar mediates rapid transmission of threatening information to the amygdala, suggesting instead that the pulvinar’s role in affective processing is to coordinate cortical responses.
Pessoa, L. & Adolphs, R. Emotion and the brain: multiple roads are better than one. Nat. Rev. Neurosci. 12, 425 (2011).
Tamietto, M. & De Gelder, B. Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci. 11, 697 (2010). This Review discusses evidence for non-conscious affective processing being facilitated by a pathway from the SC to the amygdala via the pulvinar, the notion of which sparked considerable debate in the literature.
de Gelder, B., van Honk, J. & Tamietto, M. Emotion in the brain: of low roads, high roads and roads less travelled. Nat. Rev. Neurosci. 12, 425 (2011). Together with Pessoa and Adolphs (2010, 2011), this paper debates the notion presented by Tamietto and De Gelder (2010).
McFadyen, J., Mattingley, J. B. & Garrido, M. I. An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. eLife 8, e40766 (2019).
Elorette, C., Forcelli, P. A., Saunders, R. C. & Malkova, L. Colocalization of tectal inputs with amygdala-projecting neurons in the macaque pulvinar. Front. Neural Circuits 12, 91 (2018). This study is the first to trace a continuous anatomical pathway from the SC to the amygdala, via the pulvinar, in the primate (macaque) brain.
Carr, J. A. I’ll take the low road: the evolutionary underpinnings of visually triggered fear. Front. Neurosci. 9, 414 (2015).
Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).
Vagnoni, E., Lourenco, S. F. & Longo, M. R. Threat modulates perception of looming visual stimuli. Curr. Biol. 22, R826–R827 (2012).
Wei, P. et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6, 6756 (2015).
Shang, C. et al. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348, 1472–1477 (2015). This study demonstrates that a pathway from the SC to the parabigeminal nucleus that responds to looming visual stimuli also evokes fearful, defensive behaviour in mice.
Zhou, Z. et al. A VTA GABAergic neural circuit mediates visually evoked innate defensive responses. Neuron 103, 1472–1477 (2019).
Salay, L. D., Ishiko, N. & Huberman, A. D. A midline thalamic circuit determines reactions to visual threat. Nature 557, 183 (2018).
Evans, D. A. et al. A synaptic threshold mechanism for computing escape decisions. Nature 558, 590 (2018). This study demonstrates that the magnitude of neural firing in the SC (in response to a looming visual stimulus) gradually ramps up until a certain threshold, at which a burst of activity in the periaqueductal grey is triggered and the mouse escapes.
Ellis, E. M., Gauvain, G., Sivyer, B. & Murphy, G. J. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol. 116, 602–610 (2016).
Perry, V. H. & Cowey, A. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12, 1125–1137 (1984).
Rafal, R. D. et al. Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography. J. Neurophysiol. 114, 1947–1962 (2015).
Tamietto, M., Pullens, P., de Gelder, B., Weiskrantz, L. & Goebel, R. Subcortical connections to human amygdala and changes following destruction of the visual cortex. Curr. Biol. 22, 1449–1455 (2012).
Hoy, J. L., Bishop, H. I. & Niell, C. M. Defined cell types in superior colliculus make distinct contributions to prey capture behavior in the mouse. Curr. Biol. 29, 4130–4138 (2019).
Reinhard, K. et al. A projection specific logic to sampling visual inputs in mouse superior colliculus. eLife 8, e50697 (2019).
Shang, C. et al. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun. 9, 1232 (2018).
Vale, R., Evans, D. A. & Branco, T. Rapid spatial learning controls instinctive defensive behavior in mice. Curr. Biol. 27, 1342–1349 (2017).
Liden, W. H., Phillips, M. L. & Herberholz, J. Neural control of behavioural choice in juvenile crayfish. Proc. R. Soc. B Biol. Sci. 277, 3493–3500 (2010).
Evans, D. A., Stempel, A. V., Vale, R. & Branco, T. Cognitive control of escape behaviour. Trends Cogn. Sci. 23, 334–348 (2019).
Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical computation. Neuron 100, 424–435 (2018).
LeDoux, J. & Daw, N. D. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat. Rev. Neurosci. 19, 269 (2018).
Almada, R. C. et al. Stimulation of the nigrotectal pathway at the level of the superior colliculus reduces threat recognition and causes a shift from avoidance to approach behavior. Front. Neural Circuits 12, 36 (2018).
Comoli, E. et al. Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front. Neuroanat. 6, 9 (2012).
Liang, F. et al. Sensory cortical control of a visually induced arrest behavior via corticotectal projections. Neuron 86, 755–767 (2015).
Liu, X. et al. Gentle handling attenuates innate defensive responses to visual threats. Front. Behav. Neurosci. 12, 239 (2018).
DesJardin, J. T. et al. Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. J. Neurosci. 33, 150–155 (2013).
Forcelli, P. A. et al. Amygdala selectively modulates defensive responses evoked from the superior colliculus in non-human primates. Soc. Cogn. Affect. Neurosci. 11, 2009–2019 (2016).
Forcelli, P. A., Waguespack, H. F. & Malkova, L. Defensive vocalizations and motor asymmetry triggered by disinhibition of the periaqueductal gray in non-human primates. Front. Neurosci. 11, 163 (2017).
Gandhi, N. J. & Katnani, H. A. Motor functions of the superior colliculus. Annu. Rev. Neurosci. 34, 205–231 (2011).
Bridge, H., Leopold, D. A. & Bourne, J. A. Adaptive pulvinar circuitry supports visual cognition. Trends Cogn. Sci. 20, 146–157 (2016). This Review discusses evidence from developmental neuroscience for the pulvinar as a higher-order thalamic nucleus that has a fundamental role in coordinating and modulating broad cognitive functions across the brain.
Le, Q. V. et al. Monkey pulvinar neurons fire differentially to snake postures. PLoS One 9, e114258 (2014).
Nguyen, M. N. et al. Neuronal responses to face-like and facial stimuli in the monkey superior colliculus. Front. Behav. Neurosci. 8, 85 (2014).
Maior, R. S., Hori, E., Tomaz, C., Ono, T. & Nishijo, H. The monkey pulvinar neurons differentially respond to emotional expressions of human faces. Behav. Brain Res. 215, 129–135 (2010).
Krauzlis, R. J., Lovejoy, L. P. & Zénon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36, 165–182 (2013).
Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X. & Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753–756 (2012).
Fischer, J. & Whitney, D. Attention gates visual coding in the human pulvinar. Nat. Commun. 3, 1051 (2012).
Wise, T., Michely, J., Dayan, P. & Dolan, R. J. A computational account of threat-related attentional bias. PLoS Comput. Biol. 15, e1007341 (2019).
Armstrong, T. & Olatunji, B. O. Eye tracking of attention in the affective disorders: a meta-analytic review and synthesis. Clin. Psychol. Rev. 32, 704–723 (2012).
Basanovic, J., Dean, L., Riskind, J. H. & MacLeod, C. High spider-fearful and low spider-fearful individuals differentially perceive the speed of approaching, but not receding, spider stimuli. Cogn. Ther. Res. 43, 514–521 (2019).
Shiban, Y. et al. Treatment effect on biases in size estimation in spider phobia. Biol. Psychol. 121, 146–152 (2016).
Koller, K., Rafal, R. D., Platt, A. & Mitchell, N. D. Orienting toward threat: contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia 128, 78–86 (2019).
Nakataki, M. et al. Glucocorticoid administration improves aberrant fear-processing networks in spider phobia. Neuropsychopharmacology 42, 485–494 (2017).
Tadayonnejad, R., Klumpp, H., Ajilore, O., Leow, A. & Phan, K. L. Aberrant pulvinar effective connectivity in generalized social anxiety disorder. Medicine 95, e5358 (2016).
Steuwe, C. et al. Effect of direct eye contact in PTSD related to interpersonal trauma: an fMRI study of activation of an innate alarm system. Soc. Cogn. Affect. Neurosci. 9, 88–97 (2012).
Steuwe, C. et al. Effect of direct eye contact in women with PTSD related to interpersonal trauma: psychophysiological interaction analysis of connectivity of an innate alarm system. Psychiatry Res. 232, 162–167 (2015).
Nguyen, M. N. et al. Neuronal responses to face-like stimuli in the monkey pulvinar. Eur. J. Neurosci. 37, 35–51 (2013).
Sawyers, C. et al. The genetic and environmental structure of fear and anxiety in juvenile twins. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180, 204–212 (2019).
Hormigo, S., Vega-Flores, G. & Castro-Alamancos, M. A. Basal ganglia output controls active avoidance behavior. J. Neurosci. 36, 10274–10284 (2016).
Cohen, J. D. & Castro-Alamancos, M. A. Neural correlates of active avoidance behavior in superior colliculus. J. Neurosci. 30, 8502–8511 (2010).
Jure, R. Autism pathogenesis: the superior colliculus. Front. Neurosci. 12, 1029 (2018). This Review proposes how the SC is likely a significant contributor towards the genesis and symptoms of autism spectrum disorder.
Khalil, R., Tindle, R., Boraud, T., Moustafa, A. A. & Karim, A. A. Social decision making in autism: on the impact of mirror neurons, motor control, and imitative behaviors. CNS Neurosci. Ther. 24, 669–676 (2018).
Quattrocki, E. & Friston, K. Autism, oxytocin and interoception. Neurosci. Biobehav. Rev. 47, 410–430 (2014).
Kleinhans, N. M. et al. fMRI evidence of neural abnormalities in the subcortical face processing system in ASD. NeuroImage 54, 697–704 (2011).
Zürcher, N. R. et al. Perception of social cues of danger in autism spectrum disorders. PLoS One 8, e81206 (2013).
Hadjikhani, N. et al. Look me in the eyes: constraining gaze in the eye-region provokes abnormally high subcortical activation in autism. Sci. Rep. 7, 3163 (2017).
Hu, Y. et al. A translational study on looming-evoked defensive response and the underlying subcortical pathway in autism. Sci. Rep. 7, 14755 (2017).
Guy, J., Mottron, L., Berthiaume, C. & Bertone, A. A developmental perspective of global and local visual perception in autism spectrum disorder. J. Autism Dev. Disord. 49, 2706–2720 (2019).
Lomber, S. G. Learning to see the trees before the forest: reversible deactivation of the superior colliculus during learning of local and global visual features. Proc. Natl Acad. Sci. USA 99, 4049–4054 (2002).
Feldman, J. I. et al. Audiovisual multisensory integration in individuals with autism spectrum disorder: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 95, 220–234 (2018).
Stein, B. E., Stanford, T. R. & Rowland, B. A. Development of multisensory integration from the perspective of the individual neuron. Nat. Rev. Neurosci. 15, 520–535 (2014).
Jones, W. & Klin, A. Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature 504, 427–431 (2013).
Overton, P. G. Collicular dysfunction in attention deficit hyperactivity disorder. Med. Hypotheses 70, 1121–1127 (2008).
Panagiotidi, M., Overton, P. G. & Stafford, T. Attention-deficit hyperactivity disorder-like traits and distractibility in the visual periphery. Perception 46, 665–678 (2017).
Munoz, D. P., Armstrong, I. T., Hampton, K. A. & Moore, K. D. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. J. Neurophysiol. 90, 503–514 (2003).
Panagiotidi, M., Overton, P. & Stafford, T. Increased microsaccade rate in individuals with ADHD traits. J. Eye Mov. Res. https://doi.org/10.16910/10.1.6 (2017).
Clements, K., Devonshire, I., Reynolds, J. & Overton, P. Enhanced visual responses in the superior colliculus in an animal model of attention-deficit hyperactivity disorder and their suppression by d-amphetamine. Neuroscience 274, 289–298 (2014).
Gowan, J., Coizet, V., Devonshire, I. & Overton, P. d-Amphetamine depresses visual responses in the rat superior colliculus: a possible mechanism for amphetamine-induced decreases in distractibility. J. Neural Transm. 115, 377–387 (2008).
Dommett, E. J., Overton, P. G. & Greenfield, S. A. Drug therapies for attentional disorders alter the signal-to-noise ratio in the superior colliculus. Neuroscience 164, 1369–1376 (2009).
Gaymard, B., François, C., Ploner, C. J., Condy, C. & Rivaud-Péchoux, S. A direct prefrontotectal tract against distractibility in the human brain. Ann. Neurol. 53, 542–545 (2003).
Kim, H. F., Amita, H. & Hikosaka, O. Indirect pathway of caudal basal ganglia for rejection of valueless visual objects. Neuron 94, 920–930.e3 (2017).
Hulst, B. M. van et al. Children with ADHD symptoms show decreased activity in ventral striatum during the anticipation of reward, irrespective of ADHD diagnosis. J. Child. Psychol. Psychiatry 58, 206–214 (2017).
Day-Brown, J. D., Wei, H., Chomsung, R. D., Petry, H. M. & Bickford, M. E. Pulvinar projections to the striatum and amygdala in the tree shrew. Front. Neuroanat. 4, 143 (2010).
Ivanov, I. et al. Morphological abnormalities of the thalamus in youths with attention deficit hyperactivity disorder. Am. J. Psychiatry 167, 397–408 (2010).
Li, X. et al. Atypical pulvinar–cortical pathways during sustained attention performance in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child. Adolesc. Psychiatry 51, 1197–1207.e4 (2012).
Xia, S. et al. Thalamic shape and connectivity abnormalities in children with attention-deficit/hyperactivity disorder. Psychiatry Res. 204, 161–167 (2012).
Weiskrantz, L., Warrington, E. K., Sanders, M. & Marshall, J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97, 709–728 (1974).
Pegna, A. J., Khateb, A., Lazeyras, F. & Seghier, M. L. Discriminating emotional faces without primary visual cortices involves the right amygdala. Nat. Neurosci. 8, 24 (2005).
Tamietto, M. et al. Unseen facial and bodily expressions trigger fast emotional reactions. Proc. Natl Acad. Sci. USA 106, 17661–17666 (2009).
Gelder, B. de et al. Intact navigation skills after bilateral loss of striate cortex. Curr. Biol. 18, R1128–R1129 (2008).
Koch, C., Massimini, M., Boly, M. & Tononi, G. Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307 (2016).
Mundinano, I.-C. et al. More than blindsight: case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury. Neuropsychologia 128, 178–186 (2019).
Ahmadlou, M., Zweifel, L. S. & Heimel, J. A. Functional modulation of primary visual cortex by the superior colliculus in the mouse. Nat. Commun. 9, 3895 (2018).
Schmid, M. C. et al. Blindsight depends on the lateral geniculate nucleus. Nature 466, 373–377 (2010).
Yoshida, M. et al. Residual attention guidance in blindsight monkeys watching complex natural scenes. Curr. Biol. 22, 1429–1434 (2012).
Corbetta, M. & Shulman, G. L. Spatial neglect and attention networks. Annu. Rev. Neurosci. 34, 569–599 (2011).
Vaessen, M. J., Saj, A., Lovblad, K.-O., Gschwind, M. & Vuilleumier, P. Structural white-matter connections mediating distinct behavioral components of spatial neglect in right brain-damaged patients. Cortex 77, 54–68 (2016).
Driver, J. & Mattingley, J. B. Parietal neglect and visual awareness. Nat. Neurosci. 1, 17–22 (1998).
Bertini, C., Cecere, R. & Làdavas, E. Unseen fearful faces facilitate visual discrimination in the intact field. Neuropsychologia 128, 58–64 (2019).
De Gelder, B., Morris, J. S. & Dolan, R. J. Unconscious fear influences emotional awareness of faces and voices. Proc. Natl Acad. Sci. USA 102, 18682–18687 (2005).
Bertini, C., Cecere, R. & Làdavas, E. I am blind, but I “see” fear. Cortex 49, 985–993 (2013).
Zhan, M. & de Gelder, B. Unconscious fearful body perception enhances discrimination of conscious anger expressions under continuous flash suppression. Neuropsychologia 128, 325–331 (2019).
Cecere, R., Bertini, C., Maier, M. E. & Làdavas, E. Unseen fearful faces influence face encoding: evidence from ERPs in hemianopic patients. J. Cogn. Neurosci. 26, 2564–2577 (2014).
Vlassova, A., Donkin, C. & Pearson, J. Unconscious information changes decision accuracy but not confidence. Proc. Natl Acad. Sci. USA 111, 16214–16218 (2014).
Barbosa, L. S., Vlassova, A. & Kouider, S. Prior expectations modulate unconscious evidence accumulation. Conscious. Cogn. 51, 236–242 (2017).
Hedger, N., Gray, K. L., Garner, M. & Adams, W. J. Are visual threats prioritized without awareness? A critical review and meta-analysis involving 3 behavioral paradigms and 2696 observers. Psychol. Bull. 142, 934 (2016).
Gayet, S., Paffen, C. L., Belopolsky, A. V., Theeuwes, J. & Van der Stigchel, S. Visual input signaling threat gains preferential access to awareness in a breaking continuous flash suppression paradigm. Cognition 149, 77–83 (2016).
Etkin, A. et al. Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron 44, 1043–1055 (2004).
Lipka, J., Miltner, W. H. & Straube, T. Vigilance for threat interacts with amygdala responses to subliminal threat cues in specific phobia. Biol. Psychiatry 70, 472–478 (2011).
Neumeister, P. et al. Specific amygdala response to masked fearful faces in post-traumatic stress relative to other anxiety disorders. Psychol. Med. 48, 1209–1217 (2018).
Sato, W., Kochiyama, T., Uono, S., Yoshimura, S. & Toichi, M. Neural mechanisms underlying conscious and unconscious gaze-triggered attentional orienting in autism spectrum disorder. Front. Hum. Neurosci. 11, 339 (2017).
Madipakkam, A. R., Rothkirch, M., Dziobek, I. & Sterzer, P. Unconscious avoidance of eye contact in autism spectrum disorder. Sci. Rep. 7, 13378 (2017).
Akechi, H. et al. Absence of preferential unconscious processing of eye contact in adolescents with autism spectrum disorder. Autism Res. 7, 590–597 (2014).
Hohwy, J. Attention and conscious perception in the hypothesis testing brain. Front. Psychol. 3, 96 (2012).
Aue, T. & Okon-Singer, H. Expectancy biases in fear and anxiety and their link to biases in attention. Clin. Psychol. Rev. 42, 83–95 (2015).
Brown, H. & Friston, K. J. Free-energy and illusions: the cornsweet effect. Front. Psychol. 3, 43 (2012).
Pinto, Y., van Gaal, S., de Lange, F. P., Lamme, V. A. & Seth, A. K. Expectations accelerate entry of visual stimuli into awareness. J. Vis. 15, 13 (2015).
de Lange, F. P., Heilbron, M. & Kok, P. How do expectations shape perception? Trends Cogn. Sci. 22, 764–779 (2018). This Review presents neuroscientific evidence of how prior expectations can influence (that is, suppress, enhance or bias) the content of our conscious experience.
Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T. & Miyamoto, A. Responses of pulvinar neurons reflect a subject’s confidence in visual categorization. Nat. Neurosci. 16, 749 (2013).
Jiang, J., Summerfield, C. & Egner, T. Attention sharpens the distinction between expected and unexpected percepts in the visual brain. J. Neurosci. 33, 18438–18447 (2013).
Basso, M. A. & Wurtz, R. H. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci. 18, 7519–7534 (1998).
Comoli, E. et al. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci. 6, 974 (2003).
Takakuwa, N., Kato, R., Redgrave, P. & Isa, T. Emergence of visually-evoked reward expectation signals in dopamine neurons via the superior colliculus in V1 lesioned monkeys. eLife 6, e24459 (2017).
Takakuwa, N., Redgrave, P. & Isa, T. Cortical visual processing evokes short-latency reward-predicting cue responses in primate midbrain dopamine neurons. Sci. Rep. 8, 14984 (2018).
May, P. J. et al. Tectonigral projections in the primate: a pathway for pre-attentive sensory input to midbrain dopaminergic neurons. Eur. J. Neurosci. 29, 575–587 (2009).
Capitão, L. P. et al. Anxiety increases breakthrough of threat stimuli in continuous flash suppression. Emotion 14, 1027 (2014).
Damjanovic, L., Meyer, M. & Sepulveda, F. Raising the alarm: individual differences in the perceptual awareness of masked facial expressions. Brain Cogn. 114, 1–10 (2017).
Sussman, T. J., Weinberg, A., Szekely, A., Hajcak, G. & Mohanty, A. Here comes trouble: prestimulus brain activity predicts enhanced perception of threat. Cereb. Cortex 27, 2695–2707 (2016).
Sussman, T. J., Szekely, A., Hajcak, G. & Mohanty, A. It’s all in the anticipation: how perception of threat is enhanced in anxiety. Emotion 16, 320 (2016).
Imbriano, G., Sussman, T. J., Jin, J. & Mohanty, A. The role of imagery in threat-related perceptual decision making. Emotion https://doi.org/10.1037/emo0000610 (2019).
Hirsch, C. R., Meeten, F., Krahé, C. & Reeder, C. Resolving ambiguity in emotional disorders: the nature and role of interpretation biases. Annu. Rev. Clin. Psychol. 12, 281–305 (2016).
McHugh, S. B. et al. Aversive prediction error signals in the amygdala. J. Neurosci. 34, 9024–9033 (2014).
Roy, M. et al. Representation of aversive prediction errors in the human periaqueductal gray. Nat. Neurosci. 17, 1607 (2014).
Robinson, O. J., Overstreet, C., Charney, D. R., Vytal, K. & Grillon, C. Stress increases aversive prediction error signal in the ventral striatum. Proc. Natl Acad. Sci. USA 110, 4129–4133 (2013).
Den Ouden, H. E., Kok, P. & De Lange, F. P. How prediction errors shape perception, attention, and motivation. Front. Psychol. 3, 548 (2012).
Kok, P., Failing, M. F. & de Lange, F. P. Prior expectations evoke stimulus templates in the primary visual cortex. J. Cogn. Neurosci. 26, 1546–1554 (2014).
Kok, P., Mostert, P. & De Lange, F. P. Prior expectations induce prestimulus sensory templates. Proc. Natl Acad. Sci. USA 114, 10473–10478 (2017).
Méndez-Bértolo, C. et al. A fast pathway for fear in human amygdala. Nat. Neurosci. 19, 1041 (2016).
Burra, N., Hervais-Adelman, A., Celeghin, A., de Gelder, B. & Pegna, A. J. Affective blindsight relies on low spatial frequencies. Neuropsychologia 128, 44–49 (2019).
McFadyen, J., Mermillod, M., Mattingley, J. B., Halász, V. & Garrido, M. I. A rapid subcortical amygdala route for faces irrespective of spatial frequency and emotion. J. Neurosci. 37, 3864–3874 (2017).
Van Le, Q. et al. Gamma oscillations in the superior colliculus and pulvinar in response to faces support discrimination performance in monkeys. Neuropsychologia 128, 87–95 (2019).
Homan, P. et al. Neural computations of threat in the aftermath of combat trauma. Nat. Neurosci. 22, 470 (2019).
Summerfield, C. & De Lange, F. P. Expectation in perceptual decision making: neural and computational mechanisms. Nat. Rev. Neurosci. 15, 745 (2014).
Pezzulo, G. Why do you fear the bogeyman? An embodied predictive coding model of perceptual inference. Cogn. Affect. Behav. Neurosci. 14, 902–911 (2014).
Critchley, H. D. & Garfinkel, S. N. Interoception and emotion. Curr. Opin. Psychol. 17, 7–14 (2017).
Garfinkel, S. N. et al. Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. J. Neurosci. 34, 6573–6582 (2014).
Gray, M. A. et al. Emotional appraisal is influenced by cardiac afferent information. Emotion 12, 180 (2012).
Celeghin, A., de Gelder, B. & Tamietto, M. From affective blindsight to emotional consciousness. Conscious. Cogn. 36, 414–425 (2015).
Spreafico, R., Kirk, C., Franceschetti, S. & Avanzini, G. Brain stem projections to the pulvinar–lateralis posterior complex of the cat. Exp. Brain Res. 40, 209–220 (1980).
Edwards, S. B., Ginsburgh, C. L., Henkel, C. K. & Stein, B. E. Sources of subcortical projections to the superior colliculus in the cat. J. Comp. Neurol. 184, 309–329 (1979).
Stitt, I., Zhou, Z. C., Radtke-Schuller, S. & Fröhlich, F. Arousal dependent modulation of thalamo-cortical functional interaction. Nat. Commun. 9, 1–13 (2018).
Miller, M. & Clark, A. Happily entangled: prediction, emotion, and the embodied mind. Synthese 195, 2559–2575 (2018).
Horga, G. & Abi-Dargham, A. An integrative framework for perceptual disturbances in psychosis. Nat. Rev. Neurosci. 20, 763–778 (2019).
Lanillos, P. et al. A review on neural network models of schizophrenia and autism spectrum disorder. Neural Netw. 122, 338–363 (2020).
Martínez, A. et al. Differential patterns of visual sensory alteration underlying face emotion recognition impairment and motion perception deficits in schizophrenia and autism spectrum disorders. Biol. Psychiatry 86, 557–567 (2019).
Cho, K. I. K. et al. Microstructural changes in higher-order nuclei of the thalamus in patients with first-episode psychosis. Biol. Psychiatry 85, 70–78 (2019).
Dorph-Petersen, K.-A. & Lewis, D. A. Postmortem structural studies of the thalamus in schizophrenia. Schizophr. Res. 180, 28–35 (2017).
Schuetze, M. et al. Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacology 41, 2627 (2016).
Woodward, N. D., Giraldo-Chica, M., Rogers, B. & Cascio, C. J. Thalamocortical dysconnectivity in autism spectrum disorder: an analysis of the autism brain imaging data exchange. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 76–84 (2017).
Lecciso, F. & Colombo, B. Beyond the cortico-centric models of cognition: the role of subcortical functioning in neurodevelopmental disorders. Front. Psychol. 10, 2809 (2019).
Niv, Y. Learning task-state representations. Nat. Neurosci. 22, 1544–1553 (2019).
Ahmadlou, M., Tafreshiha, A. & Heimel, J. A. Visual cortex limits pop-out in the superior colliculus of awake mice. Cereb. Cortex 27, 5772–5783 (2017).
Mandali, A., Weidacker, K., Kim, S.-G. & Voon, V. The ease and sureness of a decision: evidence accumulation of conflict and uncertainty. Brain 142, 1471–1482 (2019).
Pepperdine, E., Lomax, C. & Freeston, M. H. Disentangling intolerance of uncertainty and threat appraisal in everyday situations. J. Anxiety Disord. 57, 31–38 (2018).
Garvert, M. M., Friston, K. J., Dolan, R. J. & Garrido, M. I. Subcortical amygdala pathways enable rapid face processing. NeuroImage 102, 309–316 (2014).
Boto, E. et al. A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers. NeuroImage 149, 404–414 (2017).
Yu, H.-H., Atapour, N., Chaplin, T. A., Worthy, K. H. & Rosa, M. G. P. Robust visual responses and normal retinotopy in primate lateral geniculate nucleus following long-term lesions of striate cortex. J. Neurosci. 38, 3955–3970 (2018).
Cerkevich, C. M., Lyon, D. C., Balaram, P. & Kaas, J. H. Distribution of cortical neurons projecting to the superior colliculus in macaque monkeys. Eye Brain 6, 121–137 (2014).
Berman, R. A., Joiner, W. M., Cavanaugh, J. & Wurtz, R. H. Modulation of presaccadic activity in the frontal eye field by the superior colliculus. J. Neurophysiol. 101, 2934–2942 (2009).
Doubell, T. P., Skaliora, I., Baron, J. & King, A. J. Functional connectivity between the superficial and deeper layers of the superior colliculus: an anatomical substrate for sensorimotor integration. J. Neurosci. 23, 6596–6607 (2003).
White, B. J., Kan, J. Y., Levy, R., Itti, L. & Munoz, D. P. Superior colliculus encodes visual saliency before the primary visual cortex. Proc. Natl Acad. Sci. USA 114, 9451–9456 (2017). This study demonstrates, using simultaneous recordings of the SC and V1 in Rhesus monkeys, that differential responses to saliency occurred in the SC before V1.
Bisley, J. W. & Mirpour, K. The neural instantiation of a priority map. Curr. Opin. Psychol. 29, 108–112 (2019).
Peters, A., McEwen, B. S. & Friston, K. Uncertainty and stress: why it causes diseases and how it is mastered by the brain. Prog. Neurobiol. 156, 164–188 (2017).
Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).
Maunsell, J. H. & Gibson, J. R. Visual response latencies in striate cortex of the macaque monkey. J. Neurophysiol. 68, 1332–1344 (1992).
Yan, Y., Zhaoping, L. & Li, W. Bottom-up saliency and top-down learning in the primary visual cortex of monkeys. Proc. Natl Acad. Sci. USA 115, 10499–10504 (2018).
Schmolesky, M. T. et al. Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272–3278 (1998).
Bell, A. H., Meredith, M. A., Van Opstal, A. J. & Munoz, D. P. Stimulus intensity modifies saccadic reaction time and visual response latency in the superior colliculus. Exp. Brain Res. 174, 53–59 (2006).
Silverstein, D. N. & Ingvar, M. A multi-pathway hypothesis for human visual fear signaling. Front. Syst. Neurosci. 9, 101 (2015).
Zeki, S. Area V5 — a microcosm of the visual brain. Front. Integr. Neurosci. 9, 21 (2015).
Celeghin, A., Bagnis, A., Diano, M. & Méndez, C. A. Functional neuroanatomy of blindsight revealed by activation likelihood estimation meta-analysis. Neuropsychologia 128, 109–118 (2019).
Ajina, S. & Bridge, H. Subcortical pathways to extrastriate visual cortex underlie residual vision following bilateral damage to V1. Neuropsychologia 128, 140–149 (2019).
Ajina, S. & Bridge, H. Blindsight relies on a functional connection between hMT+ and the lateral geniculate nucleus, not the pulvinar. PLoS Biol. 16, e2005769 (2018).
Tran, A. et al. Neuronal mechanisms of motion detection underlying blindsight assessed by functional magnetic resonance imaging (fMRI). Neuropsychologia 128, 187–197 (2019).
Barleben, M. et al. Neural correlates of visual motion processing without awareness in patients with striate cortex and pulvinar lesions. Hum. Brain Mapp. 36, 1585–1594 (2015).
Kinoshita, M. et al. Dissecting the circuit for blindsight to reveal the critical role of pulvinar and superior colliculus. Nat. Commun. 10, 135 (2019).
Tamietto, M. & Morrone, M. C. Visual plasticity: blindsight bridges anatomy and function in the visual system. Curr. Biol. 26, R70–R73 (2016).
Saulnier, K. G., Allan, N. P., Raines, A. M. & Schmidt, N. B. Depression and intolerance of uncertainty: relations between uncertainty subfactors and depression dimensions. Psychiatry 82, 72–79 (2018).
Malivoire, B. L. et al. Look before you leap: the role of negative urgency in appraisals of ambiguous and unambiguous scenarios in individuals high in generalized anxiety disorder symptoms. Cogn. Behav. Ther. 48, 217–240 (2018).
Brown, M. et al. Intolerance of uncertainty in eating disorders: a systematic review and meta-analysis. Eur. Eat. Disord. Rev. 25, 329–343 (2017).
Hodgson, A. R., Freeston, M. H., Honey, E. & Rodgers, J. Facing the unknown: intolerance of uncertainty in children with autism spectrum disorder. J. Appl. Res. Intellect. Disabil. 30, 336–344 (2017).
Paulus, M. P. & Yu, A. J. Emotion and decision-making: affect-driven belief systems in anxiety and depression. Trends Cogn. Sci. 16, 476–483 (2012).
Ranney, R. M., Behar, E. & Bartoszek, G. Individuals intolerant of uncertainty: the maintenance of worry and distress despite reduced uncertainty. Behav. Ther. 50, 489–503 (2019).
Hakamata, Y. et al. The functional activity and effective connectivity of pulvinar are modulated by individual differences in threat-related attentional bias. Sci. Rep. 6, 34777 (2016).
Ipser, J. C., Singh, L. & Stein, D. J. Meta-analysis of functional brain imaging in specific phobia. Psychiatry Clin. Neurosci. 67, 311–322 (2013).
Kraus, C. et al. The pulvinar nucleus and antidepressant treatment: dynamic modeling of antidepressant response and remission with ultra-high field functional MRI. Mol. Psychiatry 24, 746–756 (2019).
Szpunar, K. K., Jing, H. G., Benoit, R. G., Schacter, D. L. & Watanabe, K. Repetition-related reductions in neural activity during emotional simulations of future events. PLoS One 10, e0138354 (2015).
Taschereau-Dumouchel, V., Liu, K.-Y. & Lau, H. Unconscious psychological treatments for physiological survival circuits. Curr. Opin. Behav. Sci. 24, 62–68 (2018).
Taschereau-Dumouchel, V. et al. Towards an unconscious neural reinforcement intervention for common fears. Proc. Natl Acad. Sci. USA 115, 3470–3475 (2018).
Adams, R. A., Huys, Q. J. M. & Roiser, J. P. Computational psychiatry: towards a mathematically informed understanding of mental illness. J. Neurol. Neurosurg. Psychiatry 87, 53–63 (2016).
Acknowledgements
R.J.D. and J.M. were supported by the Wellcome Trust (098362/A/12/Z and 091593/Z/10/Z) and M.I.G. by the University of Queensland (2016000071). The authors thank the reviewers for their insightful comments on the manuscript, J. B. Mattingley for his helpful discussions and all of the researchers who conducted the experiments discussed in this Review. Finally, they especially thank the late patient T.N., whose generosity and willingness to help has made a significant and lasting impact on our understanding of blindsight in the human brain.
Author information
Authors and Affiliations
Contributions
J.M. researched data for article and made a substantial contribution to the discussion of content, writing and review/editing of the manuscript before submission. R.J.D and M.I.G made substantial contributions to the discussion of content and review/editing of the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Neuroscience thanks M. Tamietto, J. Lin and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Neuroanatomical tracing
-
An invasive neuroimaging technique that involves injecting dye into either the cell body of a neuron (that is, anterograde tracing) or a neural synapse (that is, retrograde tracing) to visualize anatomical projections.
- Diffusion imaging
-
A variant of MRI that measures the diffusion of water molecules that, in the brain, is restricted by the structure of biological tissue (for example, white matter tracts).
- GABAergic
-
A description of neurons that use the neurotransmitter GABA (that is, γ-aminobutryic acid, which reduces neuronal excitability).
- Fractional anisotropy
-
A measure derived from diffusion-weighted images that describes how restricted the diffusion process was, from 0 (isotropic, unrestricted in all directions) to 1 (anisotropic, restricted to one axis).
- Tectopulvinar
-
Anatomical features pertaining to the tectum (that is, uppermost part of the midbrain, including the superior colliculus) and the pulvinar.
- Geniculostriate
-
Anatomical features pertaining to the lateral geniculate nucleus and the striate cortex (that is, the primary visual cortex (V1)).
- Saliency maps
-
Topographically organized maps of the degree to which a stimulus differs in its sensory properties from its surroundings.
- Gabor patches
-
Striped circular stimuli that have a particular spatial frequency and orientation, created by convolving a Gaussian kernel with a sinusoidal wave.
- Electroencephalography
-
A non-invasive functional neuroimaging method that uses scalp electrodes to measure electric activity.
- Magnetoencephalography
-
A non-invasive functional neuroimaging method that uses sensitive external sensors to measure the magnetic fields emitted by electrical currents within the brain.
Rights and permissions
About this article
Cite this article
McFadyen, J., Dolan, R.J. & Garrido, M.I. The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nat Rev Neurosci 21, 264–276 (2020). https://doi.org/10.1038/s41583-020-0287-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41583-020-0287-1