Programmed axon degeneration: from mouse to mechanism to medicine


Wallerian degeneration is a widespread mechanism of programmed axon degeneration. In the three decades since the discovery of the Wallerian degeneration slow (WldS) mouse, research has generated extensive knowledge of the molecular mechanisms underlying Wallerian degeneration, demonstrated its involvement in non-injury disorders and found multiple ways to block it. Recent developments have included: the detection of NMNAT2 mutations that implicate Wallerian degeneration in rare human diseases; the capacity for lifelong rescue of a lethal condition related to Wallerian degeneration in mice; the discovery of ‘druggable’ enzymes, including SARM1 and MYCBP2 (also known as PHR1), in Wallerian pathways; and the elucidation of protein structures to drive further understanding of the underlying mechanisms and drug development. Additionally, new data have indicated the potential of these advances to alleviate a number of common disorders, including chemotherapy-induced and diabetic peripheral neuropathies, traumatic brain injury, and amyotrophic lateral sclerosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Activation of Wallerian degeneration in injury and disease.
Fig. 2: Wallerian degeneration timeline.
Fig. 3: A working model of the Wallerian degeneration pathway.
Fig. 4: Activation of SARM1 by NMN.
Fig. 5: An axon vulnerability spectrum in humans and mice.


  1. 1.

    Waller, A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philos. Trans. R. Soc. Lond. 140, 423–429 (1850).

    Google Scholar 

  2. 2.

    Gilley, J., Ribchester, R. R. & Coleman, M. P. Sarm1 deletion, but not WldS, confers lifelong rescue in a mouse model of severe axonopathy. Cell Rep. 21, 10–16 (2017). This study shows that blocking Wallerian degeneration can permanently rescue axons in some circumstances.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Conforti, L., Gilley, J. & Coleman, M. P. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat. Rev. Neurosci. 15, 394–409 (2014).

    CAS  PubMed  Google Scholar 

  4. 4.

    Lunn, E. R., Perry, V. H., Brown, M. C., Rosen, H. & Gordon, S. Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur. J. Neurosci. 1, 27–33 (1989). The discovery of the Wld S (formerly ‘Ola’) mouse, which initiated a molecular understanding of Wallerian degeneration.

    CAS  PubMed  Google Scholar 

  5. 5.

    Lubińska, L. Patterns of Wallerian degeneration of myelinated fibres in short and long peripheral stumps and in isolated segments of rat phrenic nerve. Interpretation of the role of axoplasmic flow of the trophic factor. Brain Res. 233, 227–240 (1982).

    PubMed  Google Scholar 

  6. 6.

    Mack, T. G. A. et al. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. 4, 1199–1206 (2001). The identification of the protective gene and protein in Wld S mice implicated NAD biology.

    CAS  PubMed  Google Scholar 

  7. 7.

    Coleman, M. P. & Freeman, M. R. Wallerian degeneration, WldS, and Nmnat. Annu. Rev. Neurosci. 33, 245–267 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Araki, T. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013 (2004).

    CAS  PubMed  Google Scholar 

  9. 9.

    Conforti, L. et al. WldS protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice. J. Cell Biol. 184, 491–500 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Babetto, E. et al. Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo. J. Neurosci. 30, 13291–13304 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hicks, A. N. et al. Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) regulates axon integrity in the mouse embryo. PLOS ONE 7, e47869 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Gilley, J. & Coleman, M. P. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLOS Biol. 8, e1000300 (2010). The identification of NMNAT2 as a pro-survival, endogenous regulator of Wallerian degeneration.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Gilley, J., Adalbert, R., Yu, G. & Coleman, M. P. Rescue of peripheral and CNS axon defects in mice lacking NMNAT2. J. Neurosci. 33, 13410–13424 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Milde, S., Gilley, J. & Coleman, M. P. Subcellular localization determines the stability and axon protective capacity of axon survival factor Nmnat2. PLOS Biol. 11, e1001539 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    MacDonald, J. M. et al. The Drosophila cell corpse engulfment receptor draper mediates glial clearance of severed axons. Neuron 50, 869–881 (2006).

    CAS  PubMed  Google Scholar 

  16. 16.

    Hoopfer, E. D. et al. Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50, 883–895 (2006).

    CAS  PubMed  Google Scholar 

  17. 17.

    Xiong, X. et al. The highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein. PLOS Biol. 10, e1001440 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Osterloh, J. M. et al. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337, 481–484 (2012). The identification of dSarm/SARM1 as a pro-degenerative, endogenous regulator of Wallerian degeneration.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Neukomm, L. J. et al. Axon death pathways converge on axundead to promote functional and structural axon disassembly. Neuron 95, 78–91.e5 (2017). The identification of a Wallerian degeneration execution step downstream of dSarm.

    CAS  PubMed  Google Scholar 

  20. 20.

    Llobet Rosell, A. & Neukomm, L. J. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol. 9, 190118 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wang, J. et al. A local mechanism mediates NAD-dependent protection of axon degeneration. J. Cell Biol. 170, 349–355 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Di Stefano, M. et al. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ. 22, 731–742 (2015).

    PubMed  Google Scholar 

  23. 23.

    Essuman, K. et al. The SARM1 toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343.e5 (2017). This study provides evidence that an NADase activity in full-length SARM1 is linked to axon degeneration.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gerdts, J., Summers, D. W., Sasaki, Y., DiAntonio, A. & Milbrandt, J. Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J. Neurosci. 33, 13569–13580 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348, 453–457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Sasaki, Y., Nakagawa, T., Mao, X., DiAntonio, A. & Milbrandt, J. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion. eLife 5, e19749 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Gilley, J., Orsomando, G., Nascimento-Ferreira, I. & Coleman, M. P. Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Cell Rep. 10, 1974–1981 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Nikiforov, A., Kulikova, V. & Ziegler, M. The human NAD metabolome: functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 50, 284–297 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Sasaki, Y., Vohra, B. P. S., Lund, F. E. & Milbrandt, J. Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. J. Neurosci. 29, 5525–5535 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Liu, H. et al. Pharmacological bypass of NAD+ salvage pathway protects neurons from chemotherapy-induced degeneration. Proc. Natl Acad. Sci. USA 115, 10654–10659 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Clark, D. E. et al. Application of virtual screening to the discovery of novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with potential for the treatment of cancer and axonopathies. Bioorg. Med. Chem. Lett. 26, 2920–2926 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Di Stefano, M. et al. NMN deamidase delays wallerian degeneration and rescues axonal defects caused by NMNAT2 deficiency in vivo. Curr. Biol. 27, 784–794 (2017).

    PubMed  Google Scholar 

  33. 33.

    Feinberg, K. et al. A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria. J. Cell Biol. 216, 3655–3675 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Loreto, A., Di Stefano, M., Gering, M. & Conforti, L. Wallerian degeneration is executed by an NMN-SARM1-dependent late Ca2+ influx but only modestly influenced by mitochondria. Cell Rep. 13, 2539–2552 (2015).

    CAS  PubMed  Google Scholar 

  35. 35.

    Zhao, Z. Y. et al. A cell-permeant mimetic of NMN activates SARM1 to produce cyclic ADP-ribose and induce non-apoptotic cell death. iScience 15, 452–466 (2019). This study demonstrates that NMN can activate SARM1.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Summers, D. W., Gibson, D. A., DiAntonio, A. & Milbrandt, J. SARM1-specific motifs in the TIR domain enable NAD + loss and regulate injury-induced SARM1 activation. Proc. Natl Acad. Sci. USA 113, E6271–E6280 (2016).

    CAS  PubMed  Google Scholar 

  37. 37.

    Maday, S., Twelvetrees, A. E., Moughamian, A. J. & Holzbaur, E. L. F. Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84, 292–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Summers, D. W., Milbrandt, J. & DiAntonio, A. Palmitoylation enables MAPK-dependent proteostasis of axon survival factors. Proc. Natl Acad. Sci. USA 115, E8746–E8754 (2018).

    CAS  PubMed  Google Scholar 

  39. 39.

    Milde, S., Fox, A. N., Freeman, M. R. & Coleman, M. P. Deletions within its subcellular targeting domain enhance the axon protective capacity of Nmnat2 in vivo. Sci. Rep. 3, 2567 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Milde, S. & Coleman, M. P. Identification of palmitoyltransferase and thioesterase enzymes that control the subcellular localization of axon survival factor nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2). J. Biol. Chem. 289, 32858–32870 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Walker, L. J. et al. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. eLife 6, e22540 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Yang, J. et al. Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell 160, 161–176 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Babetto, E., Beirowski, B., Russler, E. V., Milbrandt, J. & DiAntonio, A. The Phr1 ubiquitin ligase promotes injury-induced axon self-destruction. Cell Rep. 3, 1422–1429 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yamagishi, Y. & Tessier-Lavigne, M. An atypical SCF-like ubiquitin ligase complex promotes wallerian degeneration through regulation of axonal Nmnat2. Cell Rep. 17, 774–782 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Desbois, M. et al. PAM forms an atypical SCF ubiquitin ligase complex that ubiquitinates and degrades NMNAT2. J. Biol. Chem. 293, 13897–13909 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Brace, E. J., Wu, C., Valakh, V. & DiAntonio, A. SkpA restrains synaptic terminal growth during development and promotes axonal degeneration following injury. J. Neurosci. 34, 8398–8410 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Pao, K.-C. et al. Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature 556, 381–385 (2018). A novel ubiquitin ligase mechanism in MYCBP2 indicates new opportunities for drug development.

    CAS  PubMed  Google Scholar 

  48. 48.

    Sporny, M. et al. Structural evidence for an octameric ring arrangement of SARM1. J. Mol. Biol. 431, 3591–3605 (2019).

    CAS  PubMed  Google Scholar 

  49. 49.

    Horsefield, S. et al. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365, 793–799 (2019). The first report of the structure of SARM1 complexed with a low MW substrate.

    CAS  PubMed  Google Scholar 

  50. 50.

    Wang, Q. et al. Sarm1/Myd88-5 regulates neuronal intrinsic immune response to traumatic axonal injuries. Cell Rep. 23, 716–724 (2018). This study provides evidence of a retrograde injury signalling function of SARM1 that is likely to be distinct from its role in Wallerian degeneration.

    CAS  PubMed  Google Scholar 

  51. 51.

    Morale, M. G., da Silva Abjaude, W., Silva, A. M., Villa, L. L. & Boccardo, E. HPV-transformed cells exhibit altered HMGB1-TLR4/MyD88-SARM1 signaling axis. Sci. Rep. 8, 3476 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Mukherjee, P., Woods, T. A., Moore, R. A. & Peterson, K. E. Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death. Immunity 38, 705–716 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Murata, H. et al. c-Jun N-terminal kinase (JNK)-mediated phosphorylation of SARM1 regulates NAD+ cleavage activity to inhibit mitochondrial respiration. J. Biol. Chem. 293, 18933–18943 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Panneerselvam, P. et al. T-cell death following immune activation is mediated by mitochondria-localized SARM. Cell Death Differ. 20, 478–489 (2013).

    CAS  PubMed  Google Scholar 

  55. 55.

    Kim, Y. et al. MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J. Exp. Med. 204, 2063–2074 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Murata, H., Sakaguchi, M., Kataoka, K. & Huh, N. H. SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria. Mol. Biol. Cell 24, 2772–2784 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Killackey, S. A. et al. The mitochondrial Nod-like receptor NLRX1 modifies apoptosis through SARM1. Mol. Cell. Biochem. 453, 187–196 (2019).

    CAS  PubMed  Google Scholar 

  58. 58.

    Essuman, K. et al. TIR domain proteins are an ancient family of NAD+-consuming enzymes. Curr. Biol. 28, 421–430 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Wan, L. et al. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365, 799–803 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Shigeoka, T. et al. Dynamic axonal translation in developing and mature visual circuits. Cell 166, 181–192 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Ali, Y. O., Bradley, G. & Lu, H. C. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons. Science Rep. 7, 43846 (2017). This study shows a substantial variation of NMNAT2 expression level in humans and a correlation with dementia.

    Google Scholar 

  62. 62.

    Milde, S., Adalbert, R., Elaman, M. H. & Coleman, M. P. Axonal transport declines with age in two distinct phases separated by a period of relative stability. Neurobiol. Aging 36, 971–981 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Ljungberg, M. C. et al. CREB-activity and Nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Hum. Mol. Genet. 21, 251–267 (2012).

    CAS  PubMed  Google Scholar 

  64. 64.

    Geisler, S. et al. Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 139, 3092–3108 (2016). This study provides in vivo evidence of protection from CIPN by removal of SARM1.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Geisler, S. et al. Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program. JCI Insight 4, e129920 (2019).

    PubMed Central  Google Scholar 

  66. 66.

    Turkiew, E., Falconer, D., Reed, N. & Höke, A. Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy. J. Peripher. Nerv. Syst. 22, 162–171 (2017). This study reports the alleviation of in vivo models of CIPN and metabolic disorder.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Henninger, N. et al. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1. Brain 139, 1094–1105 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ziogas, N. K. & Koliatsos, V. E. Primary traumatic axonopathy in mice subjected to impact acceleration: a reappraisal of pathology and mechanisms with high-resolution anatomical methods. J. Neurosci. 38, 4031–4047 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Sasaki, Y. & Milbrandt, J. Axonal degeneration is blocked by nicotinamide mononucleotide adenylyltransferase (Nmnat) protein transduction into transected axons. J. Biol. Chem. 285, 41211–41215 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Wang, J. T., Medress, Z. A., Vargas, M. E. & Barres, B. A. Local axonal protection by WldS as revealed by conditional regulation of protein stability. Proc. Natl Acad. Sci. USA 112, 10093–10100 (2015).

    CAS  PubMed  Google Scholar 

  71. 71.

    Kaneko, S. Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models. J. Neurosci. 26, 9794–9804 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Chitnis, T. et al. Elevated neuronal expression of CD200 protects Wlds mice from inflammation-mediated neurodegeneration. Am. J. Pathol. 170, 1695–1712 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Williams, P. A. et al. Nicotinamide and WLDS act together to prevent neurodegeneration in glaucoma. Front. Neurosci. 11, 232 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Williams, P. A. et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 355, 756–760 (2017). This study indicates the therapeutic potential of NMNAT and NAD in glaucoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Trammell, S. A. et al. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci. Rep. 6, 26933 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Dollerup, O. L. et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin. Nutr. 108, 343–353 (2018).

    PubMed  Google Scholar 

  77. 77.

    Howell, G. R. et al. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J. Cell Biol. 179, 1523–1537 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Beirowski, B., Babetto, E., Coleman, M. P. & Martin, K. R. The Wld S gene delays axonal but not somatic degeneration in a rat glaucoma model. Eur. J. Neurosci. 28, 1166–1179 (2008).

    PubMed  Google Scholar 

  79. 79.

    Carty, M. et al. Cell survival and cytokine release after inflammasome activation is regulated by the Toll-IL-1R protein SARM. Immunity 50, 1412–1424 (2019).

    CAS  PubMed  Google Scholar 

  80. 80.

    McLaughlin, C. N., Perry-Richardson, J. J., Coutinho-Budd, J. C. & Broihier, H. T. Dying neurons utilize innate immune signaling to prime glia for phagocytosis during development. Dev. Cell 48, 506–522 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Fischer, L. R. et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol. 185, 232–240 (2004).

    PubMed  Google Scholar 

  82. 82.

    Fischer, L. R. et al. The WldS gene modestly prolongs survival in the SOD1G93A fALS mouse. Neurobiol. Dis. 19, 293–300 (2005).

    CAS  PubMed  Google Scholar 

  83. 83.

    Peters, O. M. et al. Loss of Sarm1 does not suppress motor neuron degeneration in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Hum. Mol. Genet. 27, 3761–3771 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    White, M. A. et al. Sarm1 deletion suppresses TDP-43-linked motor neuron degeneration and cortical spine loss. Acta Neuropathol. Commun. 7, 166 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Fernandes, K. A. et al. Role of SARM1 and DR6 in retinal ganglion cell axonal and somal degeneration following axonal injury. Exp. Eye Res. 171, 54–61 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Zhu, C., Li, B., Frontzek, K., Liu, Y. & Aguzzi, A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J. Exp. Med. 216, 743–756 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Szretter, K. J. et al. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts west Nile virus pathogenesis. J. Virol. 83, 9329–9338 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Vérièpe, J., Fossouo, L. & Parker, J. A. Neurodegeneration in C. elegans models of ALS requires TIR-1/Sarm1 immune pathway activation in neurons. Nat. Commun. 6, 7319 (2015).

    PubMed  Google Scholar 

  89. 89.

    Huppke, P. et al. Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia. Exp. Neurol. 320, 112958 (2019). This study reports a human NMNAT2 mutation that is associated with paediatric neurological disease.

    CAS  PubMed  Google Scholar 

  90. 90.

    Lukacs, M. et al. Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Exp. Neurol. 320, 112961 (2019). This study reports a human NMNAT2 mutation that is associated with a stillbirth phenotype similar to Nmnat2 null mice.

    CAS  PubMed  Google Scholar 

  91. 91.

    Buonvicino, D. et al. Identification of the nicotinamide salvage pathway as a new toxification route for antimetabolites. Cell Chem. Biol. 25, 471–482 (2018).

    CAS  PubMed  Google Scholar 

  92. 92.

    Wang, M. S. et al. The WldS protein protects against axonal degeneration: a model of gene therapy for peripheral neuropathy. Ann. Neurol. 50, 773–779 (2001).

    CAS  PubMed  Google Scholar 

  93. 93.

    Sasaki, Y., Vohra, B. P. S., Baloh, R. H. & Milbrandt, J. Transgenic mice expressing the nmnat1 protein manifest robust delay in axonal degeneration in vivo. J. Neurosci. 29, 6526–6534 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Farley, J. E. et al. Transcription factor Pebbled/RREB1 regulates injury-induced axon degeneration. Proc. Natl Acad. Sci. USA 115, 1358–1363 (2018).

    CAS  PubMed  Google Scholar 

  95. 95.

    Ali, Y. O. et al. NMNAT2:HSP90 complex mediates proteostasis in proteinopathies. PLOS Biol. 14, e1002472 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Klim, J. R. et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat. Neurosci. 22, 167–179 (2019).

    CAS  PubMed  Google Scholar 

  97. 97.

    Melamed, Z. et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat. Neurosci. 22, 180–190 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    LeWitt, P. A. Neurotoxicity of the rat poison vacor — a clinical study of 12 cases. N. Engl. J. Med. 302, 73–77 (1980).

    CAS  PubMed  Google Scholar 

  99. 99.

    Coleman, M. Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. Neurosci. 6, 889–898 (2005).

    CAS  PubMed  Google Scholar 

  100. 100.

    Schulz, A., Wagner, F., Ungelenk, M., Kurth, I. & Redecker, C. Stroke-like onset of brain stem degeneration presents with unique MRI sign and heterozygous NMNAT2 variant: a case report. Transl. Neurodegener. 5, 23 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Fogh, I. et al. A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum. Mol. Genet. 23, 2220–2231 (2014). In REFs 101 and 102 GWAS report a linkage between ALS and the SARM1 locuse.

    CAS  PubMed  Google Scholar 

  102. 102.

    SLAGEN Consortium et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat. Genet. 48, 1043–1048 (2016).

    Google Scholar 

  103. 103.

    Shin, J. E. et al. SCG10 is a JNK target in the axonal degeneration pathway. Proc. Natl Acad. Sci. USA 109, E3696–E3705 (2012). This study reports that SCG10 modifies the rate of Wallerian degeneration.

    CAS  PubMed  Google Scholar 

  104. 104.

    Karczewski, K. J. et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. preprint at bioRxiv (2019).

  105. 105.

    Gilley, J., Mayer, P. R., Yu, G. & Coleman, M. P. Low levels of NMNAT2 compromise axon development and survival. Hum. Mol. Genet. 28, 448–458 (2019).

    CAS  PubMed  Google Scholar 

  106. 106.

    Hou, Y.-J. et al. SARM is required for neuronal injury and cytokine production in response to central nervous system viral infection. J. Immunol. 191, 875–883 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Sur, M. et al. Sarm1 induction and accompanying inflammatory response mediates age-dependent susceptibility to rotenone-induced neurotoxicity. Cell Death Discov. 4, 114 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Summers, D. W., DiAntonio, A. & Milbrandt, J. Mitochondrial dysfunction induces Sarm1-dependent cell death in sensory neurons. J. Neurosci. 34, 9338–9350 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Valdez, G., Tapia, J. C., Lichtman, J. W., Fox, M. A. & Sanes, J. R. Shared resistance to aging and ALS in neuromuscular junctions of specific muscles. PLOS ONE 7, e34640 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Chung, T. et al. Evidence for dying-back axonal degeneration in age-associated skeletal muscle decline: dying-back axonal degeneration. Muscle Nerve 55, 894–901 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Bolam, J. P. & Pissadaki, E. K. Living on the edge with too many mouths to feed: why dopamine neurons die. Mov. Disord. 27, 1478–1483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Song, D. D. & Haber, S. N. Striatal responses to partial dopaminergic lesion: evidence for compensatory sprouting. J. Neurosci. 20, 5102–5114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Cheng, H.-C., Ulane, C. M. & Burke, R. E. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 67, 715–725 (2010).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Thomas, S. et al. Peripheral neuropathy research registry: a prospective cohort. J. Peripher. Nerv. Syst. 24, 39–47 (2019).

    PubMed  Google Scholar 

  116. 116.

    Sferra, A. et al. TBCE mutations cause early-onset progressive encephalopathy with distal spinal muscular atrophy. Am. J. Hum. Genet. 99, 974–983 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Ferri, A., Sanes, J. R., Coleman, M. P., Cunningham, J. M. & Kato, A. C. Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease. Curr. Biol. 13, 669–673 (2003).

    CAS  PubMed  Google Scholar 

  118. 118.

    Shahim, P. et al. Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Sci. Rep. 6, 36791 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Varhaug, K. N. et al. Neurofilament light chain predicts disease activity in relapsing-remitting MS. Neurol. Neuroimmunol. Neuroinflamm. 5, e422 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Coles, A. J. et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380, 1829–1839 (2012).

    CAS  PubMed  Google Scholar 

  121. 121.

    Geisler, S. et al. Gene therapy targeting SARM1 blocks pathological axon degeneration in mice. J. Exp. Med. 216, 294–303 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Corey, D. R. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat. Neurosci. 20, 497–499 (2017).

    CAS  PubMed  Google Scholar 

Download references


The authors thank members of the Coleman group for constructive feedback.

Author information




The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Michael P. Coleman or Ahmet Höke.

Ethics declarations

Competing interests

M.P.C. has an academic collaboration with AstraZeneca and is a consultant for Proneurotech. A.H. serves on the scientific advisory board of Disarm Therapeutics.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links



Wallerian degeneration slow (Wld S) mice

A mutant strain of mouse showing a tenfold delay in the onset of Wallerian degeneration after axotomy as well as axon protection in many disease models.

Axonal transport

The ATP-dependent, bidirectional trafficking of axonal proteins, organelles, mRNAs and other cargoes delivering axonal constituents to where they are required, often over large distances.

Toll-like receptor

A family of receptors on plasma and endosomal membranes that detect molecular patterns associated with infection or cell damage, activating signalling pathways leading to inflammation or cell death.

Calcium mobilization

The release of calcium from intracellular stores such as endoplasmic reticulum and mitochondria, potentially activating calcium-activated proteases, under the control of second messenger molecules (many of which are NAD metabolites).

Local translation

The synthesis of proteins directly within axons using mRNAs delivered by axonal transport.

Stathmin 2

A protein that, like NMNAT2, is palmitoylated, has a short half-life and negatively regulates Wallerian degeneration. Its loss is insufficient to activate Wallerian degeneration but accelerates it after injury and its overexpression delays degeneration. The same protein is depleted in many induced pluripotent stem cell-derived motor neurons from sporadic amyotrophic lateral sclerosis patients.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coleman, M.P., Höke, A. Programmed axon degeneration: from mouse to mechanism to medicine. Nat Rev Neurosci 21, 183–196 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing