Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Improved tools to study astrocytes


Astrocytes are a type of glial cell that tile the CNS. They interact with multiple cell types, including neurons, glial cells and blood vessels, and are involved or implicated in brain disorders. Progress has been made in understanding astrocytes, but the field lacks detailed information concerning how they perform their multifarious functions, and how and when they influence the operations of the neural circuits with which they interact. One recognized bottleneck to progress has been the paucity of reliable tools with which to explore astrocytes within the adult vertebrate CNS in vivo. However, improved tools for molecular, genetic, morphological and physiological assessments have been developed recently or have been adapted from their original purposes to study neurons and are now being used to systematically document and interrogate astrocyte biology in vivo. These tools, their uses and limitations, and the insights that they afford are summarized in this Review.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Transcriptomic profiling of astrocytes from cell-specific RNA sequencing in adult mice.
Fig. 2: Methods to study astrocyte morphology.
Fig. 3: Cartoon of the tools used to manipulate astrocyte intracellular Ca2+ signalling.
Fig. 4: Causative roles of astrocyte intracellular Ca2+ signalling revealed by new tools.


  1. 1.

    Barres, B. A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    CAS  PubMed  Google Scholar 

  2. 2.

    Allen, N. J. & Eroglu, C. Cell biology of astrocyte–synapse interactions. Neuron 96, 697–708 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Eroglu, C. & Barres, B. A. Regulation of synaptic connectivity by glia. Nature 468, 223–231 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Khakh, B. S. & Sofroniew, M. V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18, 942–952 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Khakh, B. S. Astrocyte–neuron interactions in the striatum: insights on identity, form, and function. Trends Neurosci. 42, 617–630 (2019).

    CAS  PubMed  Google Scholar 

  6. 6.

    Allen, N. J. & Barres, B. A. Neuroscience: glia — more than just brain glue. Nature 457, 675–677 (2009).

    CAS  PubMed  Google Scholar 

  7. 7.

    Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Sci. 362, 181–185 (2018).

    CAS  Google Scholar 

  8. 8.

    Chung, W.-S., Welsh, C. A., Barres, B. A. & Stevens, B. Do glia drive synaptic and cognitive impairment in disease? Nat. Neurosci. 18, 1539–1545 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Jorgenson, L. A. et al. The BRAIN Initiative: developing technology to catalyse neuroscience discovery. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140164 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Deisseroth, K. & Schnitzer, M. J. Engineering approaches to illuminating brain structure and dynamics. Neuron 80, 568–577 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Rajasethupathy, P., Ferenczi, E. & Deisseroth, K. Targeting neural circuits. Cell 165, 524–534 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kettenmann, H. & Verkhratsky, A. Neuroglia: the 150 years after. Trends Neurosci. 31, 653–659 (2008).

    CAS  PubMed  Google Scholar 

  13. 13.

    Kuffler, S. W. Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc. R. Soc. Lond. B Biol. Sci. 168, 1–21 (1967).

    CAS  PubMed  Google Scholar 

  14. 14.

    Brenner, S. Life sentences: Detective Rummage investigates. Genome Biol. 3, 1013.1–1013.2 (2002).

    Google Scholar 

  15. 15.

    Haydon, P. G. & Nedergaard, M. How do astrocytes participate in neural plasticity? Cold Spring Harb. Perspect. Biol. 11, a020438 (2014).

    Google Scholar 

  16. 16.

    Fiacco, T. A. & McCarthy, K. D. Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J. Neurosci. 38, 3–13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Savtchouk, I. & Volterra, A. Gliotransmission: beyond black-and-white. J. Neurosci. 38, 14–25 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Escartin, C., Guillemaud, O. & Carrillo-de Sauvage, M. A. Questions and (some) answers on reactive astrocytes. Glia 67, 2221–2247 (2019).

    PubMed  Google Scholar 

  19. 19.

    Barres, B. A., Silverstein, B. E., Corey, D. P. & Chun, L. L. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1, 791–803 (1988).

    CAS  PubMed  Google Scholar 

  20. 20.

    Bachoo, R. M. et al. Molecular diversity of astrocytes with implications for neurological disorders. Proc. Natl Acad. Sci. USA 101, 8384–8389 (2004).

    CAS  PubMed  Google Scholar 

  21. 21.

    Lovatt, D. et al. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J. Neurosci. 27, 12255–12266 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Heintz, N. Gene expression nervous system atlas (GENSAT). Nat. Neurosci. 7, 483 (2004).

    CAS  PubMed  Google Scholar 

  24. 24.

    Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014). This study is the first transcriptomic analysis of purified astrocytes and other cell types in the mouse cortex by immunopanning and RNA-seq.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Orre, M. et al. Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol. Aging 35, 1–14 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Sun, W. et al. SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J. Neurosci. 37, 4493–4507 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    John Lin, C. C. et al. Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci. 20, 396–405 (2017). This study identifies five astrocyte subpopulations that are each present across five brain regions using cell sorting of ALDH1L1-GFP + astrocytes. The subpopulations are molecularly and functionally diverse, and highlight a synaptogenesis-promoting subpopulation in the context of glioma.

    CAS  PubMed  Google Scholar 

  30. 30.

    Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Holt, L. M. & Olsen, M. L. Novel applications of magnetic cell sorting to analyze cell-type specific gene and protein expression in the central nervous system. PLoS One 11, e0150290 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Holt, L. M., Stoyanof, S. T. & Olsen, M. L. Magnetic cell sorting for in vivo and in vitro astrocyte, neuron, and microglia analysis. Curr. Protoc. Neurosci. 88, e71 (2019).

    PubMed  Google Scholar 

  34. 34.

    Holt, L. M. et al. Astrocyte morphogenesis is dependent on BDNF signaling via astrocytic TrkB.T1. eLife 8, e44667 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Clarke, L. E. et al. Normal aging induces A1-like astrocyte reactivity. Proc. Natl Acad. Sci. USA 115, E1896–E1905 (2018).

    CAS  PubMed  Google Scholar 

  38. 38.

    Sanz, E. et al. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl Acad. Sci. USA 106, 13939–13944 (2009).

    CAS  PubMed  Google Scholar 

  39. 39.

    Srinivasan, R. et al. New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo. Neuron 92, 1181–1195 (2016). This study systematically compares several Cre-dependent transgenic mouse lines for genetically targeting astrocytes and characterized the Aldh1l1-Cre/ERT2 mouse line as an astrocyte-selective, pan-astrocytic and inducible Cre line.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological and functional evidence. Neuron 95, 531–549 (2017). This study compares astrocytes in the adult hippocampus and striatum using RiboTag RNA-seq, FACS-based proteomics, serial section electron microscopy electrophysiology and calcium imaging to reveal circuit-specific astrocyte properties.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Itoh, N. et al. Cell-specific and region-specific transcriptomics in the multiple sclerosis model: focus on astrocytes. Proc. Natl Acad. Sci. USA 115, E302–E309 (2018).

    CAS  PubMed  Google Scholar 

  43. 43.

    Boisvert, M. M., Erikson, G. A., Shokhirev, M. N. & Allen, N. J. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22, 269–285 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Diaz-Castro, B., Gangwani, M. R., Yu, X., Coppola, G. & Khakh, B. S. Astrocyte molecular signatures in Huntington’s disease. Sci. Transl Med. 11, eaaw8546 (2019).

    CAS  PubMed  Google Scholar 

  45. 45.

    Nagai, J. et al. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell 177, 1280–1292.e20 (2019). This study finds that chemogenetic activation of the astrocyte Gi-GPCR pathway in the dorsal striatum causes attention deficit hyperactivity disorder-like behaviours in mice through reactivation of astrocyte-induced synaptogenesis.

    CAS  PubMed  Google Scholar 

  46. 46.

    Yu, X. et al. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99, 1170–1187 (2018). This study develops the novel genetic approach of CalEx to attenuate astrocyte Ca 2+-dependent signalling, and describes its application in the dorsal striatum, which resulted in obsessive–compulsive disorder-like behaviour in mice through GABA-mediated neuromodulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).

    CAS  PubMed  Google Scholar 

  48. 48.

    Poulin, J. F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J. M. & Awatramani, R. Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci. 19, 1131–1141 (2016).

    PubMed  Google Scholar 

  49. 49.

    Chen, X., Teichmann, S. A. & Meyer, K. B. From tissues to cell types and back: single-cell gene expression analysis of tissue architecture. Annu. Rev. Biomed. Data Sci 1, 29–51 (2018).

    Google Scholar 

  50. 50.

    Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    CAS  Google Scholar 

  51. 51.

    Wu, Y. E., Pan, L., Zuo, Y. N., Li, X. M. & Hong, W. Z. Detecting activated cell populations using single-cell RNA-seq. Neuron 96, 313–329 (2017).

    CAS  PubMed  Google Scholar 

  52. 52.

    Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Khakh, B. S. & Deneen, B. The emerging nature of astrocyte diversity. Annu. Rev. Neurosci. 42, 187–207 (2019).

    CAS  PubMed  Google Scholar 

  56. 56.

    Kelley, K. W., Nakao-Inoue, H., Molofsky, A. V. & Oldham, M. C. Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes. Nat. Neurosci. 21, 1171–1184 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Cuevas-Diaz Duran, R., C. Y., W., Zheng, H., Deneen, B. & Wu, J. Q. Brain region-specific gene signatures revealed by distinct astrocyte subpopulations unveil links to glioma and neurodegenerative diseases. eNeuro (2019).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Blanco-Suarez, E., Liu, T. F., Kopelevich, A. & Allen, N. J. Astrocyte-secreted chordin-like 1 drives synapse maturation and limits plasticity by increasing synaptic GluA2 AMPA receptors. Neuron 100, 1116–1132 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Park, Y. M., Chun, H., Shin, J. I. & Lee, C. J. Astrocyte specificity and coverage of hGFAP-CreERT2 [Tg(GFAP-Cre/ERT2)13Kdmc] mouse line in various brain regions. Exp. Neurobiol. 27, 508–525 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Zhuo, L. et al. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genes 31, 85–94 (2001).

    CAS  Google Scholar 

  61. 61.

    Sofroniew, M. V. Transgenic techniques for cell ablation or molecular deletion to investigate functions of astrocytes and other GFAP-expressing cell types. Methods Mol. Biol. 814, 531–544 (2012).

    CAS  PubMed  Google Scholar 

  62. 62.

    Mori, T. et al. Inducible gene deletion in astroglia and radial glia — a valuable tool for functional and lineage analysis. Glia 54, 21–34 (2006).

    PubMed  Google Scholar 

  63. 63.

    Slezak, M. et al. Transgenic mice for conditional gene manipulation in astroglial cells. Glia 55, 1565–1576 (2007).

    PubMed  Google Scholar 

  64. 64.

    Jahn, H. M., Scheller, A. & Kirchhoff, F. Genetic control of astrocyte function in neural circuits. Front. Cell Neurosci. 9, 310 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Santello, M., Toni, N. & Volterra, A. Astrocyte function from information processing to cognition and cognitive impairment. Nat. Neurosci. 22, 154–166 (2019).

    CAS  PubMed  Google Scholar 

  66. 66.

    Winchenbach, J. et al. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice. F1000Res 5, 2934 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Foo, L. C. & Dougherty, J. D. Aldh1L1 is expressed by postnatal neural stem cells in vivo. Glia 61, 1533–1541 (2013).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ortinski, P. I. et al. Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat. Neurosci. 13, 584–591 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Merienne, N., Le Douce, J., Faivre, E., Deglon, N. & Bonvento, G. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors. Front. Cell Neurosci. 7, 106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Lee, Y., Messing, A., Su, M. & Brenner, M. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56, 481–493 (2008).

    PubMed  Google Scholar 

  71. 71.

    Adamsky, A. et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 174, 59–71 (2018). This study shows that activation of astrocyte Gq-GPCR signalling in the hippocampal CA1 with Gq-DREADDs and opto-α1-AR approaches induces synaptic long-term potentiation and enhances memory acquisition in mice.

    CAS  PubMed  Google Scholar 

  72. 72.

    Cui, Y. et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554, 323–327 (2018).

    CAS  PubMed  Google Scholar 

  73. 73.

    Octeau, J. C. et al. An optical neuron–astrocyte proximity assay at synaptic distance scales. Neuron 98, 49–66 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Tong, X. et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci. 17, 694–703 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Bonder, D. E. & McCarthy, K. D. Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo. J. Neurosci. 34, 13139–13150 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Poskanzer, K. E. & Yuste, R. Astrocytes regulate cortical state switching in vivo. Proc. Natl Acad. Sci. USA 113, E2675–E2684 (2016).

    CAS  PubMed  Google Scholar 

  77. 77.

    Koh, W., Park, Y. M., Lee, S. E. & Lee, C. J. AAV-mediated astrocyte-specific gene expression under human ALDH1L1 promoter in mouse thalamus. Exp. Neurobiol. 26, 350–361 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Mudannayake, J. M., Mouravlev, A., Fong, D. M. & Young, D. Transcriptional activity of novel ALDH1L1 promoters in the rat brain following AAV vector-mediated gene transfer. Mol. Ther. Methods Clin. Dev. 3, 16075 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Bushong, E. A., Martone, M. E., Jones, Y. Z. & Ellisman, M. H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 (2002). This landmark study reveals tiling properties of adjacent astrocytes in the rat hippocampal CA1 region using iontophoresis of two different fluorescent dyes.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Reeves, A. M., Shigetomi, E. & Khakh, B. S. Bulk loading of calcium indicator dyes to study astrocyte physiology: key limitations and improvements using morphological maps. J. Neurosci. 31, 9353–9358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Bushong, E. A., Martone, M. E. & Ellisman, M. H. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int. J. Dev. Neurosci. 22, 73–86 (2004).

    PubMed  Google Scholar 

  83. 83.

    Wilhelmsson, U. et al. Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc. Natl Acad. Sci. USA 103, 17513–17518 (2006).

    CAS  PubMed  Google Scholar 

  84. 84.

    Moye, S. L., Diaz-Castro, B., Gangwani, M. R. & Khakh, B. S. A protocol for visualizing astrocyte morphology using Lucifer yellow iontophoresis. JoVE 151, e60225 (2019).

    Google Scholar 

  85. 85.

    Zhou, B. et al. Astroglial dysfunctions drive aberrant synaptogenesis and social behavioral deficits in mice with neonatal exposure to lengthy general anesthesia. PLoS Biol. 17, e3000086 (2019). This study uses iontophoresis of fluorescent dye to show that exposure to general anaesthetics during brain development reduces astrocyte Ca 2+ signalling and morphogenesis, resulting in neural circuit malformation.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Halassa, M. M., Fellin, T., Takano, H., Dong, J. H. & Haydon, P. G. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27, 6473–6477 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Lanjakornsiripan, D. et al. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nat. Commun. 9, 1623 (2018). In this paper, the authors sparsely label astrocytes in the somatosensory cortex using the Slc1a3-Cre/ERT2 mouse line, and detail the cortical layer-specific morphology and the molecular machinery involved therein.

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Lu, X. H. & Yang, X. W. Genetically-directed sparse neuronal labeling in BAC transgenic mice through mononucleotide repeat frameshift. Sci. Rep. 7, 43915 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Bernardinelli, Y. et al. Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr. Biol. 24, 1679–1688 (2014).

    CAS  PubMed  Google Scholar 

  90. 90.

    Stogsdill, J. A. et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 551, 192–197 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Testen, A. et al. Region-specific differences in morphometric features and synaptic colocalization of astrocytes during development. Neuroscience 400, 98–109 (2019).

    CAS  PubMed  Google Scholar 

  92. 92.

    Viswanathan, S. et al. High-performance probes for light and electron microscopy. Nat. Methods 12, 568–576 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Shigetomi, E. et al. Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J. Gen. Physiol. 141, 633–647 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Maxwell, D. S. & Kruger, L. The fine structure of astrocytes in the cerebral cortex and their response to focal injury produced by heavy ionizing particles. J. Cell Biol. 25, 141–157 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Ventura, R. & Harris, K. M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999). This pioneering study investigates the structural relationship between astrocyte processes and synapses in the rat hippocampal CA1 region with serial section electron microscopy.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Gavrilov, N. et al. Astrocytic coverage of dendritic spines, dendritic shafts, and axonal boutons in hippocampal neuropil. Front. Cell Neurosci. 12, 248 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Heller, J. P., Odii, T., Zheng, K. & Rusakov, D. A. Imaging tripartite synapses using super-resolution microscopy. Methods Mol. Biol. (2019).

    Article  PubMed  Google Scholar 

  98. 98.

    Chen, F., Tillberg, P. W. & Boyden, E. S. Optical imaging. Expansion microscopy. Science 347, 543–548 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Willig, K. I. et al. Nanoscale resolution in GFP-based microscopy. Nat. Methods 3, 721–723 (2006).

    CAS  PubMed  Google Scholar 

  100. 100.

    Tang, S. & Yasuda, R. Imaging ERK and PKA activation in single dendritic spines during structural plasticity. Neuron 93, 1315–1324.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Korogod, N., Petersen, C. C. & Knott, G. W. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. eLife 4, e05793 (2015).

    PubMed Central  Google Scholar 

  102. 102.

    Kasthuri, N. et al. Saturated reconstruction of a volume of neocortex. Cell 162, 648–661 (2015).

    CAS  PubMed  Google Scholar 

  103. 103.

    Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473 (1990).

    CAS  PubMed  Google Scholar 

  104. 104.

    Charles, A. C., Merrill, J. E., Dirksen, E. R. & Sanderson, M. J. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6, 983–992 (1991).

    CAS  PubMed  Google Scholar 

  105. 105.

    Duffy, S. & MacVicar, B. A. Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J. Neurosci. 15, 5535–5550 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Hirase, H., Qian, L., Bartho, P. & Buzsaki, G. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol. 2, E96 (2004).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Nimmerjahn, A. & Bergles, D. E. Large-scale recording of astrocyte activity. Curr. Opin. Neurobiol. 32, 95–106 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9, 816–823 (2006).

    CAS  PubMed  Google Scholar 

  109. 109.

    Grosche, J. et al. Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat. Neurosci. 2, 139–143 (1999).

    CAS  PubMed  Google Scholar 

  110. 110.

    Shigetomi, E., Kracun, S., Sofroniew, M. V. & Khakh, B. S. A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat. Neurosci. 13, 759–766 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Shigetomi, E., Patel, S. & Khakh, B. S. Probing the complexities of astrocyte calcium signaling. Trends Cell Biol. 26, 300–312 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    CAS  Google Scholar 

  113. 113.

    Bazargani, N. & Attwell, D. Astrocyte calcium signalling: the third wave. Nat. Neurosci. 19, 182–189 (2016).

    CAS  PubMed  Google Scholar 

  114. 114.

    Volterra, A., Liaudet, N. & Savtchouk, I. Astrocyte Ca2+ signalling: an unexpected complexity. Nat. Rev. Neurosci. 15, 327–335 (2014).

    CAS  PubMed  Google Scholar 

  115. 115.

    Hires, S. A., Tian, L. & Looger, L. L. Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol. 36, 69–86 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    CAS  PubMed  Google Scholar 

  117. 117.

    Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods. 6, 875–881 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Agulhon, C. et al. What is the role of astrocyte calcium in neurophysiology? Neuron 59, 932–946 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Fiacco, T. A., Agulhon, C. & McCarthy, K. D. Sorting out astrocyte physiology from pharmacology. Annu. Rev. Pharmacol. Toxicol. 49, 151–174 (2009).

    CAS  PubMed  Google Scholar 

  121. 121.

    Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    CAS  PubMed  Google Scholar 

  122. 122.

    Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    CAS  PubMed  Google Scholar 

  123. 123.

    Li, D., Herault, K., Isacoff, E. Y., Oheim, M. & Ropert, N. Optogenetic activation of LiGluR-expressing astrocytes evokes anion channel-mediated glutamate release. J. Physiol. 590, 855–873 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Porter, J. T. & McCarthy, K. D. Astrocytic neurotransmitter receptors in situ and in vivo. Prog. Neurobiol. 51, 439–455 (1997).

    CAS  PubMed  Google Scholar 

  125. 125.

    Hamby, M. E. et al. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J. Neurosci. 32, 14489–14510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    PubMed  Google Scholar 

  127. 127.

    Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Vardy, E. et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86, 936–946 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Guettier, J. M. et al. A chemical-genetic approach to study G protein regulation of β cell function in vivo. Proc. Natl Acad. Sci. USA 106, 19197–19202 (2009).

    CAS  PubMed  Google Scholar 

  130. 130.

    Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs. Cell 177, 1933–1947.e25 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Roth, B. L. How structure informs and transforms chemogenetics. Curr. Opin. Struct. Biol. 57, 9–16 (2019).

    CAS  PubMed  Google Scholar 

  132. 132.

    Rosenbaum, D. M., Rasmussen, S. G. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Pierce, K. L., Premont, R. T. & Lefkowitz, R. J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).

    CAS  PubMed  Google Scholar 

  134. 134.

    Durkee, C. A. et al. Gi/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia 67, 1076–1093 (2019).

    PubMed  Google Scholar 

  135. 135.

    Yang, L., Qi, Y. & Yang, Y. Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors. Cell Rep. 11, 798–807 (2015).

    CAS  PubMed  Google Scholar 

  136. 136.

    Chen, N. et al. Direct modulation of GFAP-expressing glia in the arcuate nucleus bi-directionally regulates feeding. eLife 5, e18716 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Martin-Fernandez, M. et al. Synapse-specific astrocyte gating of amygdala-related behavior. Nat. Neurosci. 20, 1540–1548 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Nam, M. H. et al. Activation of astrocytic μ-opioid receptor causes conditioned place preference. Cell Rep. 28, 1154–1166 (2019).

    CAS  PubMed  Google Scholar 

  139. 139.

    Corkrum, M., Rothwell, P. E., Thomas, M. J., Kofuji, P. & Araque, A. Opioid-mediated astrocyte–neuron signaling in the nucleus accumbens. Cells 8, E586 (2019).

    PubMed  Google Scholar 

  140. 140.

    Kol, A. et al. Astrocytes contribute to remote memory formation by modulating hippocampal–cortical communication during learning. Preprint at bioRxiv (2019).

    Article  Google Scholar 

  141. 141.

    Bernstein, J. G. & Boyden, E. S. Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn. Sci. 15, 592–600 (2011).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Gourine, A. V. et al. Astrocytes control breathing through pH-dependent release of ATP. Science 329, 571–575 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Perea, G., Yang, A., Boyden, E. S. & Sur, M. Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat. Commun. 5, 3262 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. 145.

    Masamoto, K. et al. Unveiling astrocytic control of cerebral blood flow with optogenetics. Sci. Rep. 5, 11455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Pelluru, D., Konadhode, R. R., Bhat, N. R. & Shiromani, P. J. Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur. J. Neurosci. 43, 1298–1306 (2016).

    PubMed  Google Scholar 

  147. 147.

    Yamashita, A. et al. Astrocytic activation in the anterior cingulate cortex is critical for sleep disorder under neuropathic pain. Synapse 68, 235–247 (2014).

    CAS  PubMed  Google Scholar 

  148. 148.

    Sasaki, T. et al. Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation. Proc. Natl Acad. Sci. USA 109, 20720–20725 (2012).

    CAS  PubMed  Google Scholar 

  149. 149.

    Octeau, J. C. et al. Transient, consequential increases in extracellular potassium ions accompany channelrhodopsin2 excitation. Cell Rep. 27, 2249–2261.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    McDonough, A. A. & Youn, J. H. Potassium homeostasis: the knowns, the unknowns, and the health benefits. Physiology 32, 100–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Koizumi, A., Tanaka, K. F. & Yamanaka, A. The manipulation of neural and cellular activities by ectopic expression of melanopsin. Neurosci. Res. 75, 3–5 (2013).

    CAS  PubMed  Google Scholar 

  152. 152.

    Spoida, K. et al. Melanopsin variants as intrinsic optogenetic on and off switches for transient versus sustained activation of G protein pathways. Curr. Biol. 26, 1206–1212 (2016).

    CAS  PubMed  Google Scholar 

  153. 153.

    Mederos, S. et al. Melanopsin for precise optogenetic activation of astrocyte–neuron networks. Glia 67, 915–934 (2019).

    PubMed  Google Scholar 

  154. 154.

    Spangler, S. M. & Bruchas, M. R. Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr. Opin. Pharmacol. 32, 56–70 (2017).

    CAS  PubMed  Google Scholar 

  155. 155.

    Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025 (2009).

    CAS  PubMed  Google Scholar 

  156. 156.

    Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Owen, S. F., Liu, M. H. & Kreitzer, A. C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 22, 1061–1065 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Sharp, A. H. et al. Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J. Comp. Neurol. 406, 207–220 (1999).

    CAS  PubMed  Google Scholar 

  159. 159.

    Holtzclaw, L. A., Pandhit, S., Bare, D. J., Mignery, G. A. & Russell, J. T. Astrocytes in adult rat brain express type 2 inositol 1,4,5-trisphosphate receptors. Glia 39, 69–84 (2002).

    PubMed  Google Scholar 

  160. 160.

    Hertle, D. N. & Yeckel, M. F. Distribution of inositol-1,4,5-trisphosphate receptor isotypes and ryanodine receptor isotypes during maturation of the rat hippocampus. Neuroscience 150, 625–638 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Uchiyama, T., Yoshikawa, F., Hishida, A., Furuichi, T. & Mikoshiba, K. A novel recombinant hyperaffinity inositol 1,4,5-trisphosphate (IP3) absorbent traps IP3, resulting in specific inhibition of IP3-mediated calcium signaling. J. Biol. Chem. 277, 8106–8113 (2002).

    CAS  PubMed  Google Scholar 

  162. 162.

    Tanaka, M. et al. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses. Mol. Brain 6, 6 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    de Vivo, L., Melone, M., Rothstein, J. D. & Conti, F. GLT-1 promoter activity in astrocytes and neurons of mouse hippocampus and somatic sensory cortex. Front. Neuroanat. 3, 31 (2010).

    PubMed  PubMed Central  Google Scholar 

  164. 164.

    Xie, Y., Wang, T., Sun, G. Y. & Ding, S. Specific disruption of astrocytic Ca2+ signaling pathway in vivo by adeno-associated viral transduction. Neuroscience 170, 992–1003 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Várnai, P. et al. Inositol lipid binding and membrane localization of isolated pleckstrin homology (PH) domains. Studies on the PH domains of phospholipase Cδ1 and p130. J. Biol. Chem. 277, 27412–27422 (2002).

    PubMed  Google Scholar 

  166. 166.

    Zhang, Y. V., Ormerod, K. G. & Littleton, J. T. Astrocyte Ca2+ influx negatively regulates neuronal activity. eNeuro (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Srinivasan, R. et al. Ca2+ signaling in astrocytes from Ip3r2 –/– mice in brain slices and during startle responses in vivo. Nat. Neurosci. 18, 708–717 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Wang, Y. et al. Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology. Nat. Neurosci. 11, 1936–1944 (2018). This study provides Astrocyte Quantitative Analysis (AQuA) software enabling event-based detection of astrocyte Ca 2+ or optical signals and the quantification of their spatio-temporal dynamics.

    Google Scholar 

  169. 169.

    Zheng, K. et al. Time-resolved imaging reveals heterogeneous landscapes of nanomolar Ca2+ in neurons and astroglia. Neuron 88, 277–288 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Bindocci, E. et al. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. Science 356, eaai8185 (2017).

    PubMed  Google Scholar 

  171. 171.

    Sekiguchi, K. J. et al. Imaging large-scale cellular activity in spinal cord of freely behaving mice. Nat. Commun. 7, 11450 (2016).

    PubMed  PubMed Central  Google Scholar 

  172. 172.

    Paukert, M. et al. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82, 1263–1270 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Handy, G., Taheri, M., White, J. A. & Borisyuk, A. Mathematical investigation of IP3-dependent calcium dynamics in astrocytes. J. Comput. Neurosci. 42, 257–273 (2017).

    PubMed  PubMed Central  Google Scholar 

  174. 174.

    Taheri, M., Handy, G., Borisyuk, A. & White, J. A. Diversity of evoked astrocyte Ca2+ dynamics quantified through experimental measurements and mathematical modeling. Front. Syst. Neurosci. 11, 79 (2017).

    PubMed  PubMed Central  Google Scholar 

  175. 175.

    Cresswell-Clay, E., Crock, N., Tabak, J. & Erlebacher, G. A compartmental model to investigate local and global Ca2+ dynamics in astrocytes. Front. Comput. Neurosci. 12, 94 (2018).

    PubMed  PubMed Central  Google Scholar 

  176. 176.

    Savtchenko, L. P. et al. Disentangling astroglial physiology with a realistic cell model in silico. Nat. Commun. 9, 3554 (2018).

    PubMed  PubMed Central  Google Scholar 

  177. 177.

    De Pittà, M., Volman, V., Levine, H. & Ben-Jacob, E. Multimodal encoding in a simplified model of intracellular calcium signaling. Cogn. Process. 10, S55–S70 (2009).

    PubMed  Google Scholar 

  178. 178.

    Denizot, A., Arizono, M., Nägerl, U. V., Soula, H. & Berry, H. Simulation of calcium signaling in fine astrocytic processes: effect of spatial properties on spontaneous activity. PLoS Comput. Biol. 15, e1006795 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).

    CAS  PubMed  Google Scholar 

  180. 180.

    Chen, X. et al. The first structure–activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chem. Neurosci. 6, 476–484 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Smith, M. A., Zhang, H. & Robinson, A. M. The effects of excitatory and inhibitory social cues on cocaine-seeking behavior. Front. Behav. Neurosci. 10, 217 (2016).

    PubMed  PubMed Central  Google Scholar 

  182. 182.

    Beppu, K. et al. Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron 81, 314–320 (2014).

    CAS  PubMed  Google Scholar 

  183. 183.

    Rungta, R. L., Osmanski, B. F., Boido, D., Tanter, M. & Charpak, S. Light controls cerebral blood flow in naive animals. Nat. Commun. 8, 14191 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Otchy, T. M. et al. Acute off-target effects of neural circuit manipulations. Nature 528, 358–363 (2015).

    CAS  PubMed  Google Scholar 

  185. 185.

    Sudhof, T. C. Reproducibility: experimental mismatch in neural circuits. Nature 528, 338–339 (2015).

    CAS  PubMed  Google Scholar 

  186. 186.

    Pittolo, S. et al. Reversible silencing of endogenous receptors in intact brain tissue using 2-photon pharmacology. Proc. Natl Acad. Sci. USA 116, 13680–13689 (2019).

    CAS  PubMed  Google Scholar 

  187. 187.

    Ding, F. et al. α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54, 387–394 (2013).

    CAS  PubMed  Google Scholar 

  188. 188.

    Ma, Z., Stork, T., Bergles, D. E. & Freeman, M. R. Neuromodulators signal through astrocytes to alter neural circuit activity and behaviour. Nature 539, 428–432 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Melom, J. E. & Littleton, J. T. Mutation of a NCKX eliminates glial microdomain calcium oscillations and enhances seizure susceptibility. J. Neurosci. 33, 1169–1178 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Weiss, S., Melom, J. E., Ormerod, K. G., Zhang, Y. V. & Littleton, J. T. Glial Ca2+ signaling links endocytosis to K+ buffering around neuronal somas to regulate excitability. eLife 8, e44186 (2019).

    PubMed  PubMed Central  Google Scholar 

  191. 191.

    Mu, Y. et al. Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell 178, 27–43 (2019).

    CAS  PubMed  Google Scholar 

  192. 192.

    Smith, N. A. et al. Fluorescent Ca2+ indicators directly inhibit the Na,K-ATPase and disrupt cellular functions. Sci. Signal. 11, eaal2039 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. 193.

    Diaz Verdugo, C. et al. Glia–neuron interactions underlie state transitions to generalized seizures. Nat. Commun. 10, 3830 (2019).

    PubMed  PubMed Central  Google Scholar 

  194. 194.

    Davie, K. et al. A single-cell transcriptome atlas of the aging drosophila brain. Cell 174, 982–998 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep. 18, 3227–3241 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. 196.

    Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    CAS  PubMed  Google Scholar 

  197. 197.

    Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G. & Sofroniew, M. V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7, 1233–1241 (2004).

    CAS  PubMed  Google Scholar 

  198. 198.

    Gregorian, C. et al. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J. Neurosci. 29, 1874–1886 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. 199.

    Hirrlinger, P. G., Scheller, A., Braun, C., Hirrlinger, J. & Kirchhoff, F. Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2. Glia 54, 11–20 (2006).

    PubMed  Google Scholar 

  200. 200.

    Pascual, O. et al. Astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113–116 (2005).

    CAS  PubMed  Google Scholar 

  201. 201.

    Lin, W. et al. Interferon-γ induced medulloblastoma in the developing cerebellum. J. Neurosci. 24, 10074–10083 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Tanaka, M. et al. Lack of Connexin43-mediated Bergmann glial gap junctional coupling does not affect cerebellar long-term depression, motor coordination, or eyeblink conditioning. Front. Behav. Neurosci. 2, 1 (2008).

    PubMed  PubMed Central  Google Scholar 

  203. 203.

    Young, K. M. et al. An Fgfr3-iCreER T2 transgenic mouse line for studies of neural stem cells and astrocytes. Glia 58, 943–953 (2010).

    PubMed  PubMed Central  Google Scholar 

  204. 204.

    Drinkut, A., Tereshchenko, Y., Schulz, J. B., Bahr, M. & Kugler, S. Efficient gene therapy for Parkinson’s disease using astrocytes as hosts for localized neurotrophic factor delivery. Mol. Ther. 20, 534–543 (2012).

    CAS  PubMed  Google Scholar 

  205. 205.

    Lawlor, P. A., Bland, R. J., Mouravlev, A., Young, D. & During, M. J. Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Mol. Ther. 17, 1692–1702 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Vagner, T., Dvorzhak, A., Wojtowicz, A. M., Harms, C. & Grantyn, R. Systemic application of AAV vectors targeting GFAP-expressing astrocytes in Z-Q175-KI Huntington’s disease mice. Mol. Cell Neurosci. 77, 76–86 (2016).

    CAS  PubMed  Google Scholar 

  207. 207.

    Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727 (2016).

    PubMed  PubMed Central  Google Scholar 

  208. 208.

    Inoue, M. et al. Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics. Cell 177, 1346–1360 (2019).

    CAS  PubMed  Google Scholar 

  209. 209.

    Odaka, H., Arai, S., Inoue, T. & Kitaguchi, T. Genetically-encoded yellow fluorescent cAMP indicator with an expanded dynamic range for dual-color imaging. PLoS One 9, e100252 (2014).

    PubMed  PubMed Central  Google Scholar 

  210. 210.

    Harada, K. et al. Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Sci. Rep. 7, 7351 (2017).

    PubMed  PubMed Central  Google Scholar 

  211. 211.

    Shen, Y. et al. Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration. Commun. Biol. 2, 18 (2019).

    PubMed  PubMed Central  Google Scholar 

  212. 212.

    Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. 213.

    Marvin, J. S. et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15, 936–939 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214.

    Lobas, M. A. et al. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat. Commun. 10, 711 (2019).

    PubMed  PubMed Central  Google Scholar 

  215. 215.

    Marvin, J. S. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16, 763–770 (2019).

    CAS  PubMed  Google Scholar 

  216. 216.

    Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    PubMed  PubMed Central  Google Scholar 

  217. 217.

    Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. 218.

    Jing, M. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36, 726–737 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219.

    Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745–761 (2019).

    CAS  PubMed  Google Scholar 

  220. 220.

    Lin, J. Y., Lin, M. Z., Steinbach, P. & Tsien, R. Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96, 1803–1814 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors are supported by the US National Institutes of Health (NS111583, DA047444, NS060677 and MH104069), a Paul G. Allen Distinguished Investigator Award and the CHDI Foundation (to B.S.K.). B.S.K. was also partly supported by the Ressler Family Foundation. X.Y. was supported partly by an American Heart Association Postdoctoral Fellowship (16POST27260256). J.N. was partly supported by a Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowship (H28-729) and the Uehara Memorial Foundation Overseas Postdoctoral Research Fellowship (201730082). The authors regret that many papers could not be cited (especially early studies), because of space limits and the requirement to focus primarily on the past 5 years. The authors thank members of the Khakh laboratory for useful discussions, and the anonymous reviewers for their comments.

Author information




All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Baljit S. Khakh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Adult Astrocyte RNA-seq Explorer:

Allen Brain Atlas, RNA-seq data:

Astrocyte Ageing Transcription:

Brain RNA-seq:


Mouse Brain Atlas:




The release of transmitters from astrocytes owing to intracellular Ca2+ elevations, through vesicular exocytosis or by another regulated mechanism.


A method of cell purification that uses cell-type-specific antibodies immobilized to a solid surface (such as a cell culture plate) to immunoprecipitate specific cell populations.

Bacterial artificial chromosome (BAC) transgenic

Describing a transgenic organism generated by random but stable integration of large segments of DNA (up to 300 kb) from BAC vectors into the genome.


A selective oestrogen receptor modulator that specifically activates tamoxifen-inducible Cre recombinase (for example, Cre/ERT2) and results in the shuttling of the Cre recombinase into the nucleus, where the recombination occurs.

Adeno-associated virus (AAV) vector

A vector based on an AAV, composed of exogenous DNA (up to 5 kb) flanked by two 145-nucleotide-long inverted terminal repeats.


An antibiotic used to either repress (Tet-Off) or activate (Tet-On) gene expression in a Tet system. Its derivative, doxycycline, is also widely used.

Microglial reactivity

A microglial activation response to tissue damage or pathological insults, to mediate inflammatory responses.


An approach to deliver charged molecules (such as fluorescent dye) into cells by applying electric current.


A protein that functions as a linker between the plasma membrane and the actin cytoskeleton.


A green fluorescent protein (GFP) tagged with a membrane-targeting sequence of Lck (from Src tyrosine kinase).

Spaghetti monster fluorescent proteins

Modified fluorescent proteins with multiple epitope tags that can be targeted using highly specific antibodies.

Förster resonance energy transfer

(FRET). Energy transfer between two appropriate light-sensitive molecules, such as fluorophores, via dipole–dipole coupling. The transfer typically reports distances on the tens of nanometres scale or lower and so can be used to assess the proximity between cognate fluorophores that undergo Förster resonance energy transfer.


Highly localized, small (several micrometres wide) territories of a cell.


Able to undergo reversible structural conversion between isomers in response to photoexcitation.

Remote memory

The enduring memory of events that happened or were learnt in the distant past.

Retinal ganglion cells

Output neurons in the ganglion cell layer of the retina, receiving visual input from photoreceptors and interneurons.

Tet system

An inducible gene expression system that reversibly activates (Tet-On) or represses (Tet-Off) transcription in the presence of a tetracycline transactivator (tTA) protein, a DNA sequence called the tetracycline response element (TRE) and treatment with tetracycline or its derivatives.


The act of something such as a cellular compartment becoming more acidic (that is, becoming protonated).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Nagai, J. & Khakh, B.S. Improved tools to study astrocytes. Nat Rev Neurosci 21, 121–138 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing