The default mode network: where the idiosyncratic self meets the shared social world

Abstract

The default mode network (DMN) is classically considered an ‘intrinsic’ system, specializing in internally oriented cognitive processes such as daydreaming, reminiscing and future planning. In this Perspective, we suggest that the DMN is an active and dynamic ‘sense-making’ network that integrates incoming extrinsic information with prior intrinsic information to form rich, context-dependent models of situations as they unfold over time. We review studies that relied on naturalistic stimuli, such as stories and movies, to demonstrate how an individual’s DMN neural responses are influenced both by external information accumulated as events unfold over time and by the individual’s idiosyncratic past memories and knowledge. The integration of extrinsic and intrinsic information over long timescales provides a space for negotiating a shared neural code, which is necessary for establishing shared meaning, shared communication tools, shared narratives and, above all, shared communities and social networks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A new view of the default mode network.
Fig. 2: Using inter-subject correlation analysis to map shared responses across subjects.
Fig. 3: Isolating stimulus-locked brain connectivity using inter-subject functional correlation.
Fig. 4: Transmission of experience and the similarity of neural responses among friends.

References

  1. 1.

    Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Golland, Y. et al. Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cereb. Cortex 17, 766–777 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Andrews-Hanna, J. R., Saxe, R. & Yarkoni, T. Contributions of episodic retrieval and mentalizing to autobiographical thought: evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. NeuroImage 91, 324–335 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Konishi, M., McLaren, D. G., Engen, H. & Smallwood, J. Shaped by the past: the default mode network supports cognition that is independent of immediate perceptual input. PLoS ONE 10, e0132209 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Shulman, G. L. et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cognit. Neurosci. 9, 648–663 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    McKiernan, K. A., Kaufman, J. N., Kucera-Thompson, J. & Binder, J. R. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J. Cogn. Neurosci. 15, 394–408 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Gusnard, D. A., Akbudak, E., Shulman, G. L. & Raichle, M. E. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl Acad. Sci. USA 98, 4259–4264 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, e5 (2017).

    Article  CAS  Google Scholar 

  13. 13.

    Schurz, M., Radua, J., Aichhorn, M., Richlan, F. & Perner, J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34 (2014).

    Article  Google Scholar 

  14. 14.

    Kernbach, J. M. et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc. Natl Acad. Sci. USA 115, 12295–12300 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19, 304–313 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Li, W., Piëch, V. & Gilbert, C. D. Contour saliency in primary visual cortex. Neuron 50, 951–962 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Jones, H. E., Wang, W. & Sillito, A. M. Spatial organization and magnitude of orientation contrast interactions in primate V1. J. Neurophysiol. 88, 2796–2808 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154.2 (1962).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Serre, T. in Encyclopedia of Computational Neuroscience (eds Jaeger, D. & Jung, R.) 1–12 (Springer, 2013).

  20. 20.

    Hasson, U., Yang, E., Vallines, I., Heeger, D. J. & Rubin, N. A hierarchy of temporal receptive windows in human cortex. J. Neurosci. 28, 2539–2550 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Lerner, Y., Honey, C. J., Silbert, L. J. & Hasson, U. Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. J. Neurosci. 31, 2906–2915 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Hubel, D. H. Eye, Brain, and Vision (Scientific American Library, 1988).

  23. 23.

    Ames, D. L., Honey, C. J., Chow, M. A., Todorov, A. & Hasson, U. Contextual alignment of cognitive and neural dynamics. J. Cogn. Neurosci. 27, 655–664 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Simony, E. et al. Dynamic reconfiguration of the default mode network during narrative comprehension. Nat. Commun. 7, 12141 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Harrison, B. J. et al. Consistency and functional specialization in the default mode brain network. Proc. Natl Acad. Sci. USA 105, 9781–9786 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Nastase, S. A., Liu, Y.-F., Hillman, H., Norman, K. A. & Hasson, U. Leveraging shared connectivity to aggregate heterogeneous datasets into a common response space. NeuroImage 15, 116865 (2020).

    Article  Google Scholar 

  29. 29.

    Nastase, S. A., Goldstein, A. & Hasson, U. Keep it real: rethinking the primacy of experimental control in cognitive neuroscience. NeuroImage 222, 117254 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Regev, M., Honey, C. J., Simony, E. & Hasson, U. Selective and invariant neural responses to spoken and written narratives. J. Neurosci. 33, 15978–15988 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Wilson, S. M., Bautista, A. & McCarron, A. Convergence of spoken and written language processing in the superior temporal sulcus. NeuroImage 171, 62–74 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Baldassano, C. et al. Discovering event structure in continuous narrative perception and memory. Neuron 95, 709–721.e5 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Zadbood, A., Chen, J., Leong, Y. C., Norman, K. A. & Hasson, U. How we transmit memories to other brains: constructing shared neural representations via communication. Cereb. Cortex 27, 4988–5000 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Tikka, P., Kauttonen, J. & Hlushchuk, Y. Narrative comprehension beyond language: Common brain networks activated by a movie and its script. PLoS ONE 13, e0200134 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Yeshurun, Y., Nguyen, M. & Hasson, U. Amplification of local changes along the timescale processing hierarchy. Proc. Natl Acad. Sci. USA 114, 9475–9480 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Honey, C. J., Thompson, C. R., Lerner, Y. & Hasson, U. Not lost in translation: neural responses shared across languages. J. Neurosci. 32, 15277–15283 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Nguyen, M., Vanderwal, T. & Hasson, U. Shared understanding of narratives is correlated with shared neural responses. NeuroImage 184, 161–170 (2019).

    Article  Google Scholar 

  38. 38.

    Deniz, F., Nunez-Elizalde, A. O., Huth, A. G. & Gallant, J. L. The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality. J. Neurosci. 39, 7722–7736 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Dehghani, M. et al. Decoding the neural representation of story meanings across languages. Hum. Brain Mapp. 38, 6096–6106 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Fernandino, L. et al. Concept representation reflects multimodal abstraction: a framework for embodied semantics. Cerebral. Cortex 26, 2018–2034 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Schmälzle, R., Häcker, F. E. K., Honey, C. J. & Hasson, U. Engaged listeners: shared neural processing of powerful political speeches. Soc. Cognit. Affect. Neurosci. 10, 1137–1143 (2015).

    Article  Google Scholar 

  43. 43.

    Cohen, S. S. & Parra, L. C. Memorable audiovisual narratives synchronize sensory and supramodal neural responses. eNeuro https://doi.org/10.1523/ENEURO.0203-16.2016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ki, J. J., Kelly, S. P. & Parra, L. C. Attention strongly modulates reliability of neural responses to naturalistic narrative stimuli. J. Neurosci. 36, 3092–3101 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Regev, M. et al. Propagation of information along the cortical hierarchy as a function of attention while reading and listening to stories. Cereb. Cortex 29, 4017–4034 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Chen, J. et al. Shared memories reveal shared structure in neural activity across individuals. Nat. Neurosci. 20, 115–125 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Yeshurun, Y. et al. Same story, different story: the neural representation of interpretive frameworks. Psychological Sci. 28, 307–319 (2017).

    Article  Google Scholar 

  48. 48.

    Lahnakoski, J. M. et al. Synchronous brain activity across individuals underlies shared psychological perspectives. NeuroImage 100, 316–324 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Bacha-Trams, M. et al. Differential inter-subject correlation of brain activity when kinship is a variable in moral dilemma. Sci. Rep. 7, 14244 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Cooper, E. A., Hasson, U. & Small, S. L. Interpretation-mediated changes in neural activity during language comprehension. NeuroImage 55, 1314–1323 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Uchiyama, H. T. et al. Distinction between the literal and intended meanings of sentences: a functional magnetic resonance imaging study of metaphor and sarcasm. Cortex 48, 563–583 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Bašnáková, J., Weber, K., Petersson, K. M., van Berkum, J. & Hagoort, P. Beyond the language given: the neural correlates of inferring speaker meaning. Cereb. Cortex 24, 2572–2578 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Koster-Hale, J. & Saxe, R. Theory of mind: a neural prediction problem. Neuron 79, 836–848 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Chang, C. H. C., Lazaridi, C., Yeshurun, Y., Norman, K. A. & Hasson, U. Relating the past with the present: information integration and segregation during ongoing narrative processing. Preprint at bioRxiv https://doi.org/10.1101/2020.01.16.908731 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Chen, J. et al. Accessing real-life episodic information from minutes versus hours earlier modulates hippocampal and high-order cortical dynamics. Cereb. Cortex 26, 3428–3441 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Aggleton, J. P. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function. Neurosci. Biobehav. Rev. 36, 1579–1596 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Kaplan, R. et al. Hippocampal sharp-wave ripples influence selective activation of the default mode network. Curr. Biol. 26, 686–691 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Khodagholy, D., Gelinas, J. N. & Buzsáki, G. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358, 369–372 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Baddeley, A. & Wilson, B. A. Prose recall and amnesia: implications for the structure of working memory. Neuropsychologia 40, 1737–1743 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Zuo, X. et al. Temporal integration of narrative information in a hippocampal amnesic patient. NeuroImage 213, 116658 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Gilboa, A. & Marlatte, H. Neurobiology of schemas and schema-mediated memory. Trends Cogn. Sci. 21, 618–631 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Baldassano, C., Hasson, U. & Norman, K. A. Representation of real-world event schemas during narrative perception. J. Neurosci. 38, 9689–9699 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Brandman, T., Malach, R. & Simony, E. The surprising role of the default mode network. Preprint at bioRxiv http://biorxiv.org/lookup/doi/10.1101/2020.05.18.101758 (2020).

    Article  Google Scholar 

  66. 66.

    Dohmatob, E., Dumas, G. & Bzdok, D. Dark control: the default mode network as a reinforcement learning agent. Hum. Brain Mapp. 41, 3318–3341 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Lee, H., Bellana, B. & Chen, J. What can narratives tell us about the neural bases of human memory? Curr. Opin. Behav. Sci. 32, 111–119 (2020).

    Article  Google Scholar 

  68. 68.

    Heider, F. & Simmel, M. An experimental study of apparent behavior. Am. J. Psychol. 57, 243–259 (1944).

    Article  Google Scholar 

  69. 69.

    Saalasti, S. et al. Inferior parietal lobule and early visual areas support elicitation of individualized meanings during narrative listening. Brain Behav. 9, e01288 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Smirnov, D. et al. Emotions amplify speaker–listener neural alignment. Hum. Brain Mapp. 40, 4777–4788 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Jääskeläinen, I. P. et al. Brain hemodynamic activity during viewing and re-viewing of comedy movies explained by experienced humor. Sci. Rep. 6, 27741 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 72.

    Chen, P.-H. A., Jolly, E., Cheong, J. H. & Chang, L. J. Inter-subject representational similarity analysis reveals individual variations in affective experience when watching erotic movies. NeuroImage 216, 116851 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    van Baar, J. M., Chang, L. J. & Sanfey, A. G. The computational and neural substrates of moral strategies in social decision-making. Nat. Commun. 10, 1483 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74.

    Tei, S. et al. Inter-subject correlation of temporoparietal junction activity is associated with conflict patterns during flexible decision-making. Neurosci. Res. 144, 67–70 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Finn, E. et al. Idiosynchrony: from shared responses to individual differences during naturalistic neuroimaging. NeuroImage 215, 116828 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Nummenmaa, L., Lahnakoski, J. M. & Glerean, E. Sharing the social world via intersubject neural synchronisation. Curr. Opin. Psychol. 24, 7–14 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Finn, E. S., Corlett, P. R., Chen, G., Bandettini, P. A. & Constable, R. T. Trait paranoia shapes inter-subject synchrony in brain activity during an ambiguous social narrative. Nat. Commun. 9, 1–13 (2018).

    CAS  Article  Google Scholar 

  78. 78.

    Bacha-Trams, M. et al. A drama movie activates brains of holistic and analytical thinkers differentially. Soc. Cogn. Affect. Neurosci. 13, 1293–1304 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Gruskin, D. C., Rosenberg, M. D. & Holmes, A. J. Relationships between depressive symptoms and brain responses during emotional movie viewing emerge in adolescence. NeuroImage, 216, 116217 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Guo, C. C., Nguyen, V. T., Hyett, M. P., Parker, G. B. & Breakspear, M. J. Out-of-sync: disrupted neural activity in emotional circuitry during film viewing in melancholic depression. Sci. Rep. 5, 11605 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Yang, Z. et al. Individualized psychiatric imaging based on inter-subject neural synchronization in movie watching. NeuroImage 216, 116227 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Rossignac-Milon, M. Merged Minds: Generalized Shared Reality in Interpersonal Relationships (Columbia University, 2019).

  83. 83.

    Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S. & Keysers, C. Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends Cogn. Sci. 16, 114–121 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Hasson, U. & Frith, C. D. Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150366 (2016).

    Article  Google Scholar 

  85. 85.

    Friston, K. J. et al. Generative models, linguistic communication and active inference. Neurosci. Biobehav. Rev. 118, 42–64 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Stephens, G. J., Silbert, L. J. & Hasson, U. Speaker–listener neural coupling underlies successful communication. Proc. Natl Acad. Sci. USA 107, 14425–14430 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Silbert, L. J., Honey, C. J., Simony, E., Poeppel, D. & Hasson, U. Coupled neural systems underlie the production and comprehension of naturalistic narrative speech. Proc. Natl Acad. Sci. USA 111, E4687–E4696 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Nguyen, M. L., Chang, A., Micciche, E., Meshulam, M. & Nastase, S. A. Teacher–student neural coupling during teaching and learning. Preprint at bioRxiv https://doi.org/10.1101/2020.05.07.082958 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Dikker, S., Silbert, L. J., Hasson, U. & Zevin, J. D. On the same wavelength: predictable language enhances speaker–listener brain-to-brain synchrony in posterior superior temporal gyrus. J. Neurosci. 34, 6267–6272 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    AbdulSabur, N. Y. et al. Neural correlates and network connectivity underlying narrative production and comprehension: a combined fMRI and PET study. Cortex 57, 107–127 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Heidlmayr, K., Weber, K., Takashima, A. & Hagoort, P. No title, no theme: the joined neural space between speakers and listeners during production and comprehension of multi-sentence discourse. Cortex 130, 111–126 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Liu, Y. et al. Measuring speaker–listener neural coupling with functional near infrared spectroscopy. Sci. Rep. 7, 43293 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Hirsch, J., Adam Noah, J., Zhang, X., Dravida, S. & Ono, S. Y. A cross-brain neural mechanism for human-to-human verbal communication. Soc. Cogn. Affect. Neurosci. 13, 907–920 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Dai, R. et al. Holistic cognitive and neural processes: a fNIRS-hyperscanning study on interpersonal sensorimotor synchronization. Soc. Cogn. Affect. Neurosci. 13, 1141–1154 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Kuhlen, A. K., Allefeld, C. & Haynes, J.-D. Content-specific coordination of listeners’ to speakers’ EEG during communication. Front. Hum. Neurosci. 6, 266 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Schippers, M. B., Roebroeck, A., Renken, R., Nanetti, L. & Keysers, C. Mapping the information flow from one brain to another during gestural communication. Proc. Natl Acad. Sci. USA 107, 9388–9393 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Schippers, M. B., Gazzola, V., Goebel, R. & Keysers, C. Playing charades in the fMRI: are mirror and/or mentalizing areas involved in gestural communication? PLoS ONE 4, e6801 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. 98.

    Anders, S., Heinzle, J., Weiskopf, N., Ethofer, T. & Haynes, J.-D. Flow of affective information between communicating brains. NeuroImage 54, 439–446 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Montague, P. Hyperscanning: simultaneous fMRI during linked social interactions. NeuroImage 16, 1159–1164 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Jiang, J. et al. Neural synchronization during face-to-face communication. J. Neurosci. 32, 16064–16069 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Jiang, J. et al. Leader emergence through interpersonal neural synchronization. Proc. Natl Acad. Sci. USA 112, 4274–4279 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Astolfi, L. et al. Imaging the social brain by simultaneous hyperscanning during subject interaction. IEEE Intell. Syst. 26, 38–45 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Stevens, R. H. & Galloway, T. L. Modeling the neurodynamic organizations and interactions of teams. Soc. Neurosci. 11, 123–139 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Dodel, S. et al. in Foundations of Augmented Cognition. Directing the Future of Adaptive Systems (eds Schmorrow, D. D. & Fidopiastis, C. M.) 288–297 (Springer, 2011).

  105. 105.

    Fishburn, F. A. et al. Putting our heads together: interpersonal neural synchronization as a biological mechanism for shared intentionality. Soc. Cogn. Affect. Neurosci. 13, 841–849 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Yang, J., Zhang, H., Ni, J., De Dreu, C. K. W. & Ma, Y. Within-group synchronization in the prefrontal cortex associates with intergroup conflict. Nat. Neurosci. 23, 754–760 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Kinreich, S., Djalovski, A., Kraus, L., Louzoun, Y. & Feldman, R. Brain-to-brain synchrony during naturalistic social interactions. Sci. Rep. 7, 17060 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. 108.

    Miller, J. G. et al. Inter-brain synchrony in mother-child dyads during cooperation: an fNIRS hyperscanning study. Neuropsychologia 124, 117–124 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Piazza, E. A., Hasenfratz, L., Hasson, U. & Lew-Williams, C. Infant and adult brains are coupled to the dynamics of natural communication. Psychol. Sci. 12, 6–17 (2020).

    Article  Google Scholar 

  110. 110.

    Bevilacqua, D. et al. Brain-to-brain synchrony and learning outcomes vary by student–teacher dynamics: evidence from a real-world classroom electroencephalography study. J. Cognit. Neurosci. 31, 401–411 (2019).

    Article  Google Scholar 

  111. 111.

    Dikker, S. et al. Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Curr. Biol. 27, 1375–1380 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Pan, Y. et al. Instructor–learner brain coupling discriminates between instructional approaches and predicts learning. NeuroImage 211, 116657 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Davidesco, I. et al. Brain-to-brain synchrony between students and teachers predicts learning outcomes. Preprint at bioRxiv https://doi.org/10.1101/644047 (2019).

    Article  Google Scholar 

  114. 114.

    Zheng, L. et al. Enhancement of teaching outcome through neural prediction of the students’ knowledge state. Hum. Brain. Mapp. 39, 3046–3057 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Cohen, S. S. et al. Neural engagement with online educational videos predicts learning performance for individual students. Neurobiol. Learn. Mem. 155, 60–64 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Meshulam, M. et al. Think like an expert: neural alignment predicts understanding in students taking an introduction to computer science course. Preprint at bioRxiv https://doi.org/10.1101/2020.05.05.079384 (2020).

    Article  Google Scholar 

  117. 117.

    Parkinson, C., Kleinbaum, A. M. & Wheatley, T. Similar neural responses predict friendship. Nat. Commun. 9, 1532 (2018).

    Article  CAS  Google Scholar 

  118. 118.

    Hyon, R., Kleinbaum, A. M. & Parkinson, C. Social network proximity predicts similar trajectories of psychological states: evidence from multi-voxel spatiotemporal dynamics. NeuroImage 216, 116492 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    Sievers, B., Welker, C., Hasson, U., Kleinbaum, A. M. & Wheatley, T. How consensus-building conversation changes our minds and aligns our brains. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/562z7 (2020).

    Article  Google Scholar 

  120. 120.

    Kaplan, J. T. et al. Processing narratives concerning protected values: a cross-cultural investigation of neural correlates. Cereb. Cortex 27, 1428–1438 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Levy, J. et al. Adolescents growing up amidst intractable conflict attenuate brain response to pain of outgroup. Proc. Natl Acad. Sci. USA 113, 13696–13701 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Nastase, S. A., Gazzola, V., Hasson, U. & Keysers, C. Measuring shared responses across subjects using intersubject correlation. Soc. Cogn. Affect. Neurosci. 14, 667–685 (2019).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Buckner, R. L. et al. Functional anatomical studies of explicit and implicit memory retrieval tasks. J. Neurosci. 15, 12–29 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Buckner, R. L. The serendipitous discovery of the brain’s default network. NeuroImage 62, 1137–1145 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Raichle, M. E. The restless brain: how intrinsic activity organizes brain function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140172 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R. & Christoff, K. The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage 111, 611–621 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Andrews-Hanna, J. R., Reidler, J. S., Huang, C. & Buckner, R. L. Evidence for the default network’s role in spontaneous cognition. J. Neurophysiol. 104, 322–335 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Smallwood, J. & Schooler, J. W. The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Preminger, S., Harmelech, T. & Malach, R. Stimulus-free thoughts induce differential activation in the human default network. NeuroImage 54, 1692–1702 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Poerio, G. L. et al. The role of the default mode network in component processes underlying the wandering mind. Soc. Cogn. Affect. Neurosci. 12, 1047–1062 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Andreasen, N. C. et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. Am. J. Psychiatry 152, 1576–1585 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Maguire, E. A. Neuroimaging studies of autobiographical event memory. Philos. Trans. R Soc. Lond. B Biol. Sci. 356, 1441–1451 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Cabeza, R. & St Jacques, P. Functional neuroimaging of autobiographical memory. Trends Cogn. Sci. 11, 219–227 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Spreng, R. N., Mar, R. A. & Kim, A. S. N. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Delamillieure, P. et al. The resting state questionnaire: an introspective questionnaire for evaluation of inner experience during the conscious resting state. Brain Res. Bull. 81, 565–573 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Schacter, D. L., Addis, D. R. & Buckner, R. L. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8, 657–661 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Schacter, D. L., Addis, D. R. & Buckner, R. L. Episodic simulation of future events: concepts, data, applications. Ann. N. Y. Acad. Sci. 1124, 39–60 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Adolphs, R. The social brain: neural basis of social knowledge. Annu. Rev. Psychol. 60, 693–716 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Meyer, M. L. Social by default: characterizing the social functions of the resting brain. Curr. Dir. Psychol. Sci. 28, 380–386 (2019).

    Article  Google Scholar 

  142. 142.

    Mars, R. B. et al. On the relationship between the “default mode network” and the “social brain”. Front. Hum. Neurosci. 6, 189 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7, 268–277 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144.

    Schilbach, L., Eickhoff, S. B., Rotarska-Jagiela, A., Fink, G. R. & Vogeley, K. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious. Cognition 17, 457–467 (2008).

    Article  Google Scholar 

  145. 145.

    Lieberman, M. D. Social cognitive neuroscience: a review of core processes. Annu. Rev. Psychol. 58, 259–289 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  146. 146.

    Alcalá-López, D. et al. Computing the social brain connectome across systems and states. Cereb. Cortex 28, 2207–2232 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  147. 147.

    Mitchell, J. P. Social psychology as a natural kind. Trends Cogn. Sci. 13, 246–251 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Krienen, F. M., Tu, P.-C. & Buckner, R. L. Clan mentality: evidence that the medial prefrontal cortex responds to close others. J. Neurosci. 30, 13906–13915 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Qin, P. & Northoff, G. How is our self related to midline regions and the default-mode network? NeuroImage 57, 1221–1233 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Northoff, G. et al. Self-referential processing in our brain — a meta-analysis of imaging studies on the self. NeuroImage 31, 440–457 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  151. 151.

    Saxe, R. & Powell, L. J. It’s the thought that counts: specific brain regions for one component of theory of mind. Psychol. Sci. 17, 692–699 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  152. 152.

    Spunt, R. P., Meyer, M. L. & Lieberman, M. D. The default mode of human brain function primes the intentional stance. J. Cognit. Neurosci. 27, 1116–1124 (2015).

    Article  Google Scholar 

  153. 153.

    Stephens, G. J., Honey, C. J. & Hasson, U. A place for time: the spatiotemporal structure of neural dynamics during natural audition. J. Neurophysiol. 110, 2019–2026 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Nastase, R. Malach and E. Simony for helpful discussion and comments on the manuscript. This work was supported by the US National Institutes of Health (NIH) under award numbers DP1HD091948 (U.H.) and R01MH112566-01 (M.N.).

Author information

Affiliations

Authors

Contributions

The authors all contributed to all aspects of the article.

Corresponding authors

Correspondence to Yaara Yeshurun or Uri Hasson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks D. Bzdok, Y. Hu and C. Lu for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeshurun, Y., Nguyen, M. & Hasson, U. The default mode network: where the idiosyncratic self meets the shared social world. Nat Rev Neurosci 22, 181–192 (2021). https://doi.org/10.1038/s41583-020-00420-w

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing