Abstract
The default mode network (DMN) is classically considered an ‘intrinsic’ system, specializing in internally oriented cognitive processes such as daydreaming, reminiscing and future planning. In this Perspective, we suggest that the DMN is an active and dynamic ‘sense-making’ network that integrates incoming extrinsic information with prior intrinsic information to form rich, context-dependent models of situations as they unfold over time. We review studies that relied on naturalistic stimuli, such as stories and movies, to demonstrate how an individual’s DMN neural responses are influenced both by external information accumulated as events unfold over time and by the individual’s idiosyncratic past memories and knowledge. The integration of extrinsic and intrinsic information over long timescales provides a space for negotiating a shared neural code, which is necessary for establishing shared meaning, shared communication tools, shared narratives and, above all, shared communities and social networks.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Reactivity of the ventromedial prefrontal cortex, but not the amygdala, to negative emotion faces predicts greed personality trait
Behavioral and Brain Functions Open Access 01 December 2023
-
Auditory inputs modulate intrinsic neuronal timescales during sleep
Communications Biology Open Access 20 November 2023
-
A brain model of altered self-appraisal in social anxiety disorder
Translational Psychiatry Open Access 11 November 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).
Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010).
Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).
Golland, Y. et al. Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cereb. Cortex 17, 766–777 (2006).
Andrews-Hanna, J. R., Saxe, R. & Yarkoni, T. Contributions of episodic retrieval and mentalizing to autobiographical thought: evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. NeuroImage 91, 324–335 (2014).
Konishi, M., McLaren, D. G., Engen, H. & Smallwood, J. Shaped by the past: the default mode network supports cognition that is independent of immediate perceptual input. PLoS ONE 10, e0132209 (2015).
Shulman, G. L. et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cognit. Neurosci. 9, 648–663 (1997).
McKiernan, K. A., Kaufman, J. N., Kucera-Thompson, J. & Binder, J. R. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J. Cogn. Neurosci. 15, 394–408 (2003).
Gusnard, D. A., Akbudak, E., Shulman, G. L. & Raichle, M. E. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl Acad. Sci. USA 98, 4259–4264 (2001).
Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).
Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, e5 (2017).
Schurz, M., Radua, J., Aichhorn, M., Richlan, F. & Perner, J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34 (2014).
Kernbach, J. M. et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc. Natl Acad. Sci. USA 115, 12295–12300 (2018).
Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19, 304–313 (2015).
Li, W., Piëch, V. & Gilbert, C. D. Contour saliency in primary visual cortex. Neuron 50, 951–962 (2006).
Jones, H. E., Wang, W. & Sillito, A. M. Spatial organization and magnitude of orientation contrast interactions in primate V1. J. Neurophysiol. 88, 2796–2808 (2002).
Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154.2 (1962).
Serre, T. in Encyclopedia of Computational Neuroscience (eds Jaeger, D. & Jung, R.) 1–12 (Springer, 2013).
Hasson, U., Yang, E., Vallines, I., Heeger, D. J. & Rubin, N. A hierarchy of temporal receptive windows in human cortex. J. Neurosci. 28, 2539–2550 (2008).
Lerner, Y., Honey, C. J., Silbert, L. J. & Hasson, U. Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. J. Neurosci. 31, 2906–2915 (2011).
Hubel, D. H. Eye, Brain, and Vision (Scientific American Library, 1988).
Ames, D. L., Honey, C. J., Chow, M. A., Todorov, A. & Hasson, U. Contextual alignment of cognitive and neural dynamics. J. Cogn. Neurosci. 27, 655–664 (2014).
Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).
Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2009).
Simony, E. et al. Dynamic reconfiguration of the default mode network during narrative comprehension. Nat. Commun. 7, 12141 (2016).
Harrison, B. J. et al. Consistency and functional specialization in the default mode brain network. Proc. Natl Acad. Sci. USA 105, 9781–9786 (2008).
Nastase, S. A., Liu, Y.-F., Hillman, H., Norman, K. A. & Hasson, U. Leveraging shared connectivity to aggregate heterogeneous datasets into a common response space. NeuroImage 15, 116865 (2020).
Nastase, S. A., Goldstein, A. & Hasson, U. Keep it real: rethinking the primacy of experimental control in cognitive neuroscience. NeuroImage 222, 117254 (2020).
Regev, M., Honey, C. J., Simony, E. & Hasson, U. Selective and invariant neural responses to spoken and written narratives. J. Neurosci. 33, 15978–15988 (2013).
Wilson, S. M., Bautista, A. & McCarron, A. Convergence of spoken and written language processing in the superior temporal sulcus. NeuroImage 171, 62–74 (2018).
Baldassano, C. et al. Discovering event structure in continuous narrative perception and memory. Neuron 95, 709–721.e5 (2017).
Zadbood, A., Chen, J., Leong, Y. C., Norman, K. A. & Hasson, U. How we transmit memories to other brains: constructing shared neural representations via communication. Cereb. Cortex 27, 4988–5000 (2017).
Tikka, P., Kauttonen, J. & Hlushchuk, Y. Narrative comprehension beyond language: Common brain networks activated by a movie and its script. PLoS ONE 13, e0200134 (2018).
Yeshurun, Y., Nguyen, M. & Hasson, U. Amplification of local changes along the timescale processing hierarchy. Proc. Natl Acad. Sci. USA 114, 9475–9480 (2017).
Honey, C. J., Thompson, C. R., Lerner, Y. & Hasson, U. Not lost in translation: neural responses shared across languages. J. Neurosci. 32, 15277–15283 (2012).
Nguyen, M., Vanderwal, T. & Hasson, U. Shared understanding of narratives is correlated with shared neural responses. NeuroImage 184, 161–170 (2019).
Deniz, F., Nunez-Elizalde, A. O., Huth, A. G. & Gallant, J. L. The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality. J. Neurosci. 39, 7722–7736 (2019).
Dehghani, M. et al. Decoding the neural representation of story meanings across languages. Hum. Brain Mapp. 38, 6096–6106 (2017).
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).
Fernandino, L. et al. Concept representation reflects multimodal abstraction: a framework for embodied semantics. Cerebral. Cortex 26, 2018–2034 (2016).
Schmälzle, R., Häcker, F. E. K., Honey, C. J. & Hasson, U. Engaged listeners: shared neural processing of powerful political speeches. Soc. Cognit. Affect. Neurosci. 10, 1137–1143 (2015).
Cohen, S. S. & Parra, L. C. Memorable audiovisual narratives synchronize sensory and supramodal neural responses. eNeuro https://doi.org/10.1523/ENEURO.0203-16.2016 (2016).
Ki, J. J., Kelly, S. P. & Parra, L. C. Attention strongly modulates reliability of neural responses to naturalistic narrative stimuli. J. Neurosci. 36, 3092–3101 (2016).
Regev, M. et al. Propagation of information along the cortical hierarchy as a function of attention while reading and listening to stories. Cereb. Cortex 29, 4017–4034 (2019).
Chen, J. et al. Shared memories reveal shared structure in neural activity across individuals. Nat. Neurosci. 20, 115–125 (2016).
Yeshurun, Y. et al. Same story, different story: the neural representation of interpretive frameworks. Psychological Sci. 28, 307–319 (2017).
Lahnakoski, J. M. et al. Synchronous brain activity across individuals underlies shared psychological perspectives. NeuroImage 100, 316–324 (2014).
Bacha-Trams, M. et al. Differential inter-subject correlation of brain activity when kinship is a variable in moral dilemma. Sci. Rep. 7, 14244 (2017).
Cooper, E. A., Hasson, U. & Small, S. L. Interpretation-mediated changes in neural activity during language comprehension. NeuroImage 55, 1314–1323 (2011).
Uchiyama, H. T. et al. Distinction between the literal and intended meanings of sentences: a functional magnetic resonance imaging study of metaphor and sarcasm. Cortex 48, 563–583 (2012).
Bašnáková, J., Weber, K., Petersson, K. M., van Berkum, J. & Hagoort, P. Beyond the language given: the neural correlates of inferring speaker meaning. Cereb. Cortex 24, 2572–2578 (2014).
Koster-Hale, J. & Saxe, R. Theory of mind: a neural prediction problem. Neuron 79, 836–848 (2013).
Chang, C. H. C., Lazaridi, C., Yeshurun, Y., Norman, K. A. & Hasson, U. Relating the past with the present: information integration and segregation during ongoing narrative processing. Preprint at bioRxiv https://doi.org/10.1101/2020.01.16.908731 (2020).
Chen, J. et al. Accessing real-life episodic information from minutes versus hours earlier modulates hippocampal and high-order cortical dynamics. Cereb. Cortex 26, 3428–3441 (2015).
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).
Aggleton, J. P. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function. Neurosci. Biobehav. Rev. 36, 1579–1596 (2012).
Kaplan, R. et al. Hippocampal sharp-wave ripples influence selective activation of the default mode network. Curr. Biol. 26, 686–691 (2016).
Khodagholy, D., Gelinas, J. N. & Buzsáki, G. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358, 369–372 (2017).
Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).
Baddeley, A. & Wilson, B. A. Prose recall and amnesia: implications for the structure of working memory. Neuropsychologia 40, 1737–1743 (2002).
Zuo, X. et al. Temporal integration of narrative information in a hippocampal amnesic patient. NeuroImage 213, 116658 (2020).
Gilboa, A. & Marlatte, H. Neurobiology of schemas and schema-mediated memory. Trends Cogn. Sci. 21, 618–631 (2017).
Baldassano, C., Hasson, U. & Norman, K. A. Representation of real-world event schemas during narrative perception. J. Neurosci. 38, 9689–9699 (2018).
Brandman, T., Malach, R. & Simony, E. The surprising role of the default mode network. Preprint at bioRxiv http://biorxiv.org/lookup/doi/10.1101/2020.05.18.101758 (2020).
Dohmatob, E., Dumas, G. & Bzdok, D. Dark control: the default mode network as a reinforcement learning agent. Hum. Brain Mapp. 41, 3318–3341 (2020).
Lee, H., Bellana, B. & Chen, J. What can narratives tell us about the neural bases of human memory? Curr. Opin. Behav. Sci. 32, 111–119 (2020).
Heider, F. & Simmel, M. An experimental study of apparent behavior. Am. J. Psychol. 57, 243–259 (1944).
Saalasti, S. et al. Inferior parietal lobule and early visual areas support elicitation of individualized meanings during narrative listening. Brain Behav. 9, e01288 (2019).
Smirnov, D. et al. Emotions amplify speaker–listener neural alignment. Hum. Brain Mapp. 40, 4777–4788 (2019).
Jääskeläinen, I. P. et al. Brain hemodynamic activity during viewing and re-viewing of comedy movies explained by experienced humor. Sci. Rep. 6, 27741 (2016).
Chen, P.-H. A., Jolly, E., Cheong, J. H. & Chang, L. J. Inter-subject representational similarity analysis reveals individual variations in affective experience when watching erotic movies. NeuroImage 216, 116851 (2020).
van Baar, J. M., Chang, L. J. & Sanfey, A. G. The computational and neural substrates of moral strategies in social decision-making. Nat. Commun. 10, 1483 (2019).
Tei, S. et al. Inter-subject correlation of temporoparietal junction activity is associated with conflict patterns during flexible decision-making. Neurosci. Res. 144, 67–70 (2019).
Finn, E. et al. Idiosynchrony: from shared responses to individual differences during naturalistic neuroimaging. NeuroImage 215, 116828 (2020).
Nummenmaa, L., Lahnakoski, J. M. & Glerean, E. Sharing the social world via intersubject neural synchronisation. Curr. Opin. Psychol. 24, 7–14 (2018).
Finn, E. S., Corlett, P. R., Chen, G., Bandettini, P. A. & Constable, R. T. Trait paranoia shapes inter-subject synchrony in brain activity during an ambiguous social narrative. Nat. Commun. 9, 1–13 (2018).
Bacha-Trams, M. et al. A drama movie activates brains of holistic and analytical thinkers differentially. Soc. Cogn. Affect. Neurosci. 13, 1293–1304 (2018).
Gruskin, D. C., Rosenberg, M. D. & Holmes, A. J. Relationships between depressive symptoms and brain responses during emotional movie viewing emerge in adolescence. NeuroImage, 216, 116217 (2020).
Guo, C. C., Nguyen, V. T., Hyett, M. P., Parker, G. B. & Breakspear, M. J. Out-of-sync: disrupted neural activity in emotional circuitry during film viewing in melancholic depression. Sci. Rep. 5, 11605 (2015).
Yang, Z. et al. Individualized psychiatric imaging based on inter-subject neural synchronization in movie watching. NeuroImage 216, 116227 (2020).
Rossignac-Milon, M. Merged Minds: Generalized Shared Reality in Interpersonal Relationships (Columbia University, 2019).
Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S. & Keysers, C. Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends Cogn. Sci. 16, 114–121 (2012).
Hasson, U. & Frith, C. D. Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150366 (2016).
Friston, K. J. et al. Generative models, linguistic communication and active inference. Neurosci. Biobehav. Rev. 118, 42–64 (2020).
Stephens, G. J., Silbert, L. J. & Hasson, U. Speaker–listener neural coupling underlies successful communication. Proc. Natl Acad. Sci. USA 107, 14425–14430 (2010).
Silbert, L. J., Honey, C. J., Simony, E., Poeppel, D. & Hasson, U. Coupled neural systems underlie the production and comprehension of naturalistic narrative speech. Proc. Natl Acad. Sci. USA 111, E4687–E4696 (2014).
Nguyen, M. L., Chang, A., Micciche, E., Meshulam, M. & Nastase, S. A. Teacher–student neural coupling during teaching and learning. Preprint at bioRxiv https://doi.org/10.1101/2020.05.07.082958 (2020).
Dikker, S., Silbert, L. J., Hasson, U. & Zevin, J. D. On the same wavelength: predictable language enhances speaker–listener brain-to-brain synchrony in posterior superior temporal gyrus. J. Neurosci. 34, 6267–6272 (2014).
AbdulSabur, N. Y. et al. Neural correlates and network connectivity underlying narrative production and comprehension: a combined fMRI and PET study. Cortex 57, 107–127 (2014).
Heidlmayr, K., Weber, K., Takashima, A. & Hagoort, P. No title, no theme: the joined neural space between speakers and listeners during production and comprehension of multi-sentence discourse. Cortex 130, 111–126 (2020).
Liu, Y. et al. Measuring speaker–listener neural coupling with functional near infrared spectroscopy. Sci. Rep. 7, 43293 (2017).
Hirsch, J., Adam Noah, J., Zhang, X., Dravida, S. & Ono, S. Y. A cross-brain neural mechanism for human-to-human verbal communication. Soc. Cogn. Affect. Neurosci. 13, 907–920 (2018).
Dai, R. et al. Holistic cognitive and neural processes: a fNIRS-hyperscanning study on interpersonal sensorimotor synchronization. Soc. Cogn. Affect. Neurosci. 13, 1141–1154 (2018).
Kuhlen, A. K., Allefeld, C. & Haynes, J.-D. Content-specific coordination of listeners’ to speakers’ EEG during communication. Front. Hum. Neurosci. 6, 266 (2012).
Schippers, M. B., Roebroeck, A., Renken, R., Nanetti, L. & Keysers, C. Mapping the information flow from one brain to another during gestural communication. Proc. Natl Acad. Sci. USA 107, 9388–9393 (2010).
Schippers, M. B., Gazzola, V., Goebel, R. & Keysers, C. Playing charades in the fMRI: are mirror and/or mentalizing areas involved in gestural communication? PLoS ONE 4, e6801 (2009).
Anders, S., Heinzle, J., Weiskopf, N., Ethofer, T. & Haynes, J.-D. Flow of affective information between communicating brains. NeuroImage 54, 439–446 (2011).
Montague, P. Hyperscanning: simultaneous fMRI during linked social interactions. NeuroImage 16, 1159–1164 (2002).
Jiang, J. et al. Neural synchronization during face-to-face communication. J. Neurosci. 32, 16064–16069 (2012).
Jiang, J. et al. Leader emergence through interpersonal neural synchronization. Proc. Natl Acad. Sci. USA 112, 4274–4279 (2015).
Astolfi, L. et al. Imaging the social brain by simultaneous hyperscanning during subject interaction. IEEE Intell. Syst. 26, 38–45 (2011).
Stevens, R. H. & Galloway, T. L. Modeling the neurodynamic organizations and interactions of teams. Soc. Neurosci. 11, 123–139 (2016).
Dodel, S. et al. in Foundations of Augmented Cognition. Directing the Future of Adaptive Systems (eds Schmorrow, D. D. & Fidopiastis, C. M.) 288–297 (Springer, 2011).
Fishburn, F. A. et al. Putting our heads together: interpersonal neural synchronization as a biological mechanism for shared intentionality. Soc. Cogn. Affect. Neurosci. 13, 841–849 (2018).
Yang, J., Zhang, H., Ni, J., De Dreu, C. K. W. & Ma, Y. Within-group synchronization in the prefrontal cortex associates with intergroup conflict. Nat. Neurosci. 23, 754–760 (2020).
Kinreich, S., Djalovski, A., Kraus, L., Louzoun, Y. & Feldman, R. Brain-to-brain synchrony during naturalistic social interactions. Sci. Rep. 7, 17060 (2017).
Miller, J. G. et al. Inter-brain synchrony in mother-child dyads during cooperation: an fNIRS hyperscanning study. Neuropsychologia 124, 117–124 (2019).
Piazza, E. A., Hasenfratz, L., Hasson, U. & Lew-Williams, C. Infant and adult brains are coupled to the dynamics of natural communication. Psychol. Sci. 12, 6–17 (2020).
Bevilacqua, D. et al. Brain-to-brain synchrony and learning outcomes vary by student–teacher dynamics: evidence from a real-world classroom electroencephalography study. J. Cognit. Neurosci. 31, 401–411 (2019).
Dikker, S. et al. Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Curr. Biol. 27, 1375–1380 (2017).
Pan, Y. et al. Instructor–learner brain coupling discriminates between instructional approaches and predicts learning. NeuroImage 211, 116657 (2020).
Davidesco, I. et al. Brain-to-brain synchrony between students and teachers predicts learning outcomes. Preprint at bioRxiv https://doi.org/10.1101/644047 (2019).
Zheng, L. et al. Enhancement of teaching outcome through neural prediction of the students’ knowledge state. Hum. Brain. Mapp. 39, 3046–3057 (2018).
Cohen, S. S. et al. Neural engagement with online educational videos predicts learning performance for individual students. Neurobiol. Learn. Mem. 155, 60–64 (2018).
Meshulam, M. et al. Think like an expert: neural alignment predicts understanding in students taking an introduction to computer science course. Preprint at bioRxiv https://doi.org/10.1101/2020.05.05.079384 (2020).
Parkinson, C., Kleinbaum, A. M. & Wheatley, T. Similar neural responses predict friendship. Nat. Commun. 9, 1532 (2018).
Hyon, R., Kleinbaum, A. M. & Parkinson, C. Social network proximity predicts similar trajectories of psychological states: evidence from multi-voxel spatiotemporal dynamics. NeuroImage 216, 116492 (2020).
Sievers, B., Welker, C., Hasson, U., Kleinbaum, A. M. & Wheatley, T. How consensus-building conversation changes our minds and aligns our brains. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/562z7 (2020).
Kaplan, J. T. et al. Processing narratives concerning protected values: a cross-cultural investigation of neural correlates. Cereb. Cortex 27, 1428–1438 (2017).
Levy, J. et al. Adolescents growing up amidst intractable conflict attenuate brain response to pain of outgroup. Proc. Natl Acad. Sci. USA 113, 13696–13701 (2016).
Nastase, S. A., Gazzola, V., Hasson, U. & Keysers, C. Measuring shared responses across subjects using intersubject correlation. Soc. Cogn. Affect. Neurosci. 14, 667–685 (2019).
Buckner, R. L. et al. Functional anatomical studies of explicit and implicit memory retrieval tasks. J. Neurosci. 15, 12–29 (1995).
Buckner, R. L. The serendipitous discovery of the brain’s default network. NeuroImage 62, 1137–1145 (2012).
Raichle, M. E. The restless brain: how intrinsic activity organizes brain function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140172 (2015).
Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008).
Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R. & Christoff, K. The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage 111, 611–621 (2015).
Andrews-Hanna, J. R., Reidler, J. S., Huang, C. & Buckner, R. L. Evidence for the default network’s role in spontaneous cognition. J. Neurophysiol. 104, 322–335 (2010).
Smallwood, J. & Schooler, J. W. The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518 (2015).
Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007).
Preminger, S., Harmelech, T. & Malach, R. Stimulus-free thoughts induce differential activation in the human default network. NeuroImage 54, 1692–1702 (2011).
Poerio, G. L. et al. The role of the default mode network in component processes underlying the wandering mind. Soc. Cogn. Affect. Neurosci. 12, 1047–1062 (2017).
Andreasen, N. C. et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. Am. J. Psychiatry 152, 1576–1585 (1995).
Maguire, E. A. Neuroimaging studies of autobiographical event memory. Philos. Trans. R Soc. Lond. B Biol. Sci. 356, 1441–1451 (2001).
Cabeza, R. & St Jacques, P. Functional neuroimaging of autobiographical memory. Trends Cogn. Sci. 11, 219–227 (2007).
Spreng, R. N., Mar, R. A. & Kim, A. S. N. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009).
Delamillieure, P. et al. The resting state questionnaire: an introspective questionnaire for evaluation of inner experience during the conscious resting state. Brain Res. Bull. 81, 565–573 (2010).
Schacter, D. L., Addis, D. R. & Buckner, R. L. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8, 657–661 (2007).
Schacter, D. L., Addis, D. R. & Buckner, R. L. Episodic simulation of future events: concepts, data, applications. Ann. N. Y. Acad. Sci. 1124, 39–60 (2008).
Adolphs, R. The social brain: neural basis of social knowledge. Annu. Rev. Psychol. 60, 693–716 (2009).
Meyer, M. L. Social by default: characterizing the social functions of the resting brain. Curr. Dir. Psychol. Sci. 28, 380–386 (2019).
Mars, R. B. et al. On the relationship between the “default mode network” and the “social brain”. Front. Hum. Neurosci. 6, 189 (2012).
Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7, 268–277 (2006).
Schilbach, L., Eickhoff, S. B., Rotarska-Jagiela, A., Fink, G. R. & Vogeley, K. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious. Cognition 17, 457–467 (2008).
Lieberman, M. D. Social cognitive neuroscience: a review of core processes. Annu. Rev. Psychol. 58, 259–289 (2007).
Alcalá-López, D. et al. Computing the social brain connectome across systems and states. Cereb. Cortex 28, 2207–2232 (2018).
Mitchell, J. P. Social psychology as a natural kind. Trends Cogn. Sci. 13, 246–251 (2009).
Krienen, F. M., Tu, P.-C. & Buckner, R. L. Clan mentality: evidence that the medial prefrontal cortex responds to close others. J. Neurosci. 30, 13906–13915 (2010).
Qin, P. & Northoff, G. How is our self related to midline regions and the default-mode network? NeuroImage 57, 1221–1233 (2011).
Northoff, G. et al. Self-referential processing in our brain — a meta-analysis of imaging studies on the self. NeuroImage 31, 440–457 (2006).
Saxe, R. & Powell, L. J. It’s the thought that counts: specific brain regions for one component of theory of mind. Psychol. Sci. 17, 692–699 (2006).
Spunt, R. P., Meyer, M. L. & Lieberman, M. D. The default mode of human brain function primes the intentional stance. J. Cognit. Neurosci. 27, 1116–1124 (2015).
Stephens, G. J., Honey, C. J. & Hasson, U. A place for time: the spatiotemporal structure of neural dynamics during natural audition. J. Neurophysiol. 110, 2019–2026 (2013).
Acknowledgements
The authors thank S. Nastase, R. Malach and E. Simony for helpful discussion and comments on the manuscript. This work was supported by the US National Institutes of Health (NIH) under award numbers DP1HD091948 (U.H.) and R01MH112566-01 (M.N.).
Author information
Authors and Affiliations
Contributions
The authors all contributed to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Neuroscience thanks D. Bzdok, Y. Hu and C. Lu for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yeshurun, Y., Nguyen, M. & Hasson, U. The default mode network: where the idiosyncratic self meets the shared social world. Nat Rev Neurosci 22, 181–192 (2021). https://doi.org/10.1038/s41583-020-00420-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41583-020-00420-w
This article is cited by
-
Reactivity of the ventromedial prefrontal cortex, but not the amygdala, to negative emotion faces predicts greed personality trait
Behavioral and Brain Functions (2023)
-
Neural mechanisms underlying interindividual differences in intergenerational sustainable behavior
Scientific Reports (2023)
-
Effects of schema on the relationship between post-encoding brain connectivity and subsequent durable memory
Scientific Reports (2023)
-
A brain model of altered self-appraisal in social anxiety disorder
Translational Psychiatry (2023)
-
Neural patterns differentiate traumatic from sad autobiographical memories in PTSD
Nature Neuroscience (2023)