Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The brain’s default network: updated anatomy, physiology and evolving insights

Abstract

Discoveries over the past two decades demonstrate that regions distributed throughout the association cortex, often called the default network, are suppressed during tasks that demand external attention and are active during remembering, envisioning the future and making social inferences. This Review describes progress in understanding the organization and function of networks embedded within these association regions. Detailed high-resolution analyses of single individuals suggest that the default network is not a single network, as historically described, but instead comprises multiple interwoven networks. The multiple networks share a common organizational motif (also evident in marmoset and macaque anatomical circuits) that might support a general class of processing function dependent on internally constructed rather than externally constrained representations, with each separate interwoven network specialized for a distinct processing domain. Direct neuronal recordings in humans and monkeys reveal evidence for competitive relationships between the internally and externally oriented networks. Findings from rodent studies suggest that the thalamus might be essential to controlling which networks are engaged through specialized thalamic reticular neurons, including antagonistic subpopulations. These association networks (and presumably thalamocortical circuits) are expanded in humans and might be particularly vulnerable to dysregulation implicated in mental illness.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The brain’s default network as defined in averaged groups of individuals.
Fig. 2: Single-individual analyses reveal that the default network comprises multiple distinct but interwoven networks.
Fig. 3: Tract tracing studies in non-human primates suggest that the default network is supported by direct anatomical connectivity.
Fig. 4: The default network is situated within a macroscale gradient.
Fig. 5: Electrophysiology studies in humans and monkeys reveal rapid, anatomically selective task suppression of the default network.
Fig. 6: Thalamocortical circuits are candidates for controlling the activity of the default network, including task-suppression effects.

References

  1. 1.

    Shulman, G. L. et al. Common blood flow changes across visual tasks: II: decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997). This study is an influential meta-analysis that revealed a network that is consistently suppressed during externally oriented tasks, which would later be called the default network.

    CAS  PubMed  Google Scholar 

  2. 2.

    Mazoyer, B. et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res. Bull. 54, 287–298 (2001).

    CAS  PubMed  Google Scholar 

  3. 3.

    Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    CAS  PubMed  Google Scholar 

  4. 4.

    Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    CAS  PubMed  Google Scholar 

  5. 5.

    Buckner, R. L. The serendipitous discovery of the brain’s default network. Neuroimage 62, 1137–1145 (2012).

    PubMed  Google Scholar 

  6. 6.

    Hill, J. et al. Similar patterns of cortical expansion during human development and evolution. Proc. Natl Acad. Sci. USA 107, 13135–13140 (2010).

    CAS  PubMed  Google Scholar 

  7. 7.

    Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17, 648–665 (2013).

    PubMed  Google Scholar 

  8. 8.

    McKiernan, K. A., Kaufman, J. N., Kucera-Thompson, J. & Binder, J. R. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J. Cogn. Neurosci. 15, 394–408 (2003).

    PubMed  Google Scholar 

  9. 9.

    He, B. J. Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J. Neurosci. 31, 13786–13795 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hayden, B. Y., Smith, D. V. & Platt, M. L. Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex. Proc. Natl Acad. Sci. USA 106, 5948–5953 (2009).

    CAS  PubMed  Google Scholar 

  11. 11.

    Mantini, D. et al. Default mode of brain function in monkeys. J. Neurosci. 31, 12954–12962 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Halassa, M. M. et al. State-dependent architecture of thalamic reticular subnetworks. Cell 158, 808–821 (2014). This study is an innovative analysis of TRN circuit properties using molecular-genetic tools that revealed distinct sensory and limbic TRN subpopulations.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    CAS  PubMed  Google Scholar 

  14. 14.

    Greicius, M. D., Srivastava, G., Reiss, A. L. & Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA 101, 4637–4642 (2004).

    CAS  PubMed  Google Scholar 

  15. 15.

    Andreasen, N. C. et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. Am. J. Psychiatry 152, 1576–1585 (1995). This paper is the first to identify and highlight the functions of the distributed network that eventually emerged as the default network.

    CAS  PubMed  Google Scholar 

  16. 16.

    Gusnard, D. A. & Raichle, M. E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2, 685–694 (2001). This is one of a trio of 2001 papers from Raichle’s group that draws attention to the active functional properties of the default network.

    CAS  PubMed  Google Scholar 

  17. 17.

    Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    PubMed  Google Scholar 

  18. 18.

    Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124, 1–38 (2008).

    PubMed  Google Scholar 

  19. 19.

    Spreng, R. N., Mar, R. A. & Kim, A. S. The common neural basis of autobiographical memory, prospection, navigation, theory of mind and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2009).

    PubMed  Google Scholar 

  20. 20.

    Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hassabis, D. & Maguire, E. A. The construction system of the brain. Phil. Trans. R. Soc. B 364, 1263–1271 (2009).

    PubMed  Google Scholar 

  22. 22.

    Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. NY Acad. Sci. 1316, 29–52 (2014).

    PubMed  Google Scholar 

  23. 23.

    Meyer, M. L. & Liebermann, M. D. Social working memory: neurocognitive networks and directions for future research. Front. Psychol. 3, 571 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Smallwood, J. & Schooler, J. W. The science of mind wandering: empirically navigating the stream of consciousness. Ann. Rev. Psychol. 66, 487–518 (2015).

    Google Scholar 

  25. 25.

    Christoff, K., Irving, Z. C., Fox, K. C., Spreng, R. N. & Andrews-Hanna, J. R. Mind-wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17, 718–731 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Fox, K. C. R. et al. Affective neuroscience of self-generated thought. Ann. NY Acad. Sci. 1426, 25–51 (2018).

    Google Scholar 

  27. 27.

    Buckner, R. L. et al. Functional anatomical studies of explicit and implicit memory retrieval tasks. J. Neurosci. 15, 12–29 (1995).

    CAS  PubMed  Google Scholar 

  28. 28.

    Binder, J. R. et al. Conceptual processing during the conscious resting state: a functional MRI study. J. Cogn. Neurosci. 11, 80–93 (1999).

    CAS  PubMed  Google Scholar 

  29. 29.

    McKiernan, K. A., D’Angelo, B. R., Kaufman, J. N. & Binder, J. R. Interrupting the “stream of consciousness”: an fMRI investigation. Neuroimage 29, 1185–1191 (2006).

    PubMed  Google Scholar 

  30. 30.

    Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Andrews-Hanna, J. R., Reidler, J. S., Huang, C. & Buckner, R. L. Evidence for the default network’s role in spontaneous cognition. J. Neurophysiol. 104, 322–335 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Krienen, F. M., Yeo, B. T. T. & Buckner, R. L. Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Phil. Trans. R. Soc. B 369, 20130526 (2014).

    PubMed  Google Scholar 

  33. 33.

    Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    CAS  PubMed  Google Scholar 

  35. 35.

    Fransson, P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–29 (2005). This article and Fox et al.’s (2005) paper provide evidence for an antagonistic relationship between the default network and networks involved in external attention.

    PubMed  Google Scholar 

  36. 36.

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    CAS  PubMed  Google Scholar 

  37. 37.

    Dixon, M. L. et al. Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. Neuroimage 147, 632–649 (2017).

    PubMed  Google Scholar 

  38. 38.

    Fox, M. D., Zhang, D. Y., Snyder, A. Z. & Raichle, M. E. The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 101, 3270–3283 (2009).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Weissenbacher, A. et al. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47, 1408–1416 (2009).

    PubMed  Google Scholar 

  40. 40.

    Van Dijk, K. R. et al. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J. Neurophysiol. 103, 297–321 (2010).

    PubMed  Google Scholar 

  41. 41.

    Anderson, J. S. et al. Network anticorrelations, global regression, and phase-shifted soft tissue correction. Hum. Brain Mapp. 32, 919–934 (2011).

    PubMed  Google Scholar 

  42. 42.

    Chai, X. J., Castañón, A. N., Öngür, D. & Whitfield-Gabrieli, S. Anticorrelations in resting state networks without global signal regression. Neuroimage 59, 1420–1428 (2012).

    PubMed  Google Scholar 

  43. 43.

    Murphy, K. & Fox, M. D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 154, 169–173 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Maguire, E. A. Neuroimaging studies of autobiographical event memory. Phil. Trans. R. Soc. Lond. B 356, 1441–1451 (2001).

    CAS  Google Scholar 

  45. 45.

    Svoboda, E., McKinnon, M. C. & Levine, B. The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44, 2189–2208 (2006).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Cabeza, R. & St Jacques, P. Functional neuroimaging of autobiographical memory. Trends Cogn. Sci. 11, 219–227 (2007).

    PubMed  Google Scholar 

  47. 47.

    Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    CAS  PubMed  Google Scholar 

  48. 48.

    Squire, L. R., Stark, C. E. & Clark, R. E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004).

    CAS  PubMed  Google Scholar 

  49. 49.

    Eichenbaum, H. A cortical–hippocampal system for declarative memory. Nat. Rev. Neurosci. 1, 41–50 (2000).

    CAS  PubMed  Google Scholar 

  50. 50.

    Tulving, E. Elements of Episodic Memory (Oxford University Press, 1983).

  51. 51.

    Schacter, D. L., Addis, D. R. & Buckner, R. L. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8, 657–661 (2007).

    CAS  PubMed  Google Scholar 

  52. 52.

    Murphy, C. et al. Distinct from input: evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition. Neuroimage 171, 393–401 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Murphy, C. et al. Modes of operation: a topographic neural gradient supporting stimulus dependent and independent cognition. Neuroimage 186, 487–496 (2019).

    PubMed  Google Scholar 

  54. 54.

    Saxe, R. Uniquely human social cognition. Curr. Opin. Neurobiol. 16, 235–239 (2006).

    CAS  PubMed  Google Scholar 

  55. 55.

    Premack, D. & Woodruff, G. Does the chimpanzee have a theory of mind? Behav. Brain Sci. 4, 515–526 (1978).

    Google Scholar 

  56. 56.

    Frith, U. & Frith, C. D. Development and neurophysiology of mentalizing. Phil. Trans. R. Soc. Lond. B 358, 459–473 (2003).

    Google Scholar 

  57. 57.

    Koster-Hale, J. & Saxe, R. in Understanding Other Minds 3rd edn (eds Baron-Cohen, S., Tager-Flusberg, H. & Lombardo, M. V.) 132-163 (Oxford University Press, 2013).

  58. 58.

    Schurz, M., Radua, J., Aichhorn, M., Richlan, F. & Perner, J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34 (2014).

    PubMed  Google Scholar 

  59. 59.

    Mars, R. B. et al. On the relationship between the “default mode network” and the “social brain”. Front. Hum. Neurosci. 6, 1–9 (2012).

    Google Scholar 

  60. 60.

    Wimmer, H. & Perner, J. Beliefs about beliefs: representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition 13, 103–128 (1983).

    CAS  PubMed  Google Scholar 

  61. 61.

    Frith, C. D. & Frith, U. Interacting minds—a biological basis. Science 286, 1692–1695 (1999).

    CAS  PubMed  Google Scholar 

  62. 62.

    Leslie, A. M. Pretense and representation: the origins of “theory of mind”. Psychol. Rev. 94, 412–426 (1987).

    Google Scholar 

  63. 63.

    Lieberman, M. D. Social cognitive neuroscience: a review of core processes. Annu. Rev. Psychol. 58, 259–289 (2007).

    PubMed  Google Scholar 

  64. 64.

    Adolphs, R. The social brain: neural basis of social knowledge. Annu. Rev. Psychol. 60, 693–716 (2009).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Rosenbaum, R. S., Stuss, D. T., Levine, B. & Tulving, E. Theory of mind is independent of episodic memory. Science 318, 1257 (2007).

    CAS  PubMed  Google Scholar 

  66. 66.

    Kurczek, J. et al. Differential contributions of hippocampus and medial prefrontal cortex to self-projection and self-referential processing. Neuropsychologia 73, 116–126 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional–anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Andrews-Hanna, J. R., Saxe, R. & Yarkoni, T. Contributions of episodic retrieval and mentalizing to autobiographical thought: evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. Neuroimage 91, 324–335 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Rabin, J. S., Gilboa, A., Stuss, D. T., Mar, R. A. & Rosenbaum, R. S. Common and unique neural correlates of autobiographical memory and theory of mind. J. Cogn. Neurosci. 22, 1095–1111 (2010).

    PubMed  Google Scholar 

  70. 70.

    Spreng, R. N. & Grady, C. L. Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network. J. Cogn. Neurosci 22, 1112–1123 (2010).

    PubMed  Google Scholar 

  71. 71.

    Peer, M., Salomon, R., Goldberg, I., Blanke, O. & Azry, S. Brain system for mental orientation in space, time, and person. Proc. Natl Acad. Sci. USA 112, 11072–11077 (2015).

    CAS  PubMed  Google Scholar 

  72. 72.

    DuPre, E., Luh, W. M. & Spreng, R. N. Multi-echo fMRI replication sample of autobiographical memory, prospection and theory of mind reasoning tasks. Sci. Data 3, 160116 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Tamir, D. I., Bricker, A. B., Dodell-Feder, D. & Mitchell, J. P. Reading fiction and reading minds: the role of simulation in the default network. Soc. Cogn. Affect. Neurosci. 11, 215–224 (2016).

    PubMed  Google Scholar 

  74. 74.

    Axelrod, V., Rees, G. & Bar, M. The default network and the combination of cognitive processes that mediate self-generated thought. Nat. Hum. Behav. 1, 896–910 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Silson, E. H., Steel, A., Kidder, A., Gilmore, A. W. & Baker, C. I. Distinct subdivisions of human medial parietal cortex support recollection of people and places. eLife 8, e47391 (2019).

  76. 76.

    Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Braga, R. M., Van Dijk, K. R. A., Polimeni, J. R., Eldaief, M. C. & Buckner, R. L. Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. J. Neurophysiol. 121, 1513–1534 (2019). This paper and Braga and Buckner (2017) demonstrate that the canonical default network comprises at least two distinct interwoven networks.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Kong, R. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. Cortex 29, 2533–2551 (2019).

    PubMed  Google Scholar 

  80. 80.

    Kanwisher, N. Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl Acad. Sci. USA 107, 11163–11170 (2010).

    CAS  PubMed  Google Scholar 

  81. 81.

    Lafer-Sousa, R. & Conway, B. R. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat. Neurosci. 16, 1870–1878 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Tomasi, D. & Volkow, N. D. Functional connectivity density mapping. Proc. Natl Acad. Sci. USA 107, 9885–9890 (2010).

    CAS  PubMed  Google Scholar 

  84. 84.

    Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E. Evidence for hubs in human functional brain networks. Neuron 79, 798–813 (2013).

    CAS  PubMed  Google Scholar 

  85. 85.

    Tomasi, D., Shokri-Kojori, E. & Volkow, N. D. High-resolution functional connectivity density: hub locations, sensitivity, specificity, reproducibility, and reliability. Cereb. Cortex 26, 3249–3259 (2016).

    PubMed  Google Scholar 

  86. 86.

    Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. NY Acad. Sci. 1316, 29–52 (2014).

    PubMed  Google Scholar 

  87. 87.

    Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016). This paper draws attention to an orderly spatial relationship between the default network and other networks that repeat across the cortex.

    CAS  PubMed  Google Scholar 

  88. 88.

    Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2012).

    Google Scholar 

  89. 89.

    Margulies, D. S. et al. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc. Natl Acad. Sci. USA 106, 20069–20074 (2009).

    CAS  PubMed  Google Scholar 

  90. 90.

    Buckner, R. L. & Margulies, D. S. Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey. Nat. Commun. 10, 1976 (2019).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Rosa, M. G. & Tweedale, R. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Phil. Trans. R. Soc. B 360, 665–691 (2005).

    PubMed  Google Scholar 

  92. 92.

    Eickhoff, S. B., Constable, R. T. & Yeo, B. T. Topographic organization of the cerebral cortex and brain cartography. Neuroimage 170, 332–347 (2018).

    PubMed  Google Scholar 

  93. 93.

    Schaefer, A. et al. Local–global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    PubMed  Google Scholar 

  94. 94.

    Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).

    CAS  PubMed  Google Scholar 

  95. 95.

    Ghahremani, M., Hutchison, R. M., Menon, R. S. & Everling, S. Frontoparietal functional connectivity in the common marmoset. Cereb. Cortex 27, 3890–3905 (2017).

    PubMed  Google Scholar 

  96. 96.

    Blatt, G. J., Pandya, D. N. & Rosene, D. L. Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: an anatomical and neurophysiological study. J. Comp. Neurol. 466, 161–179 (2003).

    PubMed  Google Scholar 

  97. 97.

    Lavenex, P., Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J. Comp. Neurol. 447, 394–420 (2002).

    PubMed  Google Scholar 

  98. 98.

    Pandya, D. N., Van Hoesen, G. W. & Mesulam, M. M. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp. Brain Res. 42, 319–330 (1981).

    CAS  PubMed  Google Scholar 

  99. 99.

    Vogt, B. A., Rosene, D. L. & Pandya, D. N. Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science 204, 205–207 (1979).

    CAS  PubMed  Google Scholar 

  100. 100.

    Morecraft, R. J., Cipolloni, P. B., Stilwell-Morecraft, K. S., Gedney, M. T. & Pandya, D. N. Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J. Comp. Neurol. 469, 37–69 (2004).

    CAS  PubMed  Google Scholar 

  101. 101.

    Petrides, M. & Pandya, D. N. Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J. Neurosci. 27, 11573–11586 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Andersen, R. A., Asanuma, C., Essick, G. & Siegel, R. M. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 296, 65–113 (1990).

    CAS  PubMed  Google Scholar 

  103. 103.

    Liu, C. et al. Anatomical and functional investigation of the marmoset default mode network. Nat. Commun. 10, 1975 (2019).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Majka, P. et al. Towards a comprehensive atlas of cortical connections in the primate brain: mapping tracer injection studies of the common marmoset into a reference digital template. J. Comp. Neurol. 524, 2161–2181 (2016). This article is an open resource of aggregated anatomical tract tracing experiments that provides evidence for a default-network-like candidate in the marmoset monkey.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Perelman, P. et al. A molecular phylogeny of living primates. PLOS Genet. 7, e1001342 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Burman, K. J., Reser, D. H., Hsin-Hao, Y. & Rosa, M. G. Cortical input to the frontal pole of the marmoset monkey. Cereb. Cortex 21, 1712–1737 (2011).

    PubMed  Google Scholar 

  108. 108.

    Rosa, M. G. P. et al. Cortical afferents of area 10 in Cebus monkeys: implications for the evolution of the frontal pole. Cereb. Cortex 29, 1473–1495 (2019).

    PubMed  Google Scholar 

  109. 109.

    Swanson, L. W. & Lichtman, J. W. From Cajal to connectome and beyond. Annu. Rev. Neurosci. 39, 197–216 (2016).

    CAS  PubMed  Google Scholar 

  110. 110.

    Knoblauch, K., Ercsey-Ravasz, M., Kennedy, H. & Toroczkai, Z. in Micro-, Meso- and Macro-Connectomics of the Brain (eds Kennedy, H., Van Essen, D. C. & Christen, Y.) 45-74 (Springer, 2016).

  111. 111.

    Burman, K. J. & Rosa, M. G. P. Architectural subdivisions of medial and orbital frontal cortices in the marmoset monkey (Callithrix jacchus). J. Comp. Neurol. 514, 11–29 (2009).

    PubMed  Google Scholar 

  112. 112.

    Öngür, D. & Price, J. L. Architectonic subdivision of the human orbital and medial prefrontal cortex. J. Comp. Neurol. 460, 425–499 (2003).

    PubMed  Google Scholar 

  113. 113.

    Semendeferi, K. et al. Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb. Cortex 21, 1485–1497 (2011).

    PubMed  Google Scholar 

  114. 114.

    Krienen, F. M. & Buckner, R. L. in Evolution of Nervous Systems 2nd edn (ed. Kaas, J. H.) 169–183 (Elsevier, 2017).

  115. 115.

    Yeo, B. T. T. et al. The organization of human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    PubMed  Google Scholar 

  116. 116.

    Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Huntenburg, J. M., Bazin, P. L. & Margulies, D. S. Large-scale gradients in human cortical organization. Trends Cogn. Sci. 22, 21–31 (2018).

    PubMed  Google Scholar 

  118. 118.

    Sormaz, M. et al. Default mode network can support the level of detail in experience during active task states. Proc. Natl Acad. Sci. USA 115, 9318–9323 (2018).

    CAS  PubMed  Google Scholar 

  119. 119.

    Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Miller, K. J., Weaver, K. E. & Ojemann, J. G. Direct electrophysiological measurement of human default network areas. Proc. Natl Acad. Sci. USA 106, 12174–12177 (2009).

    CAS  PubMed  Google Scholar 

  121. 121.

    Jerbi, K. et al. Exploring the electrophysiological correlates of the default-mode network with intracerebral EEG. Front. Syst. Neurosci. 4, 1–9 (2010).

    Google Scholar 

  122. 122.

    Dastjerdi, M. et al. Differential electrophysiological response during rest, self-referential, and non-self-referential tasks in human posteromedial cortex. Proc. Natl Acad. Sci. USA 108, 3023–3028 (2011).

    CAS  PubMed  Google Scholar 

  123. 123.

    Ossandón, T. et al. Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance. J. Neurosci. 31, 14521–14530 (2011).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Ramot, M. et al. A widely distributed spectral signature of task-negative electrocorticography responses revealed during a visuomotor task in the human cortex. J. Neurosci. 32, 10458–10469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Daitch, A. L. & Parvizi, J. Spatial and temporal heterogeneity of neural responses in human posteromedial cortex. Proc. Natl Acad. Sci. USA 115, 4785–4790 (2018).

    CAS  PubMed  Google Scholar 

  126. 126.

    Raccah, O., Daitch, A. L., Kucyi, A. & Parvizi, J. Direct cortical recordings suggest temporal order of task-evoked responses in human dorsal attention and default networks. J. Neurosci. 38, 10305–10313 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Fox, K. C., Foster, B. L., Kucyi, A., Daitch, A. L. & Parvizi, J. Intracranial electrophysiology of the human default network. Trends Cogn. Sci. 22, 307–324 (2018). This article presents a comprehensive review of intracranial electrophysiological studies of the default network.

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Dotson, N. M., Hoffman, S. J., Goodell, B. & Gray, C. M. A large-scale semi-chronic microdrive recording system for non-human primates. Neuron 96, 769–782 (2017).

    CAS  PubMed  Google Scholar 

  129. 129.

    Dotson, N. M., Hoffman, S. J., Goodell, B. & Gray, C. M. Feature-based visual short-term memory is widely distributed and hierarchically organized. Neuron 99, 215–226 (2018).

    CAS  PubMed  Google Scholar 

  130. 130.

    Foster, B. L., Dastjerdi, M. & Parvizi, J. Neural populations in human posteromedial cortex display opposing responses during memory and numerical processing. Proc. Natl Acad. Sci. USA 109, 15514–15519 (2012).

    CAS  PubMed  Google Scholar 

  131. 131.

    Ojemann, G. A., Ramsey, N. F. & Ojemann, J. Relation between functional magnetic resonance imaging (fMRI) and single neuron, local field potential (LFP) and electrocorticography (ECoG) activity in human cortex. Front. Hum. Neurosci. 7, 1–9 (2013).

    Google Scholar 

  132. 132.

    Parvizi, J. & Kastner, S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 21, 474–483 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS  PubMed  Google Scholar 

  134. 134.

    Sherman, S. M. & Guillery, R. W. Functional organization of thalamocortical relays. J. Neurophysiol. 76, 1367–1395 (1996).

    CAS  PubMed  Google Scholar 

  135. 135.

    Jones, E. G. Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. Ann. NY Acad. Sci. 1157, 10–23 (2009).

    PubMed  Google Scholar 

  136. 136.

    Halassa, M. M. & Kastner, S. Thalamic functions in distributed cognitive control. Nat. Neurosci. 20, 1669–1679 (2017).

    CAS  PubMed  Google Scholar 

  137. 137.

    Goldman-Rakic, P. S. Topography of cognition: parallel distributed networks in primate association cortex. Annu. Rev. Neurosci. 11, 137–156 (1988).

    CAS  PubMed  Google Scholar 

  138. 138.

    Jones, E. G. Thalamus 2nd edn Vol. 1 (Cambridge University Press, 2007).

  139. 139.

    Pinault, D. & Deschênes, M. Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. J. Comp. Neurol. 391, 180–203 (1998).

    CAS  PubMed  Google Scholar 

  140. 140.

    Wimmer, R. D. et al. Thalamic control of sensory selection in divided attention. Nature 526, 705–709 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Pinault, D. The thalamic reticular nucleus: structure, function and concept. Brain Res. Rev. 46, 1–31 (2004).

    PubMed  Google Scholar 

  142. 142.

    Nair, J. et al. Basal forebrain contributes to default mode network regulation. Proc. Natl Acad. Sci. USA 115, 1352–1357 (2018). This rodent study demonstrates basal forebrain activity changes that are associated with behavioural state changes reminiscent of task suppression.

    CAS  PubMed  Google Scholar 

  143. 143.

    Markello, R. D., Spreng, R. N., Luh, W.-M., Anderson, A. K. & De Rosa, E. Segregation of the human basal forebrain using resting state functional MRI. Neuroimage 173, 287–297 (2018).

    PubMed  Google Scholar 

  144. 144.

    Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    CAS  Google Scholar 

  145. 145.

    Duncan, J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behavior. Trends Cogn. Sci. 14, 172–179 (2010).

    PubMed  Google Scholar 

  146. 146.

    Cole, M. W., Repovš, G. & Anticevic, A. The frontoparietal control system: a central role in mental health. Neuroscientist 20, 652–664 (2014).

    PubMed  PubMed Central  Google Scholar 

  147. 147.

    Badre, D. & Nee, D. E. Frontal cortex and the hierarchical control of behavior. Trends Cogn. Sci. 22, 170–188 (2018).

    PubMed  Google Scholar 

  148. 148.

    Zikopoulos, B. & Barbas, H. Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J. Neurosci. 26, 7348–7361 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Barbas, H. General cortical and special prefrontal connections: principles from structure to function. Annu. Rev. Neurosci. 38, 269–280 (2015).

    CAS  PubMed  Google Scholar 

  150. 150.

    Whitfield-Gabrieli, S. et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl Acad. Sci. USA 106, 1279–1284 (2009). This study provides evidence that interactions between the default network and other networks might be disrupted in schizophrenia.

    CAS  PubMed  Google Scholar 

  151. 151.

    Baker, J. T. et al. Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry 71, 109–118 (2014).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Anticevic, A. et al. Early-course unmedicated schizophrenia patients exhibit elevated prefrontal connectivity associated with longitudinal change. J. Neurosci. 35, 267–286 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Woodward, N. D. & Heckers, S. Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders. Biol. Psychiatry 79, 1016–1025 (2016).

    PubMed  Google Scholar 

  154. 154.

    Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    CAS  PubMed Central  Google Scholar 

  155. 155.

    Gulsuner, S. et al. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154, 518–529 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Manoach, D. S., Pan, J. Q., Purcell, S. M. & Stickgold, R. Reduced sleep spindles in schizophrenia: a treatable endophenotype that links risk genes to impaired cognition? Biol. Psychiatry 80, 599–608 (2015).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS  PubMed  Google Scholar 

  158. 158.

    Tsao, D. Y., Moeller, S. & Freiwald, W. A. Comparing face patch systems in macaques and humans. Proc. Natl Acad. Sci. USA 105, 19514–19519 (2008).

    CAS  PubMed  Google Scholar 

  159. 159.

    Freiwald, W., Duchaine, B. & Yovel, G. Face processing systems: from neurons to real world social perception. Annu. Rev. Neurosci. 39, 325–346 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Arcaro, M. J. & Livingstone, M. S. Retinotopic organization of scene areas in macaque inferior temporal cortex. J. Neurosci. 31, 7373–7389 (2017).

    Google Scholar 

  161. 161.

    Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Centre–periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2001).

    CAS  PubMed  Google Scholar 

  162. 162.

    Arcaro, M. J. & Livingstone, M. S. A hierarchical, retinotopic proto-organization of the primate visual system at birth. eLife 6, e26196 (2017). This report suggests a mechanism by which specialized cortical areas are shaped through experience-dependent plasticity constrained by prenatal scaffolding.

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    CAS  PubMed  Google Scholar 

  164. 164.

    Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Kernbach, J. M. et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc. Natl Acad. Sci. USA 115, 12295–12300 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Andrews-Hanna and M. Halassa for helpful comments and R. Braga for discussion relating to this Review, and the reviewers who had extensive, constructive suggestions. D. Reznik helped re-plot the data from the UK Biobank. The marmoset tracer data were provided by the Marmoset Architecture Project. H. Becker assisted in preparation of the paper. The authors’ research work was supported by the US National Institutes of Health grant P50MH106435 to R.L.B. and the National Science Foundation Graduate Research Fellowship DGE1745303 to L.M.D.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Randy L. Buckner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Human Connectome Project: https://www.humanconnectome.org/

Human Group-Averaged Network Estimates: http://freesurfer.net/fswiki/CorticalParcellation_Yeo2011

The Marmoset Architecture Project: www.marmosetbrain.org

UK Biobank: www.fmrib.ox.ac.uk/ukbiobank

Glossary

Task suppression

As used here, the reduced default network activity observed during an active task relative to its activity level during a passive (control) task.

Intrinsic functional connectivity

Correlations between spatially separate brain regions in their spontaneous functional MRI activity signal that can be used to generate hypotheses about network organization.

Anticorrelations

Negative correlations in the spontaneous functional MRI signal that are present between separate networks of regions positively correlated among themselves.

Internal mentation

Cognitive operations arising from internally constructed representations minimally dependent on stimuli in the immediate environment.

Tract tracing

An anatomical method by which brain regions are injected to map the neurons receiving (anterograde) or sending (retrograde) projections from or to the region.

Bowtie organization

As used here, refers to a core–periphery anatomical organization that resembles a bowtie with wings.

High-frequency broadband

(HFB). High-frequency (>50 Hz) non-oscillatory activity recorded in the local field potential that reflects population-spiking activity.

Thalamic reticular nucleus

(TRN). A modulatory nucleus surrounding the thalamus composed of GABAergic inhibitory neurons projecting to the thalamus.

Sleep spindles

Abrupt bursts of oscillatory activity (12–14 Hz) generated by circuit interactions between the thalamic reticular nucleus and the thalamus during stage 2 sleep.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buckner, R.L., DiNicola, L.M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci 20, 593–608 (2019). https://doi.org/10.1038/s41583-019-0212-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing